Merge pull request #42619 from Harsh188:python_math_ops_doc_changes

PiperOrigin-RevId: 333784511
Change-Id: I525ec352fb3fbc3f678e344ae571cb648c946b4f
This commit is contained in:
TensorFlower Gardener 2020-09-25 12:31:17 -07:00
commit ddcfb13d36
3 changed files with 83 additions and 12 deletions

View File

@ -1,9 +1,4 @@
op {
graph_op_name: "Acos"
endpoint {
name: "math.acos"
}
endpoint {
name: "acos"
}
visibility: HIDDEN
}

View File

@ -1,9 +1,4 @@
op {
graph_op_name: "Floor"
endpoint {
name: "math.floor"
}
endpoint {
name: "floor"
}
visibility: HIDDEN
}

View File

@ -533,6 +533,31 @@ _mul.__doc__ = (
@tf_export("math.subtract", "subtract")
@dispatch.add_dispatch_support
def subtract(x, y, name=None):
"""Returns x - y element-wise.
*Note*: Subtract supports broadcasting. More about broadcasting
[here](https://numpy.org/doc/stable/user/basics.broadcasting.html)
Both input and output have a range `(-inf, inf)`.
For example:
>>> x = tf.constant([1.0, -1.0, 5.0, -2.0, 0.0])
>>> y = tf.constant([5.0, 1.0, 3.7, -19.9, float("inf")])
>>> tf.subtract(x,y)
<tf.Tensor: shape=(5,), dtype=float32,
numpy= array([-4. , -2. , 1.3, 17.9, -inf], dtype=float32)>
Args:
x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`,
`float32`, `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`,
`complex64`, `complex128`, `string`.
y: A `Tensor`. Must have the same type as x.
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as x.
"""
return gen_math_ops.sub(x, y, name)
@ -4927,3 +4952,59 @@ def rsqrt(x, name=None):
A `tf.Tensor`. Has the same type as `x`.
"""
return gen_math_ops.rsqrt(x, name)
@tf_export("math.acos", "acos")
@dispatch.add_dispatch_support
def acos(x, name=None):
"""Computes acos of x element-wise.
Provided an input tensor, the `tf.math.acos` operation
returns the inverse cosine of each element of the tensor.
If `y = tf.math.cos(x)` then, `x = tf.math.acos(y)`.
Input range is `[-1, 1]` and the output has a range of `[0, pi]`.
For example:
>>> x = tf.constant([1.0, -0.5, 3.4, 0.2, 0.0, -2], dtype = tf.float32)
>>> tf.math.acos(x)
<tf.Tensor: shape=(6,), dtype=float32,
numpy= array([0. , 2.0943952, nan, 1.3694383, 1.5707964, nan],
dtype=float32)>
Args:
x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`,
`float32`, `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`,
`complex64`, `complex128`, `string`.
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as x.
"""
return gen_math_ops.acos(x, name)
@tf_export("math.floor", "floor")
@dispatch.add_dispatch_support
def floor(x, name=None):
"""Returns element-wise largest integer not greater than x.
Both input range is `(-inf, inf)` and the
ouput range consists of all integer values.
For example:
>>> x = tf.constant([1.3324, -1.5, 5.555, -2.532, 0.99, float("inf")])
>>> tf.floor(x).numpy()
array([ 1., -2., 5., -3., 0., inf], dtype=float32)
Args:
x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`,
`float32`, `float64`.
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as x.
"""
return gen_math_ops.floor(x, name)