Go: Update generated wrapper functions for TensorFlow ops.
PiperOrigin-RevId: 341512329 Change-Id: I75cd65e79ffcc95f057d583d892843046c12d2b6
This commit is contained in:
parent
99118cceb8
commit
d99d8b10dc
@ -14570,6 +14570,21 @@ func WholeFileReaderV2(scope *Scope, optional ...WholeFileReaderV2Attr) (reader_
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// Generate a glob pattern matching all sharded file names.
|
||||
func ShardedFilespec(scope *Scope, basename tf.Output, num_shards tf.Output) (filename tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "ShardedFilespec",
|
||||
Input: []tf.Input{
|
||||
basename, num_shards,
|
||||
},
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// Saves the input tensors to disk.
|
||||
//
|
||||
// The size of `tensor_names` must match the number of tensors in `data`. `data[i]`
|
||||
@ -22697,6 +22712,69 @@ func TanhGrad(scope *Scope, y tf.Output, dy tf.Output) (z tf.Output) {
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// RiscConvAttr is an optional argument to RiscConv.
|
||||
type RiscConvAttr func(optionalAttr)
|
||||
|
||||
// RiscConvDataFormat sets the optional data_format attribute to value.
|
||||
//
|
||||
// value: Specify the data format of the input and output data. With the
|
||||
// default format "NHWC", the data is stored in the order of:
|
||||
// [batch, height, width, channels].
|
||||
// Alternatively, the format could be "NCHW", the data storage order of:
|
||||
// [batch, channels, height, width].
|
||||
// If not specified, defaults to "NHWC"
|
||||
func RiscConvDataFormat(value string) RiscConvAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["data_format"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// RiscConvDilations sets the optional dilations attribute to value.
|
||||
//
|
||||
// value: 1-D tensor of length 4. The dilation factor for each dimension of
|
||||
// `input`. If set to k > 1, there will be k-1 skipped cells between each
|
||||
// filter element on that dimension. The dimension order is determined by the
|
||||
// value of `data_format`, see above for details. Dilations in the batch and
|
||||
// depth dimensions must be 1.
|
||||
// If not specified, defaults to <i:1 i:1 i:1 i:1 >
|
||||
func RiscConvDilations(value []int64) RiscConvAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Computes a 2-D convolution given 4-D `input` and `filter` tensors.
|
||||
//
|
||||
// Arguments:
|
||||
// input: A 4-D tensor. The dimension order is interpreted according to the value
|
||||
// of `data_format`, see below for details.
|
||||
// filter: A 4-D tensor of shape
|
||||
// `[filter_height, filter_width, in_channels, out_channels]`
|
||||
// strides: 1-D tensor of length 4. The stride of the sliding window for each
|
||||
// dimension of `input`. The dimension order is determined by the value of
|
||||
// `data_format`, see below for details.
|
||||
//
|
||||
// Returns A 4-D tensor. The dimension order is determined by the value of
|
||||
// `data_format`, see below for details.
|
||||
func RiscConv(scope *Scope, input tf.Output, filter tf.Output, strides []int64, optional ...RiscConvAttr) (output tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{"strides": strides}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "RiscConv",
|
||||
Input: []tf.Input{
|
||||
input, filter,
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// Computes hyperbolic tangent of `x` element-wise.
|
||||
//
|
||||
// Given an input tensor, this function computes hyperbolic tangent of every
|
||||
@ -29742,6 +29820,67 @@ func RandomGammaGrad(scope *Scope, alpha tf.Output, sample tf.Output) (output tf
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// RandomShuffleAttr is an optional argument to RandomShuffle.
|
||||
type RandomShuffleAttr func(optionalAttr)
|
||||
|
||||
// RandomShuffleSeed sets the optional seed attribute to value.
|
||||
//
|
||||
// value: If either `seed` or `seed2` are set to be non-zero, the random number
|
||||
// generator is seeded by the given seed. Otherwise, it is seeded by a
|
||||
// random seed.
|
||||
// If not specified, defaults to 0
|
||||
func RandomShuffleSeed(value int64) RandomShuffleAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["seed"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// RandomShuffleSeed2 sets the optional seed2 attribute to value.
|
||||
//
|
||||
// value: A second seed to avoid seed collision.
