Port the transpose_conv operator along with with relevant tests.
PiperOrigin-RevId: 350238058 Change-Id: I34b8618434398ba6b690fe1926896c0648d795e7
This commit is contained in:
parent
c66d79843a
commit
d9841dfd96
@ -22,13 +22,13 @@ namespace reference_integer_ops {
|
||||
|
||||
// Fixed-point per-channel-quantization transpose convolution reference kernel.
|
||||
inline void TransposeConv(
|
||||
const ConvParams& params, const int32* output_multiplier,
|
||||
const int32* output_shift, const RuntimeShape& input_shape,
|
||||
const int8* input_data, const RuntimeShape& filter_shape,
|
||||
const int8* filter_data, const RuntimeShape& bias_shape,
|
||||
const int32* bias_data, const RuntimeShape& output_shape, int8* output_data,
|
||||
const RuntimeShape& im2col_shape, int8* im2col_data,
|
||||
int32* scratch_buffer) {
|
||||
const ConvParams& params, const int32_t* output_multiplier,
|
||||
const int32_t* output_shift, const RuntimeShape& input_shape,
|
||||
const int8_t* input_data, const RuntimeShape& filter_shape,
|
||||
const int8_t* filter_data, const RuntimeShape& bias_shape,
|
||||
const int32_t* bias_data, const RuntimeShape& output_shape,
|
||||
int8_t* output_data, const RuntimeShape& im2col_shape, int8_t* im2col_data,
|
||||
int32_t* scratch_buffer) {
|
||||
const int stride_width = params.stride_width;
|
||||
const int stride_height = params.stride_height;
|
||||
const int pad_width = params.padding_values.width;
|
||||
@ -51,16 +51,16 @@ inline void TransposeConv(
|
||||
const int filter_width = filter_shape.Dims(2);
|
||||
const int output_height = output_shape.Dims(1);
|
||||
const int output_width = output_shape.Dims(2);
|
||||
const int32 input_offset = params.input_offset;
|
||||
const int32 output_offset = params.output_offset;
|
||||
const int32 output_activation_min = std::numeric_limits<int8_t>::min();
|
||||
const int32 output_activation_max = std::numeric_limits<int8_t>::max();
|
||||
const int32_t input_offset = params.input_offset;
|
||||
const int32_t output_offset = params.output_offset;
|
||||
const int32_t output_activation_min = std::numeric_limits<int8_t>::min();
|
||||
const int32_t output_activation_max = std::numeric_limits<int8_t>::max();
|
||||
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
|
||||
|
||||
const int num_elements = output_shape.FlatSize();
|
||||
// We need to initialize scratch_buffer to all 0s, as we apply the same
|
||||
// 'scatter' based trick as in float version.
|
||||
memset(scratch_buffer, 0, num_elements * sizeof(int32));
|
||||
memset(scratch_buffer, 0, num_elements * sizeof(int32_t));
|
||||
|
||||
// Loop through input elements one at a time.
|
||||
for (int batch = 0; batch < batches; ++batch) {
|
||||
@ -80,9 +80,9 @@ inline void TransposeConv(
|
||||
// We cannot accumulate out of bounds.
|
||||
if ((out_x >= 0) && (out_x < output_width) && (out_y >= 0) &&
|
||||
(out_y < output_height)) {
|
||||
const int8 input_value = input_data[Offset(
|
||||
const int8_t input_value = input_data[Offset(
|
||||
input_shape, batch, in_y, in_x, in_channel)];
|
||||
const int8 filter_value =
|
||||
const int8_t filter_value =
|
||||
filter_data[Offset(filter_shape, out_channel, filter_y,
|
||||
filter_x, in_channel)];
|
||||
scratch_buffer[Offset(output_shape, batch, out_y, out_x,
|
||||
@ -101,8 +101,8 @@ inline void TransposeConv(
|
||||
for (int out_y = 0; out_y < output_height; ++out_y) {
|
||||
for (int out_x = 0; out_x < output_width; ++out_x) {
|
||||
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
|
||||
int32 acc = scratch_buffer[Offset(output_shape, batch, out_y, out_x,
|
||||
out_channel)];
|
||||
int32_t acc = scratch_buffer[Offset(output_shape, batch, out_y, out_x,
|
||||
out_channel)];
|
||||
if (bias_data) {
|
||||
acc += bias_data[out_channel];
|
||||
}
|
||||
@ -119,14 +119,14 @@ inline void TransposeConv(
|
||||
}
|
||||
}
|
||||
|
||||
// int16 input (zero_point=0), int8 filter, int64 accumulator
|
||||
// int16_t input (zero_point=0), int8_t filter, int64 accumulator
|
||||
inline void TransposeConv(
|
||||
const ConvParams& params, const int32* output_multiplier,
|
||||
const int32* output_shift, const RuntimeShape& input_shape,
|
||||
const int16* input_data, const RuntimeShape& filter_shape,
|
||||
const int8* filter_data, const RuntimeShape& bias_shape,
|
||||
const ConvParams& params, const int32_t* output_multiplier,
|
||||
const int32_t* output_shift, const RuntimeShape& input_shape,
|
||||
const int16_t* input_data, const RuntimeShape& filter_shape,
|
||||
const int8_t* filter_data, const RuntimeShape& bias_shape,
|
||||
const std::int64_t* bias_data, const RuntimeShape& output_shape,
|
||||
int16* output_data, const RuntimeShape& im2col_shape, int8* im2col_data,
|
||||
int16_t* output_data, const RuntimeShape& im2col_shape, int8_t* im2col_data,
|
||||
std::int64_t* scratch_buffer) {
|
||||
const int stride_width = params.stride_width;
|
||||
const int stride_height = params.stride_height;
|
||||
@ -150,8 +150,8 @@ inline void TransposeConv(
|
||||
const int filter_width = filter_shape.Dims(2);
|
||||
const int output_height = output_shape.Dims(1);
|
||||
const int output_width = output_shape.Dims(2);
|
||||
const int32 output_activation_min = std::numeric_limits<int16_t>::min();
|
||||
const int32 output_activation_max = std::numeric_limits<int16_t>::max();
|
||||
const int32_t output_activation_min = std::numeric_limits<int16_t>::min();
|
||||
const int32_t output_activation_max = std::numeric_limits<int16_t>::max();
|
||||
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
|
||||
|
||||
const int num_elements = output_shape.FlatSize();
|
||||
@ -177,9 +177,9 @@ inline void TransposeConv(
|
||||
// We cannot accumulate out of bounds.
