Tidy up Conv2D converter

This commit is contained in:
Trevor Morris 2019-01-02 15:12:40 -08:00
parent 1051c37705
commit db95d28671
3 changed files with 54 additions and 69 deletions

View File

@ -491,6 +491,7 @@ cuda_py_tests(
"test/binary_tensor_weight_broadcast_test.py",
"test/concatenation_test.py",
"test/const_broadcast_test.py",
"test/conv2d_test.py",
"test/identity_output_test.py",
"test/manual_test.py",
"test/memory_alignment_test.py",

View File

@ -62,14 +62,14 @@ limitations under the License.
#define TFTRT_RETURN_ERROR_IF_FALSE(status, node) \
do { \
if ((status) == false) { \
if ((status) == false) { \
TFTRT_INTERNAL_ERROR_AT_NODE(node); \
} \
} while (0)
#define TFTRT_RETURN_ERROR_IF_NULLPTR(ptr, node) \
do { \
if ((ptr) == nullptr) { \
if ((ptr) == nullptr) { \
TFTRT_INTERNAL_ERROR_AT_NODE(node); \
} \
} while (0)
@ -1567,63 +1567,19 @@ tensorflow::Status ConvertConv2DHelper(OpConverterParams* params, int group) {
node_def.name());
}
TRT_ShapedWeights weights_rsck = inputs.at(1).weights();
VLOG(2) << "weight shape: " << weights_rsck.DebugString();
if (weights_rsck.shape_.nbDims != 4) {
return tensorflow::errors::Internal(
"Conv2D expects kernel of dimension 4, at: " + node_def.name());
}
if (params->validation_only) return tensorflow::Status::OK();
const nvinfer1::ITensor* tensor = inputs.at(0).tensor();
TFAttrs attrs(node_def);
int c_index = 1;
int h_index = 2;
int w_index = 3;
auto data_format = attrs.get<string>("data_format");
if (data_format == "NHWC") {
TF_RETURN_IF_ERROR(params->converter->TransposeTensor(
const_cast<nvinfer1::ITensor*>(tensor), {0, 3, 1, 2}, &tensor));
c_index = 3;
h_index = 1;
w_index = 2;
// TODO(jie): transpose it
}
// tensor after transpose (NCHW)
const auto tensor_dim = tensor->getDimensions();
int num_groups = group;
if (num_groups == 0) num_groups = tensor_dim.d[0]; // depthwise convolution
VLOG(2) << "groups count: " << num_groups;
if (params->converter->precision_mode() == FP16MODE) {
weights_rsck =
ConvertFP32ToFP16(params->weight_store, inputs.at(1).weights());
}
TRT_ShapedWeights weights =
params->weight_store->GetTempWeights(weights_rsck);
ReorderRSCKToKCRS(weights_rsck, &weights, num_groups);
TRT_ShapedWeights biases(weights.type_);
const int noutput = weights.shape_.d[0] * num_groups;
nvinfer1::DimsHW kernel_size;
kernel_size.h() = weights.shape_.d[2];
kernel_size.w() = weights.shape_.d[3];
VLOG(2) << "RSCK: " << weights.DebugString();
VLOG(2) << "kernel size: " << kernel_size.h() << ", " << kernel_size.w();
// TODO(jie): stride. (NHWC/NCHW)
const auto tf_stride = attrs.get<std::vector<int>>("strides");
VLOG(2) << "h_INDEX" << h_index << ", w_index " << w_index;
VLOG(2) << "stride: " << tf_stride[0] << tf_stride[1] << tf_stride[2]
<< tf_stride[3];
const nvinfer1::DimsHW stride(tf_stride[h_index], tf_stride[w_index]);
int c_index = (data_format == "NHWC") ? 3 : 1;
int h_index = (data_format == "NHWC") ? 1 : 2;
int w_index = (data_format == "NHWC") ? 2 : 3;
auto tf_dilations = attrs.get<std::vector<int>>("dilations");
if ((int)tf_dilations.size() != 4) {
if (tf_dilations.size() != 4) {
return tensorflow::errors::InvalidArgument(
"Convolution dilations field must specify 4 dimensions " +
"Convolution dilations field must specify 4 dimensions, at ",
node_def.name());
}
if (tf_dilations[0] != 1 || tf_dilations[c_index] != 1) {
@ -1632,13 +1588,47 @@ tensorflow::Status ConvertConv2DHelper(OpConverterParams* params, int group) {
node_def.name());
}
nvinfer1::DimsHW dilation(tf_dilations[h_index], tf_dilations[w_index]);
const auto tf_stride = attrs.get<std::vector<int>>("strides");
if (tf_stride[0] != 1 || tf_stride[c_index] != 1) {
return tensorflow::errors::Unimplemented(
"Stride must be 1 for batch and channel dimensions, at ",
node_def.name());
}
const nvinfer1::DimsHW stride(tf_stride[h_index], tf_stride[w_index]);
if (params->validation_only) return tensorflow::Status::OK();
const nvinfer1::ITensor* tensor = inputs.at(0).tensor();
