Add OSS template for OVIC winners.
PiperOrigin-RevId: 306862647 Change-Id: I53ef3bfba7ccc8539471b255473dd30050e31b32
This commit is contained in:
parent
7c0fea00eb
commit
dfbbc9d6db
121
tensorflow/lite/java/ovic/Winner_OSS_Template.md
Normal file
121
tensorflow/lite/java/ovic/Winner_OSS_Template.md
Normal file
@ -0,0 +1,121 @@
|
||||
<!--
|
||||
• This is a README.md template we encourage you to use when you release your model.
|
||||
• There are general sections we added to this template for various ML models.
|
||||
• You may need to add or remove sections depending on your needs.
|
||||
-->
|
||||
|
||||
# Project Name
|
||||
|
||||
## Authors
|
||||
The **1st place winner** of the **4th On-device Visual Intelligence Competition** ([OVIC](https://docs.google.com/document/d/1Rxm_N7dGRyPXjyPIdRwdhZNRye52L56FozDnfYuCi0k/edit#)) of Low-Power Computer Vision Challenge ([LPCVC](https://lpcv.ai/))
|
||||
|
||||
* Last name, First name ([@GitHubUsername](https://github.com/username))
|
||||
* Last name, First name ([@GitHubUsername](https://github.com/username))
|
||||
* Last name, First name ([@GitHubUsername](https://github.com/username))
|
||||
|
||||
## Description
|
||||
<!-- Provide description of the model -->
|
||||
The model submitted for the OVIC and full implementation code for training, evaluation, and inference
|
||||
|
||||
* OVIC track: Image Classification, Object Detection
|
||||
|
||||
## Algorithm
|
||||
<!-- Provide details of the algorithms used -->
|
||||
|
||||
## Requirements
|
||||
<!--
|
||||
• Provide description of the model
|
||||
• Provide brief information of the algorithms used
|
||||
-->
|
||||
|
||||
To install requirements:
|
||||
|
||||
```setup
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Pre-trained Models
|
||||
|
||||
| Model | Download | MD5 checksum |
|
||||
|-------|----------|--------------|
|
||||
| Model Name | Download Link (Size: KB) | MD5 checksum |
|
||||
|
||||
The model tar file contains the followings:
|
||||
* Trained model checkpoint
|
||||
* Frozen trained model
|
||||
* TensorFlow Lite model
|
||||
|
||||
## Results
|
||||
|
||||
### [4th OVIC Public Ranked Leaderboard](https://lpcvc.ecn.purdue.edu/score_board_r4/?contest=round4)
|
||||
|
||||
#### Image Classification (from the Leaderboard)
|
||||
|
||||
| Rank | Username | Latency | Accuracy on Classified | # Classified | Accuracy/Time | Metric | Reference Accuracy |
|
||||
|------|----------|---------|------------------------|--------------|---------------|--------|--------------------|
|
||||
| 1 | Username | xx.x | 0.xxxx | 20000.0 | xxx | 0.xxxxx | 0.xxxxx |
|
||||
|
||||
* **Metric**: Accuracy improvement over the reference accuracy from the Pareto optimal curve
|
||||
* **Accuracy on Classified**: The accuracy in [0, 1] computed based only on the images classified within the wall-time
|
||||
* **\# Classified**: The number of images classified within the wall-time
|
||||
* **Accuracy/Time**: The accuracy divided by either the total inference time or the wall-time, whichever is longer
|
||||
* **Reference accuracy**: The reference accuracy of models from the Pareto optimal curve that have the same latency as the submission
|
||||
|
||||
#### Object Detection
|
||||
|
||||
| Rank | Username | Metric | Runtime | mAP over time | mAP of processed |
|
||||
|------|----------|--------|---------|---------------|------------------|
|
||||
| 1 | Username | 0.xxxxx | xxx.x | xxx | xxx |
|
||||
|
||||
* **Metric**: COCO mAP computed on the entire minival dataset
|
||||
* **mAP over time**: COCO mAP on the minival dataset divided by latency per image
|
||||
* **mAP of processed**: COCO mAP computed only on the processed images
|
||||
|
||||
## Dataset
|
||||
<!--
|
||||
• Provide detailed information of the dataset used
|
||||
-->
|
||||
|
||||
## Training
|
||||
<!--
|
||||
• Provide detailed training information (preprocessing, hyperparameters, random seeds, and environment)
|
||||
• Provide a command line example for training.
|
||||
-->
|
||||
|
||||
Please run this command line for training.
|
||||
|
||||
```shell
|
||||
python3 ...
|
||||
```
|
||||
|
||||
## Evaluation
|
||||
<!--
|
||||
• Provide evaluation script with details of how to reproduce results.
|
||||
• Describe data preprocessing / postprocessing steps
|
||||
• Provide a command line example for evaluation.
|
||||
-->
|
||||
|
||||
Please run this command line for evaluation.
|
||||
|
||||
```shell
|
||||
python3 ...
|
||||
```
|
||||
|
||||
## References
|
||||
<!-- Link to references -->
|
||||
|
||||
## License
|
||||
<!--
|
||||
• Place your license text in a file named LICENSE.txt (or LICENSE.md) in the root of the repository.
|
||||
• Please also include information about your license in this README.md file.
|
||||
e.g., [Adding a license to a repository](https://help.github.com/en/github/building-a-strong-community/adding-a-license-to-a-repository)
|
||||
-->
|
||||
|
||||
This project is licensed under the terms of the **Apache License 2.0**.
|
||||
|
||||
## Citation
|
||||
<!--
|
||||
If you want to make your repository citable, please follow the instructions at [Making Your Code Citable](https://guides.github.com/activities/citable-code/)
|
||||
-->
|
||||
|
||||
If you want to cite this repository in your research paper, please use the following information.
|
Loading…
Reference in New Issue
Block a user