|
||||
if ((out_x >= 0) && (out_x < output_width) && (out_y >= 0) &&
|
||||
(out_y < output_height)) {
|
||||
const int32 input_value = input_data[Offset(
|
||||
const int32_t input_value = input_data[Offset(
|
||||
input_shape, batch, in_y, in_x, in_channel)];
|
||||
const int32 filter_value =
|
||||
const int32_t filter_value =
|
||||
filter_data[Offset(filter_shape, out_channel, filter_y,
|
||||
filter_x, in_channel)];
|
||||
scratch_buffer[Offset(output_shape, batch, out_y, out_x,
|
||||
@ -203,7 +203,7 @@ inline void TransposeConv(
|
||||
if (bias_data) {
|
||||
acc += bias_data[out_channel];
|
||||
}
|
||||
int32 scaled_acc = MultiplyByQuantizedMultiplier(
|
||||
int32_t scaled_acc = MultiplyByQuantizedMultiplier(
|
||||
acc, output_multiplier[out_channel], output_shift[out_channel]);
|
||||
scaled_acc = std::max(scaled_acc, output_activation_min);
|
||||
scaled_acc = std::min(scaled_acc, output_activation_max);
|
||||
|
@ -132,6 +132,7 @@ cc_library(
|
||||
"sub.cc",
|
||||
"svdf_common.cc",
|
||||
"tanh.cc",
|
||||
"transpose_conv.cc",
|
||||
"unpack.cc",
|
||||
] + select({
|
||||
"//conditions:default": [
|
||||
@ -162,10 +163,11 @@ cc_library(
|
||||
],
|
||||
deps = [
|
||||
":activation_utils",
|
||||
":kernel_util",
|
||||
":fixedpoint_utils",
|
||||
":kernel_util",
|
||||
":micro_utils",
|
||||
":xtensa",
|
||||
"@flatbuffers",
|
||||
"//tensorflow/lite/c:common",
|
||||
"//tensorflow/lite/kernels:kernel_util",
|
||||
"//tensorflow/lite/kernels:op_macros",
|
||||
@ -178,7 +180,6 @@ cc_library(
|
||||
"//tensorflow/lite/kernels/internal:types",
|
||||
"//tensorflow/lite/micro:memory_helpers",
|
||||
"//tensorflow/lite/micro:micro_utils",
|
||||
"@flatbuffers",
|
||||
] + select({
|
||||
"//conditions:default": [],
|
||||
":xtensa_hifimini": [
|
||||
@ -331,12 +332,30 @@ tflite_micro_cc_test(
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "conv_test_common",
|
||||
srcs = [
|
||||
"conv_test_common.cc",
|
||||
],
|
||||
hdrs = [
|
||||
"conv_test.h",
|
||||
],
|
||||
deps = [
|
||||
":kernel_runner",
|
||||
":micro_ops",
|
||||
"//tensorflow/lite/c:common",
|
||||
"//tensorflow/lite/micro:test_helpers",
|
||||
"//tensorflow/lite/micro/testing:micro_test",
|
||||
],
|
||||
)
|
||||
|
||||
tflite_micro_cc_test(
|
||||
name = "conv_test",
|
||||
srcs = [
|
||||
"conv_test.cc",
|
||||
],
|
||||
deps = [
|
||||
":conv_test_common",
|
||||
":kernel_runner",
|
||||
"//tensorflow/lite/c:common",
|
||||
"//tensorflow/lite/micro:micro_utils",
|
||||
@ -807,3 +826,18 @@ cc_test(
|
||||
"//tensorflow/lite/micro/testing:micro_test",
|
||||
],
|
||||
)
|
||||
|
||||
tflite_micro_cc_test(
|
||||
name = "transpose_conv_test",
|
||||
srcs = [
|
||||
"transpose_conv_test.cc",
|
||||
],
|
||||
deps = [
|
||||
":conv_test_common",
|
||||
":kernel_runner",
|
||||
"//tensorflow/lite/c:common",
|
||||
"//tensorflow/lite/micro:micro_utils",
|
||||
"//tensorflow/lite/micro:test_helpers",
|
||||
"//tensorflow/lite/micro/testing:micro_test",
|
||||
],
|
||||
)
|
||||
|
@ -1,4 +1,4 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/kernels/conv_test.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
|
||||
@ -53,182 +55,6 @@ static TfLiteConvParams common_conv_params = {
|
||||
1, // dilation_height_factor
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
TfLiteStatus InvokeConv(TfLiteTensor* tensors, int tensors_size, T* output_data,
|
||||
int output_length, TfLiteConvParams* conv_params) {
|
||||
int inputs_array_data[] = {3, 0, 1, 2};
|
||||
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
||||
int outputs_array_data[] = {1, 3};
|
||||
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
||||
|
||||
const TfLiteRegistration registration = Register_CONV_2D();
|
||||
micro::KernelRunner runner(
|
||||
registration, tensors, tensors_size, inputs_array, outputs_array,
|
||||
reinterpret_cast<void*>(conv_params), micro_test::reporter);
|
||||
|
||||
const char* init_data = reinterpret_cast<const char*>(conv_params);
|
||||
TfLiteStatus status = runner.InitAndPrepare(init_data);
|
||||
if (status != kTfLiteOk) {
|
||||
return status;
|
||||
}
|
||||
return runner.Invoke();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
TfLiteStatus ValidateConvGoldens(TfLiteTensor* tensors, int tensors_size,
|
||||
const T* expected_output_data, T* output_data,
|
||||
int output_length,
|
||||
TfLiteConvParams* conv_params,
|
||||
float tolerance = 1e-5) {
|
||||
TfLiteStatus status = InvokeConv(tensors, tensors_size, output_data,
|
||||
output_length, conv_params);
|
||||
if (status != kTfLiteOk) {
|
||||
return status;
|
||||
}
|
||||
for (int i = 0; i < output_length; ++i) {
|
||||
TF_LITE_MICRO_EXPECT_NEAR(expected_output_data[i], output_data[i],
|
||||
tolerance);
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
#if !defined(XTENSA) // Needed to avoid build errors from unused functions.
|
||||
void TestConvFloat(const int* input_dims_data, const float* input_data,
|
||||
const int* filter_dims_data, const float* filter_data,
|
||||
const int* bias_dims_data, const float* bias_data,
|
||||
const int* output_dims_data,
|
||||
const float* expected_output_data, float* output_data,
|
||||
TfLiteConvParams* conv_params) {
|
||||
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
||||
TfLiteIntArray* filter_dims = IntArrayFromInts(filter_dims_data);
|
||||
TfLiteIntArray* bias_dims = IntArrayFromInts(bias_dims_data);
|
||||
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
||||
const int output_dims_count = ElementCount(*output_dims);
|
||||
constexpr int inputs_size = 3;
|
||||
constexpr int outputs_size = 1;
|
||||
constexpr int tensors_size = inputs_size + outputs_size;
|
||||
TfLiteTensor tensors[tensors_size] = {
|
||||
CreateTensor(input_data, input_dims),
|
||||
CreateTensor(filter_data, filter_dims),
|
||||
CreateTensor(bias_data, bias_dims),
|
||||
CreateTensor(output_data, output_dims),
|
||||
};
|
||||
|
||||
TF_LITE_MICRO_EXPECT_EQ(
|
||||
kTfLiteOk,
|
||||
ValidateConvGoldens(tensors, tensors_size, expected_output_data,
|
||||
output_data, output_dims_count, conv_params));
|
||||
}
|
||||
|
||||
void TestConvQuantizedPerLayer(
|
||||
const int* input_dims_data, const float* input_data,
|
||||
uint8_t* input_quantized, float input_scale, const int* filter_dims_data,
|
||||
const float* filter_data, uint8_t* filter_quantized, float filter_scale,
|
||||
const int* bias_dims_data, const float* bias_data, int32_t* bias_quantized,
|
||||
const int* output_dims_data, const float* expected_output_data,
|
||||
uint8_t* expected_output_quantized, uint8_t* output_data,
|
||||
float output_scale, TfLiteConvParams* conv_params) {
|
||||
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
||||
TfLiteIntArray* filter_dims = IntArrayFromInts(filter_dims_data);
|
||||
TfLiteIntArray* bias_dims = IntArrayFromInts(bias_dims_data);
|
||||
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
||||
const int output_dims_count = ElementCount(*output_dims);
|
||||
|
||||
tflite::Quantize(expected_output_data, expected_output_quantized,
|
||||
output_dims_count, output_scale, 128);
|
||||
|
||||
constexpr int inputs_size = 3;
|
||||
constexpr int outputs_size = 1;
|
||||
constexpr int tensors_size = inputs_size + outputs_size;
|
||||
TfLiteTensor tensors[tensors_size] = {
|
||||
CreateQuantizedTensor(input_data, input_quantized, input_dims,
|
||||
input_scale, 128),
|
||||
CreateQuantizedTensor(filter_data, filter_quantized, filter_dims,
|
||||
filter_scale, 128),
|
||||
CreateQuantizedBiasTensor(bias_data, bias_quantized, bias_dims,
|
||||
input_scale, filter_scale),
|
||||
CreateQuantizedTensor(output_data, output_dims, output_scale, 128)};
|
||||
|
||||
// TODO(njeff): Affine Quantization Params should be set on tensor creation.