// Transpose to NCHW (NCHW is required for IConvLayer).
const bool need_transpose = (data_format == "NHWC");
if (need_transpose) {
TF_RETURN_IF_ERROR(params->converter->TransposeTensor(
const_cast<nvinfer1::ITensor*>(tensor), {0, 3, 1, 2}, &tensor));
}
// Dimensions of transposed tensor.
const auto tensor_dim = tensor->getDimensions();
// This is a depthwise convolution when num_groups is 0. Otherwise, num_groups
// will be 1.
int num_groups = group;
if (num_groups == 0) num_groups = tensor_dim.d[0];
if (params->converter->precision_mode() == FP16MODE) {
weights_rsck =
ConvertFP32ToFP16(params->weight_store, inputs.at(1).weights());
}
TRT_ShapedWeights weights =
params->weight_store->GetTempWeights(weights_rsck);
ReorderRSCKToKCRS(weights_rsck, &weights, num_groups);
TRT_ShapedWeights biases(weights.type_);
const int noutput = weights.shape_.d[0] * num_groups;
nvinfer1::DimsHW kernel_size;
kernel_size.h() = weights.shape_.d[2];
kernel_size.w() = weights.shape_.d[3];
// Add padding.
std::vector<std::pair<int, int>> padding;
// TODO(jie): padding.
if (attrs.get<string>("padding") == "SAME") {
// This is NCHW tensor with no batch dimension.
// 1 -> h
// 2 -> w
nvinfer1::DimsHW effective_kernel_size = kernel_size;
effective_kernel_size.h() += (kernel_size.h() - 1) * (dilation.h() - 1);
effective_kernel_size.w() += (kernel_size.w() - 1) * (dilation.w() - 1);
@ -1648,13 +1638,9 @@ tensorflow::Status ConvertConv2DHelper(OpConverterParams* params, int group) {
} else {
padding = {{0, 0}, {0, 0}};
}
if (padding[0].first != padding[0].second ||
padding[1].first != padding[1].second) {
// TODO(jie): handle asymmetric padding
VLOG(2) << "Padding!!!: " << padding[0].first << padding[0].second
<< padding[1].first << padding[1].second;
VLOG(2) << "TENSOR before: " << DebugString(tensor->getDimensions());
// Handle asymmetric padding.
auto pad_layer = params->converter->network()->addPadding(
*const_cast<nvinfer1::ITensor*>(tensor),
nvinfer1::DimsHW(padding[0].first, padding[1].first),
@ -1664,25 +1650,23 @@ tensorflow::Status ConvertConv2DHelper(OpConverterParams* params, int group) {
const_cast<nvinfer1::ITensor*>(tensor), pad_layer->getOutput(0));
padding = {{0, 0}, {0, 0}};
tensor = pad_layer->getOutput(0);
VLOG(2) << "TENSOR after: " << DebugString(tensor->getDimensions());
}
// Add convolution.
nvinfer1::IConvolutionLayer* layer =
params->converter->network()->addConvolution(
*const_cast<nvinfer1::ITensor*>(tensor), noutput, kernel_size,
weights.GetTrtWeights(), biases.GetTrtWeights());
TFTRT_RETURN_ERROR_IF_NULLPTR(layer, node_def.name());
layer->setStride(stride);
layer->setPadding({padding[0].first, padding[1].first});
layer->setName(node_def.name().c_str());
layer->setNbGroups(num_groups);
layer->setDilation(dilation);
const nvinfer1::ITensor* output_tensor = layer->getOutput(0);
VLOG(2) << "TENSOR out: " << DebugString(output_tensor->getDimensions());
VLOG(2) << "data_format: " << data_format;
if (data_format == "NHWC") {
// TODO(jie): transpose it back!
// Restore transpose.
if (need_transpose) {
TF_RETURN_IF_ERROR(params->converter->TransposeTensor(
const_cast<nvinfer1::ITensor*>(output_tensor), {0, 2, 3, 1},
&output_tensor));

View File

@ -88,7 +88,7 @@ class Conv2DNCHWTest(trt_test.TfTrtIntegrationTestBase):
def ExpectedEnginesToBuild(self, run_params):
"""Return the expected engines to build."""
return ["my_trt_op_0"]
return ["TRTEngineOp_0"]
class Conv2DStridedNCHWTest(trt_test.TfTrtIntegrationTestBase):
@ -128,7 +128,7 @@ class Conv2DStridedNCHWTest(trt_test.TfTrtIntegrationTestBase):
def ExpectedEnginesToBuild(self, run_params):
"""Return the expected engines to build."""
return ["my_trt_op_0"]
return ["TRTEngineOp_0"]
class Conv2DNHWCTest(trt_test.TfTrtIntegrationTestBase):
@ -165,7 +165,7 @@ class Conv2DNHWCTest(trt_test.TfTrtIntegrationTestBase):
def ExpectedEnginesToBuild(self, run_params):
"""Return the expected engines to build."""
return ["my_trt_op_0"]
return ["TRTEngineOp_0"]
if __name__ == "__main__":