Update save_options.function_aliases docstring.

PiperOrigin-RevId: 341499805
Change-Id: I70b6795d73a50fdf225f5b25bb5ad4ca70c6ab6b
This commit is contained in:
Monica Song 2020-11-09 15:37:57 -08:00 committed by TensorFlower Gardener
parent 30b69242f8
commit db1293e895

View File

@ -126,26 +126,22 @@ class SaveOptions(object):
by a single tf.function you can use the `function_aliases` argument to
store a map from the alias name to all concrete function names.
E.g.
```python
class MyModel:
@tf.function
def func():
...
@tf.function
def serve():
...
func()
>>> class Adder(tf.Module):
... @tf.function
... def double(self, x):
... return x + x
>>> model = Adder()
>>> model.double.get_concrete_function(
... tf.TensorSpec(shape=[], dtype=tf.float32, name="float_input"))
>>> model.double.get_concrete_function(
... tf.TensorSpec(shape=[], dtype=tf.string, name="string_input"))
>>> options = tf.saved_model.SaveOptions(
... function_aliases={'double': model.double})
>>> tf.saved_model.save(model, '/tmp/adder', options=options)
model = MyModel()
signatures = {
'serving_default': model.serve.get_concrete_function(),
}
options = tf.saved_model.SaveOptions(function_aliases={
'my_func': func,
})
tf.saved_model.save(model, export_dir, signatures, options)
```
experimental_io_device: string. Applies in a distributed setting.
Tensorflow device to use to access the filesystem. If `None` (default)
then for each variable the filesystem is accessed from the CPU:0 device