|
||||
float filter_scales[] = {1, filter_scale};
|
||||
int filter_zero_points[] = {1, 128};
|
||||
TfLiteAffineQuantization filter_quant = {FloatArrayFromFloats(filter_scales),
|
||||
IntArrayFromInts(filter_zero_points),
|
||||
0};
|
||||
tensors[1].quantization = {kTfLiteAffineQuantization, &filter_quant};
|
||||
|
||||
TF_LITE_MICRO_EXPECT_EQ(
|
||||
kTfLiteOk,
|
||||
ValidateConvGoldens(tensors, tensors_size, expected_output_quantized,
|
||||
output_data, output_dims_count, conv_params));
|
||||
}
|
||||
|
||||
void TestConvQuantizedPerChannel(
|
||||
const int* input_dims_data, const float* input_data,
|
||||
int8_t* input_quantized, float input_scale, int input_zero_point,
|
||||
const int* filter_dims_data, const float* filter_data,
|
||||
int8_t* filter_data_quantized, const int* bias_dims_data,
|
||||
const float* bias_data, int32_t* bias_data_quantized, float* bias_scales,
|
||||
int* bias_zero_points, const int* output_dims_data,
|
||||
const float* expected_output_data, int8_t* expected_output_data_quantized,
|
||||
int8_t* output_data, float output_scale, int output_zero_point,
|
||||
TfLiteConvParams* conv_params) {
|
||||
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
||||
TfLiteIntArray* filter_dims = IntArrayFromInts(filter_dims_data);
|
||||
TfLiteIntArray* bias_dims = IntArrayFromInts(bias_dims_data);
|
||||
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
||||
const int output_dims_count = ElementCount(*output_dims);
|
||||
|
||||
int filter_zero_points[5];
|
||||
float filter_scales[5];
|
||||
TfLiteAffineQuantization filter_quant;
|
||||
TfLiteAffineQuantization bias_quant;
|
||||
TfLiteTensor input_tensor = CreateQuantizedTensor(
|
||||
input_data, input_quantized, input_dims, input_scale, input_zero_point);
|
||||
TfLiteTensor filter_tensor = CreateSymmetricPerChannelQuantizedTensor(
|
||||
filter_data, filter_data_quantized, filter_dims, filter_scales,
|
||||
filter_zero_points, &filter_quant, 0 /* quantized dimension */);
|
||||
TfLiteTensor bias_tensor = CreatePerChannelQuantizedBiasTensor(
|
||||
bias_data, bias_data_quantized, bias_dims, input_scale, &filter_scales[1],
|
||||
bias_scales, bias_zero_points, &bias_quant, 0 /* quantized dimension */);
|
||||
TfLiteTensor output_tensor = CreateQuantizedTensor(
|
||||
output_data, output_dims, output_scale, output_zero_point);
|
||||
|
||||
// TODO(njeff): Affine Quantization Params should be set on tensor creation.
|
||||
float input_scales[] = {1, input_scale};
|
||||
int input_zero_points[] = {1, input_zero_point};
|
||||
TfLiteAffineQuantization input_quant = {FloatArrayFromFloats(input_scales),
|
||||
IntArrayFromInts(input_zero_points),
|
||||
0};
|
||||
input_tensor.quantization = {kTfLiteAffineQuantization, &input_quant};
|
||||
|
||||
float output_scales[] = {1, output_scale};
|
||||
int output_zero_points[] = {1, output_zero_point};
|
||||
TfLiteAffineQuantization output_quant = {FloatArrayFromFloats(output_scales),
|
||||
IntArrayFromInts(output_zero_points),
|
||||
0};
|
||||
output_tensor.quantization = {kTfLiteAffineQuantization, &output_quant};
|
||||
|
||||
constexpr int inputs_size = 3;
|
||||
constexpr int outputs_size = 1;
|
||||
constexpr int tensors_size = inputs_size + outputs_size;
|
||||
TfLiteTensor tensors[tensors_size] = {
|
||||
input_tensor,
|
||||
filter_tensor,
|
||||
bias_tensor,
|
||||
output_tensor,
|
||||
};
|
||||
|
||||
tflite::Quantize(expected_output_data, expected_output_data_quantized,
|
||||
output_dims_count, output_scale, output_zero_point);
|
||||
TF_LITE_MICRO_EXPECT_EQ(
|
||||
kTfLiteOk,
|
||||
ValidateConvGoldens(tensors, tensors_size, expected_output_data_quantized,
|
||||
output_data, output_dims_count, conv_params,
|
||||
1.0 /* tolerance */));
|
||||
}
|
||||
#endif // !defined(XTENSA)
|
||||
|
||||
} // namespace
|
||||
} // namespace testing
|
||||
} // namespace tflite
|
||||
@ -245,8 +71,9 @@ TF_LITE_MICRO_TEST(SimpleTestFloat) {
|
||||
tflite::testing::kInputShape, tflite::testing::kInputData,
|
||||
tflite::testing::kFilterShape, tflite::testing::kFilterData,
|
||||
tflite::testing::kBiasShape, tflite::testing::kBiasData,
|
||||
tflite::testing::kOutputShape, tflite::testing::kGoldenData, output_data,
|
||||
&tflite::testing::common_conv_params);
|
||||
tflite::testing::kOutputShape, tflite::testing::kGoldenData,
|
||||
&tflite::testing::common_conv_params, tflite::Register_CONV_2D(),
|
||||
output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(InputAndFilterSameWidthHeight) {
|
||||
@ -263,7 +90,8 @@ TF_LITE_MICRO_TEST(InputAndFilterSameWidthHeight) {
|
||||
tflite::testing::TestConvFloat(
|
||||
tflite::testing::kInputShape, tflite::testing::kInputData, kFilterShape,
|
||||
filter_values, kBiasShape, bias_values, kOutputShape, expected_output,
|
||||
output_data, &tflite::testing::common_conv_params);
|
||||
&tflite::testing::common_conv_params, tflite::Register_CONV_2D(),
|
||||
output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(SimpleTestQuantized) {
|
||||
@ -285,8 +113,8 @@ TF_LITE_MICRO_TEST(SimpleTestQuantized) {
|
||||
tflite::testing::kFilterData, filter_quantized, filter_scale,
|
||||
tflite::testing::kBiasShape, tflite::testing::kBiasData, bias_quantized,
|
||||
tflite::testing::kOutputShape, tflite::testing::kGoldenData,
|
||||
golden_quantized, output_data, output_scale,
|
||||
&tflite::testing::common_conv_params);
|
||||
golden_quantized, output_scale, &tflite::testing::common_conv_params,
|
||||
tflite::Register_CONV_2D(), output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(InputOutputDifferentTypeIsError) {
|
||||
@ -312,9 +140,10 @@ TF_LITE_MICRO_TEST(InputOutputDifferentTypeIsError) {
|
||||
/*zero_point=*/0),
|
||||
};
|
||||
TF_LITE_MICRO_EXPECT_EQ(
|
||||
kTfLiteError, tflite::testing::InvokeConv(
|
||||
tensors, tensors_size, output_data, output_dims_count,
|
||||
&tflite::testing::common_conv_params));