|
||||
// If not specified, defaults to 0
|
||||
func RandomShuffleSeed2(value int64) RandomShuffleAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["seed2"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Randomly shuffles a tensor along its first dimension.
|
||||
//
|
||||
// The tensor is shuffled along dimension 0, such that each `value[j]` is mapped
|
||||
// to one and only one `output[i]`. For example, a mapping that might occur for a
|
||||
// 3x2 tensor is:
|
||||
//
|
||||
// ```
|
||||
// [[1, 2], [[5, 6],
|
||||
// [3, 4], ==> [1, 2],
|
||||
// [5, 6]] [3, 4]]
|
||||
// ```
|
||||
//
|
||||
// Arguments:
|
||||
// value: The tensor to be shuffled.
|
||||
//
|
||||
// Returns A tensor of same shape and type as `value`, shuffled along its first
|
||||
// dimension.
|
||||
func RandomShuffle(scope *Scope, value tf.Output, optional ...RandomShuffleAttr) (output tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "RandomShuffle",
|
||||
Input: []tf.Input{
|
||||
value,
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// Creates a dataset that takes a Bernoulli sample of the contents of another dataset.
|
||||
//
|
||||
// There is no transformation in the `tf.data` Python API for creating this dataset.
|
||||
@ -36066,21 +36205,6 @@ func SparseCross(scope *Scope, indices []tf.Output, values []tf.Output, shapes [
|
||||
return op.Output(0), op.Output(1), op.Output(2)
|
||||
}
|
||||
|
||||
// Generate a glob pattern matching all sharded file names.
|
||||
func ShardedFilespec(scope *Scope, basename tf.Output, num_shards tf.Output) (filename tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "ShardedFilespec",
|
||||
Input: []tf.Input{
|
||||
basename, num_shards,
|
||||
},
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// Writes a scalar summary.
|
||||
//
|
||||
// Writes scalar `value` at `step` with `tag` using summary `writer`.
|
||||
@ -37137,67 +37261,6 @@ func SparseAdd(scope *Scope, a_indices tf.Output, a_values tf.Output, a_shape tf
|
||||
return op.Output(0), op.Output(1), op.Output(2)
|
||||
}
|
||||
|
||||
// RandomShuffleAttr is an optional argument to RandomShuffle.
|
||||
type RandomShuffleAttr func(optionalAttr)
|
||||
|
||||
// RandomShuffleSeed sets the optional seed attribute to value.
|
||||
//
|
||||
// value: If either `seed` or `seed2` are set to be non-zero, the random number
|
||||
// generator is seeded by the given seed. Otherwise, it is seeded by a
|
||||
// random seed.
|
||||
// If not specified, defaults to 0
|
||||
func RandomShuffleSeed(value int64) RandomShuffleAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["seed"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// RandomShuffleSeed2 sets the optional seed2 attribute to value.
|
||||
//
|
||||
// value: A second seed to avoid seed collision.
|
||||
// If not specified, defaults to 0
|
||||
func RandomShuffleSeed2(value int64) RandomShuffleAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["seed2"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Randomly shuffles a tensor along its first dimension.
|
||||
//
|
||||
// The tensor is shuffled along dimension 0, such that each `value[j]` is mapped
|
||||
// to one and only one `output[i]`. For example, a mapping that might occur for a
|
||||
// 3x2 tensor is:
|
||||
//
|
||||
// ```
|
||||
// [[1, 2], [[5, 6],
|
||||
// [3, 4], ==> [1, 2],
|
||||
// [5, 6]] [3, 4]]
|
||||
// ```
|
||||
//
|
||||
// Arguments:
|
||||
// value: The tensor to be shuffled.
|
||||
//
|
||||
// Returns A tensor of same shape and type as `value`, shuffled along its first
|
||||
// dimension.
|
||||
func RandomShuffle(scope *Scope, value tf.Output, optional ...RandomShuffleAttr) (output tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "RandomShuffle",
|
||||
Input: []tf.Input{
|
||||
value,
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// Selects elements from `x` or `y`, depending on `condition`.
|
||||
//
|
||||
// The `x`, and `y` tensors must all have the same shape, and the
|
||||
|
Loading…
Reference in New Issue
Block a user