|
||||
kTfLiteError,
|
||||
tflite::testing::InvokeConv(tensors, tensors_size, output_dims_count,
|
||||
&tflite::testing::common_conv_params,
|
||||
tflite::Register_CONV_2D(), output_data));
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(HybridModeIsError) {
|
||||
@ -342,9 +171,10 @@ TF_LITE_MICRO_TEST(HybridModeIsError) {
|
||||
CreateTensor(output_data, output_dims),
|
||||
};
|
||||
TF_LITE_MICRO_EXPECT_EQ(
|
||||
kTfLiteError, tflite::testing::InvokeConv(
|
||||
tensors, tensors_size, output_data, output_dims_count,
|
||||
&tflite::testing::common_conv_params));
|
||||
kTfLiteError,
|
||||
tflite::testing::InvokeConv(tensors, tensors_size, output_dims_count,
|
||||
&tflite::testing::common_conv_params,
|
||||
tflite::Register_CONV_2D(), output_data));
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(SimpleTestDilatedQuantized) {
|
||||
@ -381,7 +211,8 @@ TF_LITE_MICRO_TEST(SimpleTestDilatedQuantized) {
|
||||
tflite::testing::kFilterShape, tflite::testing::kFilterData,
|
||||
filter_quantized, filter_scale, tflite::testing::kBiasShape,
|
||||
tflite::testing::kBiasData, bias_quantized, output_shape, golden_data,
|
||||
golden_quantized, output_data, output_scale, &conv_params);
|
||||
golden_quantized, output_scale, &conv_params, tflite::Register_CONV_2D(),
|
||||
output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(SimpleTestQuantizedPerChannel) {
|
||||
@ -406,8 +237,9 @@ TF_LITE_MICRO_TEST(SimpleTestQuantizedPerChannel) {
|
||||
tflite::testing::kFilterShape, tflite::testing::kFilterData,
|
||||
filter_quantized, tflite::testing::kBiasShape, tflite::testing::kBiasData,
|
||||
bias_quantized, scales, zero_points, tflite::testing::kOutputShape,
|
||||
tflite::testing::kGoldenData, golden_quantized, output_data, output_scale,
|
||||
output_zero_point, &tflite::testing::common_conv_params);
|
||||
tflite::testing::kGoldenData, golden_quantized, output_scale,
|
||||
output_zero_point, &tflite::testing::common_conv_params,
|
||||
tflite::Register_CONV_2D(), output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(SimpleTestDilatedQuantizedPerChannel) {
|
||||
@ -447,8 +279,8 @@ TF_LITE_MICRO_TEST(SimpleTestDilatedQuantizedPerChannel) {
|
||||
tflite::testing::kFilterShape, tflite::testing::kFilterData,
|
||||
filter_quantized, tflite::testing::kBiasShape, tflite::testing::kBiasData,
|
||||
bias_quantized, scales, zero_points, output_shape, golden_data,
|
||||
golden_quantized, output_data, output_scale, output_zero_point,
|
||||
&conv_params);
|
||||
golden_quantized, output_scale, output_zero_point, &conv_params,
|
||||
tflite::Register_CONV_2D(), output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(SimpleTestQuantizedPerChannelRelu6) {
|
||||
@ -476,8 +308,9 @@ TF_LITE_MICRO_TEST(SimpleTestQuantizedPerChannelRelu6) {
|
||||
tflite::testing::kFilterShape, tflite::testing::kFilterData,
|
||||
filter_quantized, tflite::testing::kBiasShape, bias_values,
|
||||
bias_quantized, scales, zero_points, tflite::testing::kOutputShape,
|
||||
golden_data, golden_quantized, output_data, output_scale,
|
||||
output_zero_point, &tflite::testing::common_conv_params);
|
||||
golden_data, golden_quantized, output_scale, output_zero_point,
|
||||
&tflite::testing::common_conv_params, tflite::Register_CONV_2D(),
|
||||
output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(Kernel1x1QuantizedPerChannel) {
|
||||
@ -525,8 +358,8 @@ TF_LITE_MICRO_TEST(Kernel1x1QuantizedPerChannel) {
|
||||
input_shape, input_data, input_quantized, input_scale, input_zero_point,
|
||||
filter_shape, filter_data, filter_quantized, bias_shape, bias_data,
|
||||
bias_quantized, scales, zero_points, output_shape, golden_data,
|
||||
golden_quantized, output_data, output_scale, output_zero_point,
|
||||
&conv_params);
|
||||
golden_quantized, output_scale, output_zero_point, &conv_params,
|
||||
tflite::Register_CONV_2D(), output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(Kernel1x1QuantizedPerChannelRelu6) {
|
||||
@ -574,8 +407,8 @@ TF_LITE_MICRO_TEST(Kernel1x1QuantizedPerChannelRelu6) {
|
||||
input_shape, input_data, input_quantized, input_scale, input_zero_point,
|
||||
filter_shape, filter_data, filter_quantized, bias_shape, bias_data,
|
||||
bias_quantized, scales, zero_points, output_shape, golden_data,
|
||||
golden_quantized, output_data, output_scale, output_zero_point,
|
||||
&conv_params);
|
||||
golden_quantized, output_scale, output_zero_point, &conv_params,
|
||||
tflite::Register_CONV_2D(), output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(BroadcastPerLayerQuantizationToPerChannelShouldMatchGolden) {
|
||||
@ -660,8 +493,9 @@ TF_LITE_MICRO_TEST(BroadcastPerLayerQuantizationToPerChannelShouldMatchGolden) {
|
||||
|
||||
TF_LITE_MICRO_EXPECT_EQ(
|
||||
kTfLiteOk, tflite::testing::ValidateConvGoldens(
|
||||
tensors, tensors_size, golden_quantized, output_data,
|
||||
output_dims_count, &tflite::testing::common_conv_params));
|
||||
tensors, tensors_size, golden_quantized, output_dims_count,
|
||||
&tflite::testing::common_conv_params,
|
||||
tflite::Register_CONV_2D(), output_data));
|
||||
}
|
||||
|
||||
#endif // !defined(XTENSA)
|
||||
@ -735,19 +569,19 @@ TF_LITE_MICRO_TEST(FilterDimsNotMatchingAffineQuantization) {
|
||||
// (for broadcast case) nor the quantized dimension size.
|
||||
quant->scale->size = 2;
|
||||
TF_LITE_MICRO_EXPECT_EQ(
|
||||
kTfLiteError,
|
||||
tflite::testing::ValidateConvGoldens(
|
||||
tensors, tensors_size, golden_quantized, output_data,
|
||||
output_dims_count, &tflite::testing::common_conv_params));
|
||||
kTfLiteError, tflite::testing::ValidateConvGoldens(
|
||||
tensors, tensors_size, golden_quantized,
|
||||
output_dims_count, &tflite::testing::common_conv_params,
|
||||
tflite::Register_CONV_2D(), output_data));
|
||||
|
||||
// Set scale back to correct dimension, and make zero point array too short.
|
||||
quant->scale->size = tflite::testing::kFilterShape[0];
|
||||
quant->zero_point->size = 2;
|
||||
TF_LITE_MICRO_EXPECT_EQ(
|
||||
kTfLiteError,
|
||||
tflite::testing::ValidateConvGoldens(
|
||||
tensors, tensors_size, golden_quantized, output_data,
|
||||
output_dims_count, &tflite::testing::common_conv_params));
|
||||
kTfLiteError, tflite::testing::ValidateConvGoldens(
|
||||
tensors, tensors_size, golden_quantized,
|
||||
output_dims_count, &tflite::testing::common_conv_params,
|
||||
tflite::Register_CONV_2D(), output_data));
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(Int8Input32x1Filter32x32ShouldMatchGolden) {
|
||||
@ -881,8 +715,9 @@ TF_LITE_MICRO_TEST(Int8Input32x1Filter32x32ShouldMatchGolden) {
|
||||
|
||||
TF_LITE_MICRO_EXPECT_EQ(
|
||||
kTfLiteOk, tflite::testing::ValidateConvGoldens(
|
||||
tensors, kTensorsSize, golden_quantized, output_quantized,
|
||||
output_dims_count, &conv_params, kQuantizationTolerance));
|
||||
tensors, kTensorsSize, golden_quantized, output_dims_count,
|
||||
&conv_params, tflite::Register_CONV_2D(), output_quantized,
|
||||
kQuantizationTolerance));
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TESTS_END
|
||||
|
94
tensorflow/lite/micro/kernels/conv_test.h
Normal file
94
tensorflow/lite/micro/kernels/conv_test.h
Normal file
@ -0,0 +1,94 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_CONV_H_
|
||||
#define TENSORFLOW_LITE_MICRO_KERNELS_CONV_H_
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
|
||||
#include "tensorflow/lite/micro/kernels/micro_ops.h"
|
||||
#include "tensorflow/lite/micro/test_helpers.h"
|
||||
#include "tensorflow/lite/micro/testing/micro_test.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace testing {
|
||||
|
||||
TfLiteStatus InvokeConv(TfLiteTensor* tensors, int tensors_size,
|
||||
int output_length, TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration, float* output_data);
|
||||
|
||||
TfLiteStatus InvokeConv(TfLiteTensor* tensors, int tensors_size,
|
||||
int output_length, TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration, int8_t* output_data);
|
||||
|
||||
TfLiteStatus InvokeConv(TfLiteTensor* tensors, int tensors_size,
|
||||
int output_length, TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration, uint8_t* output_data);
|
||||
|
||||
TfLiteStatus ValidateConvGoldens(TfLiteTensor* tensors, int tensors_size,
|
||||
const float* expected_output_data,
|
||||
int output_length,
|
||||
TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration,
|
||||
float* output_data, float tolerance = 1e-5);
|
||||
|
||||
TfLiteStatus ValidateConvGoldens(TfLiteTensor* tensors, int tensors_size,
|
||||
const int8_t* expected_output_data,
|
||||
int output_length,
|
||||
TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration,
|
||||
int8_t* output_data, float tolerance = 1e-5);
|
||||
|
||||
TfLiteStatus ValidateConvGoldens(TfLiteTensor* tensors, int tensors_size,
|
||||
const uint8_t* expected_output_data,
|
||||
int output_length,
|
||||
TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration,
|
||||
uint8_t* output_data, float tolerance = 1e-5);
|
||||
|
||||
void TestConvFloat(const int* input_dims_data, const float* input_data,
|
||||
const int* filter_dims_data, const float* filter_data,
|
||||
const int* bias_dims_data, const float* bias_data,
|
||||
const int* output_dims_data,
|
||||
const float* expected_output_data,
|
||||
TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration, float* output_data);
|
||||
|
||||
void TestConvQuantizedPerLayer(
|
||||
const int* input_dims_data, const float* input_data,
|
||||
uint8_t* input_quantized, float input_scale, const int* filter_dims_data,
|
||||
const float* filter_data, uint8_t* filter_quantized, float filter_scale,
|
||||
const int* bias_dims_data, const float* bias_data, int32_t* bias_quantized,
|
||||
const int* output_dims_data, const float* expected_output_data,
|
||||
uint8_t* expected_output_quantized, float output_scale,
|
||||
TfLiteConvParams* conv_params, TfLiteRegistration registration,
|
||||
uint8_t* output_data);
|
||||
|
||||
void TestConvQuantizedPerChannel(
|
||||
const int* input_dims_data, const float* input_data,
|
||||
int8_t* input_quantized, float input_scale, int input_zero_point,
|
||||
const int* filter_dims_data, const float* filter_data,
|
||||
int8_t* filter_data_quantized, const int* bias_dims_data,
|
||||
const float* bias_data, int32_t* bias_data_quantized, float* bias_scales,
|
||||
int* bias_zero_points, const int* output_dims_data,
|
||||
const float* expected_output_data, int8_t* expected_output_data_quantized,
|
||||
float output_scale, int output_zero_point, TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration, int8_t* output_data);
|
||||
|
||||
} // namespace testing
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_KERNELS_CONV_H_
|
252
tensorflow/lite/micro/kernels/conv_test_common.cc
Normal file
252
tensorflow/lite/micro/kernels/conv_test_common.cc
Normal file
@ -0,0 +1,252 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/kernels/conv_test.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace testing {
|
||||
|
||||
template <typename T>
|
||||
TfLiteStatus InvokeConv(TfLiteTensor* tensors, int tensors_size,
|
||||
int output_length, TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration, T* output_data) {
|
||||
int inputs_array_data[] = {3, 0, 1, 2};
|
||||
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
||||
int outputs_array_data[] = {1, 3};
|
||||
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
||||
|
||||
micro::KernelRunner runner(
|
||||
registration, tensors, tensors_size, inputs_array, outputs_array,
|
||||
reinterpret_cast<void*>(conv_params), micro_test::reporter);
|
||||
|
||||
const char* init_data = reinterpret_cast<const char*>(conv_params);
|
||||
TfLiteStatus status = runner.InitAndPrepare(init_data);
|
||||
if (status != kTfLiteOk) {
|
||||
return status;
|
||||
}
|
||||
return runner.Invoke();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
TfLiteStatus ValidateConvGoldens(TfLiteTensor* tensors, int tensors_size,
|
||||
const T* expected_output_data,
|
||||
int output_length,
|
||||
TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration,
|
||||
T* output_data, float tolerance) {
|
||||
TfLiteStatus status = InvokeConv(tensors, tensors_size, output_length,
|
||||
conv_params, registration, output_data);
|
||||
if (status != kTfLiteOk) {
|
||||
return status;
|
||||
}
|
||||
for (int i = 0; i < output_length; ++i) {
|
||||
TF_LITE_MICRO_EXPECT_NEAR(expected_output_data[i], output_data[i],
|
||||
tolerance);
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus InvokeConv(TfLiteTensor* tensors, int tensors_size,
|
||||
int output_length, TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration, float* output_data) {
|
||||
return InvokeConv<float>(tensors, tensors_size, output_length, conv_params,
|
||||
registration, output_data);
|
||||
}
|
||||
|
||||
TfLiteStatus InvokeConv(TfLiteTensor* tensors, int tensors_size,
|
||||
int output_length, TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration, int8_t* output_data) {
|
||||
return InvokeConv<int8_t>(tensors, tensors_size, output_length, conv_params,
|
||||
registration, output_data);
|
||||
}
|
||||
|
||||
TfLiteStatus InvokeConv(TfLiteTensor* tensors, int tensors_size,
|
||||
int output_length, TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration, uint8_t* output_data) {
|
||||
return InvokeConv<uint8_t>(tensors, tensors_size, output_length, conv_params,
|
||||
registration, output_data);
|
||||
}
|
||||
|
||||
TfLiteStatus ValidateConvGoldens(TfLiteTensor* tensors, int tensors_size,
|
||||
const float* expected_output_data,
|
||||
int output_length,
|
||||
TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration,
|
||||
float* output_data, float tolerance) {
|
||||
return ValidateConvGoldens<float>(tensors, tensors_size, expected_output_data,
|
||||
output_length, conv_params, registration,
|
||||
output_data, tolerance);
|
||||
}
|
||||
|
||||
TfLiteStatus ValidateConvGoldens(TfLiteTensor* tensors, int tensors_size,
|
||||
const int8_t* expected_output_data,
|
||||
int output_length,
|
||||
TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration,
|
||||
int8_t* output_data, float tolerance) {
|
||||
return ValidateConvGoldens<int8_t>(
|
||||
tensors, tensors_size, expected_output_data, output_length, conv_params,
|
||||
registration, output_data, tolerance);
|
||||
}
|
||||
|
||||
TfLiteStatus ValidateConvGoldens(TfLiteTensor* tensors, int tensors_size,
|
||||
const uint8_t* expected_output_data,
|
||||
int output_length,
|
||||
TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration,
|
||||
uint8_t* output_data, float tolerance) {
|
||||
return ValidateConvGoldens<uint8_t>(
|
||||
tensors, tensors_size, expected_output_data, output_length, conv_params,
|
||||
registration, output_data, tolerance);
|
||||
}
|
||||
|
||||
void TestConvFloat(const int* input_dims_data, const float* input_data,
|
||||
const int* filter_dims_data, const float* filter_data,
|
||||
const int* bias_dims_data, const float* bias_data,
|
||||
const int* output_dims_data,
|
||||
const float* expected_output_data,
|
||||
TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration, float* output_data) {
|
||||
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
||||
TfLiteIntArray* filter_dims = IntArrayFromInts(filter_dims_data);
|
||||
TfLiteIntArray* bias_dims = IntArrayFromInts(bias_dims_data);
|
||||
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
||||
const int output_dims_count = ElementCount(*output_dims);
|
||||
constexpr int inputs_size = 3;
|
||||
constexpr int outputs_size = 1;
|
||||
constexpr int tensors_size = inputs_size + outputs_size;
|
||||
TfLiteTensor tensors[tensors_size] = {
|
||||
CreateTensor(input_data, input_dims),
|
||||
CreateTensor(filter_data, filter_dims),
|
||||
CreateTensor(bias_data, bias_dims),
|
||||
CreateTensor(output_data, output_dims),
|
||||
};
|
||||
|
||||
TF_LITE_MICRO_EXPECT_EQ(
|
||||
kTfLiteOk, ValidateConvGoldens(tensors, tensors_size,
|
||||
expected_output_data, output_dims_count,
|
||||
conv_params, registration, output_data));
|
||||
}
|
||||
|
||||
void TestConvQuantizedPerLayer(
|
||||
const int* input_dims_data, const float* input_data,
|
||||
uint8_t* input_quantized, float input_scale, const int* filter_dims_data,
|
||||
const float* filter_data, uint8_t* filter_quantized, float filter_scale,
|
||||
const int* bias_dims_data, const float* bias_data, int32_t* bias_quantized,
|
||||
const int* output_dims_data, const float* expected_output_data,
|
||||
uint8_t* expected_output_quantized, float output_scale,
|
||||
TfLiteConvParams* conv_params, TfLiteRegistration registration,
|
||||
uint8_t* output_data) {
|
||||
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
||||
TfLiteIntArray* filter_dims = IntArrayFromInts(filter_dims_data);
|
||||
TfLiteIntArray* bias_dims = IntArrayFromInts(bias_dims_data);
|
||||
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
||||
const int output_dims_count = ElementCount(*output_dims);
|
||||
|
||||
tflite::Quantize(expected_output_data, expected_output_quantized,
|
||||
output_dims_count, output_scale, 128);
|
||||
|
||||
constexpr int inputs_size = 3;
|
||||
constexpr int outputs_size = 1;
|
||||
constexpr int tensors_size = inputs_size + outputs_size;
|
||||
TfLiteTensor tensors[tensors_size] = {
|
||||
CreateQuantizedTensor(input_data, input_quantized, input_dims,
|
||||
input_scale, 128),
|
||||
CreateQuantizedTensor(filter_data, filter_quantized, filter_dims,
|
||||
filter_scale, 128),
|
||||
CreateQuantizedBiasTensor(bias_data, bias_quantized, bias_dims,
|
||||
input_scale, filter_scale),
|
||||
CreateQuantizedTensor(output_data, output_dims, output_scale, 128)};
|
||||
|
||||
float filter_scales[] = {1, filter_scale};
|
||||
int filter_zero_points[] = {1, 128};
|
||||
TfLiteAffineQuantization filter_quant = {FloatArrayFromFloats(filter_scales),
|
||||
IntArrayFromInts(filter_zero_points),
|
||||
0};
|
||||
tensors[1].quantization = {kTfLiteAffineQuantization, &filter_quant};
|
||||
|
||||
TF_LITE_MICRO_EXPECT_EQ(
|
||||
kTfLiteOk,
|
||||
ValidateConvGoldens(tensors, tensors_size, expected_output_quantized,
|
||||
output_dims_count, conv_params, registration,
|
||||
output_data));
|
||||
}
|
||||
|
||||
void TestConvQuantizedPerChannel(
|
||||
const int* input_dims_data, const float* input_data,
|
||||
int8_t* input_quantized, float input_scale, int input_zero_point,
|
||||
const int* filter_dims_data, const float* filter_data,
|
||||
int8_t* filter_data_quantized, const int* bias_dims_data,
|
||||
const float* bias_data, int32_t* bias_data_quantized, float* bias_scales,
|
||||
int* bias_zero_points, const int* output_dims_data,
|
||||
const float* expected_output_data, int8_t* expected_output_data_quantized,
|
||||
float output_scale, int output_zero_point, TfLiteConvParams* conv_params,
|
||||
TfLiteRegistration registration, int8_t* output_data) {
|
||||
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
||||
TfLiteIntArray* filter_dims = IntArrayFromInts(filter_dims_data);
|
||||
TfLiteIntArray* bias_dims = IntArrayFromInts(bias_dims_data);
|
||||
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
||||
const int output_dims_count = ElementCount(*output_dims);
|
||||
|
||||
int filter_zero_points[5];
|
||||
float filter_scales[5];
|
||||
TfLiteAffineQuantization filter_quant;
|
||||
TfLiteAffineQuantization bias_quant;
|
||||
TfLiteTensor input_tensor = CreateQuantizedTensor(
|
||||
input_data, input_quantized, input_dims, input_scale, input_zero_point);
|
||||
TfLiteTensor filter_tensor = CreateSymmetricPerChannelQuantizedTensor(
|
||||
filter_data, filter_data_quantized, filter_dims, filter_scales,
|
||||
filter_zero_points, &filter_quant, 0 /* quantized dimension */);
|
||||
TfLiteTensor bias_tensor = CreatePerChannelQuantizedBiasTensor(
|
||||
bias_data, bias_data_quantized, bias_dims, input_scale, &filter_scales[1],
|
||||
bias_scales, bias_zero_points, &bias_quant, 0 /* quantized dimension */);
|
||||
TfLiteTensor output_tensor = CreateQuantizedTensor(
|
||||
output_data, output_dims, output_scale, output_zero_point);
|
||||
|
||||
float input_scales[] = {1, input_scale};
|
||||
int input_zero_points[] = {1, input_zero_point};
|
||||
TfLiteAffineQuantization input_quant = {FloatArrayFromFloats(input_scales),
|
||||
IntArrayFromInts(input_zero_points),
|
||||
0};
|
||||
input_tensor.quantization = {kTfLiteAffineQuantization, &input_quant};
|
||||
|
||||
float output_scales[] = {1, output_scale};
|
||||
int output_zero_points[] = {1, output_zero_point};
|
||||
TfLiteAffineQuantization output_quant = {FloatArrayFromFloats(output_scales),
|
||||
IntArrayFromInts(output_zero_points),
|
||||
0};
|
||||
output_tensor.quantization = {kTfLiteAffineQuantization, &output_quant};
|
||||
|
||||
constexpr int inputs_size = 3;
|
||||
constexpr int outputs_size = 1;
|
||||
constexpr int tensors_size = inputs_size + outputs_size;
|
||||
TfLiteTensor tensors[tensors_size] = {
|
||||
input_tensor,
|
||||
filter_tensor,
|
||||
bias_tensor,
|
||||
output_tensor,
|
||||
};
|
||||
|
||||
tflite::Quantize(expected_output_data, expected_output_data_quantized,
|
||||
output_dims_count, output_scale, output_zero_point);
|
||||
TF_LITE_MICRO_EXPECT_EQ(
|
||||
kTfLiteOk,
|
||||
ValidateConvGoldens(tensors, tensors_size, expected_output_data_quantized,
|
||||
output_dims_count, conv_params, registration,
|
||||
output_data, 1.0 /* tolerance */));
|
||||
}
|
||||
|
||||
} // namespace testing
|
||||
} // namespace tflite
|
@ -37,6 +37,7 @@ TfLiteRegistration Register_QUANTIZE();
|
||||
TfLiteRegistration Register_SHAPE();
|
||||
TfLiteRegistration Register_SOFTMAX();
|
||||
TfLiteRegistration Register_SVDF();
|
||||
TfLiteRegistration Register_TRANSPOSE_CONV_2D();
|
||||
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
|
265
tensorflow/lite/micro/kernels/transpose_conv.cc
Normal file
265
tensorflow/lite/micro/kernels/transpose_conv.cc
Normal file
@ -0,0 +1,265 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/transpose_conv.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/transpose_conv.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/padding.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace {
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kFilterTensor = 1;
|
||||
constexpr int kBiasTensor = 2;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
// Conv is quantized along dimension 0:
|
||||
// https://www.tensorflow.org/lite/performance/quantization_spec
|
||||
constexpr int kConvQuantizedDimension = 0;
|
||||
|
||||
struct OpData {
|
||||
ConvParams params;
|
||||
|
||||
// A scratch buffer is required for quantized implementations.
|
||||
int scratch_buffer_index;
|
||||
|
||||
// Multiplier and shift arrays are required for the int8 implementation.
|
||||
int32_t* per_channel_output_multiplier;
|
||||
int32_t* per_channel_output_shift;
|
||||
};
|
||||
|
||||
inline PaddingType RuntimePaddingType(TfLitePadding padding) {
|
||||
switch (padding) {
|
||||
case TfLitePadding::kTfLitePaddingSame:
|
||||
return PaddingType::kSame;
|
||||
case TfLitePadding::kTfLitePaddingValid:
|
||||
return PaddingType::kValid;
|
||||
case TfLitePadding::kTfLitePaddingUnknown:
|
||||
default:
|
||||
return PaddingType::kNone;
|
||||
}
|
||||
}
|
||||
|
||||
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
||||
const TfLiteConvParams* params, int width,
|
||||
int height, int filter_width, int filter_height,
|
||||
int out_width, int out_height,
|
||||
const TfLiteType data_type, OpData* data) {
|
||||
bool has_bias = node->inputs->size == 3;
|
||||
// Check number of inputs/outputs
|
||||
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
|
||||
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
|
||||
|
||||
// Matching GetWindowedOutputSize in TensorFlow.
|
||||
auto padding = params->padding;
|
||||
TfLitePaddingValues padding_values = ComputePaddingHeightWidth(
|
||||
params->stride_height, params->stride_width,
|
||||
params->dilation_height_factor, params->dilation_width_factor, height,
|
||||
width, filter_height, filter_width, padding, &out_height, &out_width);
|
||||
|
||||
data->params.padding_type = RuntimePaddingType(padding);
|
||||
data->params.padding_values.width = padding_values.width;
|
||||
data->params.padding_values.height = padding_values.height;
|
||||
|
||||
// Note that quantized inference requires that all tensors have their
|
||||
// parameters set. This is usually done during quantized training.
|
||||
if (data_type != kTfLiteFloat32) {
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||
TF_LITE_ENSURE(context, filter != nullptr);
|
||||
const TfLiteTensor* bias =
|
||||
GetOptionalInputTensor(context, node, kBiasTensor);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
int output_channels = filter->dims->data[kConvQuantizedDimension];
|
||||
|
||||
TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
|
||||
context, input, filter, bias, output, params->activation,
|
||||
&data->params.output_multiplier, &data->params.output_shift,
|
||||
&data->params.quantized_activation_min,
|
||||
&data->params.quantized_activation_max,
|
||||
data->per_channel_output_multiplier,
|
||||
reinterpret_cast<int*>(data->per_channel_output_shift),
|
||||
output_channels));
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
const auto params = static_cast<const TfLiteConvParams*>(node->builtin_data);
|
||||
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||
TF_LITE_ENSURE(context, filter != nullptr);
|
||||
|
||||
int input_width = input->dims->data[2];
|
||||
int input_height = input->dims->data[1];
|
||||
int filter_width = filter->dims->data[2];
|
||||
int filter_height = filter->dims->data[1];
|
||||
int output_width = output->dims->data[2];
|
||||
int output_height = output->dims->data[1];
|
||||
|
||||
// Dynamically allocate per-channel quantization parameters.
|
||||
const int num_channels = filter->dims->data[kConvQuantizedDimension];
|
||||
data->per_channel_output_multiplier =
|
||||
static_cast<int32_t*>(context->AllocatePersistentBuffer(
|
||||
context, num_channels * sizeof(int32_t)));
|
||||
data->per_channel_output_shift =
|
||||
static_cast<int32_t*>(context->AllocatePersistentBuffer(
|
||||
context, num_channels * sizeof(int32_t)));
|
||||
|
||||
// Quantized kernels use an int32 scratch buffer.
|
||||
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) {
|
||||
TFLITE_DCHECK(context->RequestScratchBufferInArena != nullptr);
|
||||
TFLITE_DCHECK(context->RequestScratchBufferInArena(
|
||||
context,
|
||||
GetTensorShape(output).FlatSize() * sizeof(int32_t),
|
||||
&(data->scratch_buffer_index)) == kTfLiteOk);
|
||||
}
|
||||
|
||||
// All per-channel quantized tensors need valid zero point and scale arrays.
|
||||
if (input->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
|
||||
kTfLiteAffineQuantization);
|
||||
|
||||
const auto* affine_quantization =
|
||||
static_cast<TfLiteAffineQuantization*>(filter->quantization.params);
|
||||
TF_LITE_ENSURE(context, affine_quantization);
|
||||
TF_LITE_ENSURE(context, affine_quantization->scale);
|
||||
TF_LITE_ENSURE(context, affine_quantization->zero_point);
|
||||
|
||||
TF_LITE_ENSURE(context,
|
||||
affine_quantization->scale->size == 1 ||
|
||||
affine_quantization->scale->size ==
|
||||
filter->dims->data[kConvQuantizedDimension]);
|
||||
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
|
||||
affine_quantization->zero_point->size);
|
||||
}
|
||||
|
||||
TF_LITE_ENSURE_STATUS(CalculateOpData(
|
||||
context, node, params, input_width, input_height, filter_width,
|
||||
filter_height, output_width, output_height, input->type, data));
|
||||
|
||||
// Offsets (zero points)
|
||||
data->params.input_offset = -input->params.zero_point;
|
||||
data->params.weights_offset = -filter->params.zero_point;
|
||||
data->params.output_offset = output->params.zero_point;
|
||||
|
||||
// Stride + dilation
|
||||
data->params.stride_width = params->stride_width;
|
||||
data->params.stride_height = params->stride_height;
|
||||
data->params.dilation_width_factor = params->dilation_width_factor;
|
||||
data->params.dilation_height_factor = params->dilation_height_factor;
|
||||
|
||||
float output_activation_min, output_activation_max;
|
||||
CalculateActivationRange(params->activation, &output_activation_min,
|
||||
&output_activation_max);
|
||||
data->params.float_activation_min = output_activation_min;
|
||||
data->params.float_activation_max = output_activation_max;
|
||||
return kTfLiteOk;
|
||||
} // namespace conv
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
const TfLiteEvalTensor* filter =
|
||||
tflite::micro::GetEvalInput(context, node, kFilterTensor);
|
||||
const TfLiteEvalTensor* bias =
|
||||
(NumInputs(node) == 3)
|
||||
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
|
||||
: nullptr;
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData& data = *(static_cast<const OpData*>(node->user_data));
|
||||
|
||||
TF_LITE_ENSURE_EQ(context, input->type, output->type);
|
||||
TF_LITE_ENSURE_MSG(context, input->type == filter->type,
|
||||
"Hybrid models are not supported on TFLite Micro.");
|
||||
|
||||
switch (input->type) { // Already know in/out types are same.
|
||||
case kTfLiteFloat32: {
|
||||
reference_ops::TransposeConv(
|
||||
data.params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(filter),
|
||||
tflite::micro::GetTensorData<float>(filter),
|
||||
tflite::micro::GetTensorShape(bias),
|
||||
tflite::micro::GetTensorData<float>(bias),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output),
|
||||
tflite::micro::GetTensorShape(nullptr), nullptr);
|
||||
break;
|
||||
}
|
||||
case kTfLiteInt8: {
|
||||
int32_t* scratch_buffer = static_cast<int32_t*>(
|
||||
context->GetScratchBuffer(context, data.scratch_buffer_index));
|
||||
reference_integer_ops::TransposeConv(
|
||||
data.params, data.per_channel_output_multiplier,
|
||||
data.per_channel_output_shift, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(filter),
|
||||
tflite::micro::GetTensorData<int8_t>(filter),
|
||||
tflite::micro::GetTensorShape(bias),
|
||||
tflite::micro::GetTensorData<int32_t>(bias),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output),
|
||||
tflite::micro::GetTensorShape(nullptr), nullptr, scratch_buffer);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input->type), input->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
TfLiteRegistration Register_TRANSPOSE_CONV_2D() {
|
||||
return {/*init=*/Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/Prepare,
|
||||
/*invoke=*/Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace tflite
|
162
tensorflow/lite/micro/kernels/transpose_conv_test.cc
Normal file
162
tensorflow/lite/micro/kernels/transpose_conv_test.cc
Normal file
@ -0,0 +1,162 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/micro/kernels/conv_test.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
|
||||
#include "tensorflow/lite/micro/micro_utils.h"
|
||||
#include "tensorflow/lite/micro/test_helpers.h"
|
||||
#include "tensorflow/lite/micro/testing/micro_test.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace testing {
|
||||
namespace {
|
||||
|
||||
// Common inputs and outputs.
|
||||
constexpr int kInputElements = 32;
|
||||
static const int kInputShape[] = {4, 1, 4, 4, 2};
|
||||
static const float kInputData[kInputElements] = {
|
||||
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
|
||||
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32};
|
||||
|
||||
constexpr int kFilterElements = 18;
|
||||
static const int kFilterShape[] = {4, 1, 3, 3, 2};
|
||||
static const float kFilterData[kFilterElements] = {
|
||||
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18};
|
||||
|
||||
constexpr int kBiasElements = 1;
|
||||
static const int kBiasShape[] = {4, 1, 1, 1, 1};
|
||||
static const float kBiasData[kBiasElements] = {0};
|
||||
|
||||
constexpr int kOutputElements = 16;
|
||||
static const int kOutputShape[] = {4, 1, 4, 4, 1};
|
||||
static const float kGoldenData[kOutputElements] = {
|
||||
184, 412, 568, 528, 678, 1347, 1689, 1434,
|
||||
1494, 2715, 3057, 2442, 1968, 3352, 3652, 2760};
|
||||
|
||||
// Transpose conv uses TfLiteConvParams.
|
||||
static TfLiteConvParams common_conv_params = {kTfLitePaddingSame, // padding
|
||||
1, // stride_width
|
||||
1, // stride_height
|
||||
kTfLiteActNone,
|
||||
1,
|
||||
1};
|
||||
|
||||
} // namespace
|
||||
} // namespace testing
|
||||
} // namespace tflite
|
||||
|
||||
TF_LITE_MICRO_TESTS_BEGIN
|
||||
|
||||
TF_LITE_MICRO_TEST(SimpleTestFloat) {
|
||||
float output_data[tflite::testing::kOutputElements];
|
||||
|
||||
tflite::testing::TestConvFloat(
|
||||
tflite::testing::kInputShape, tflite::testing::kInputData,
|
||||
tflite::testing::kFilterShape, tflite::testing::kFilterData,
|
||||
tflite::testing::kBiasShape, tflite::testing::kBiasData,
|
||||
tflite::testing::kOutputShape, tflite::testing::kGoldenData,
|
||||
&tflite::testing::common_conv_params,
|
||||
tflite::Register_TRANSPOSE_CONV_2D(), output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(SimpleTestQuantizedPerChannel) {
|
||||
int8_t output_data[tflite::testing::kOutputElements];
|
||||
|
||||
const float input_scale = 0.5f;
|
||||
const float output_scale = 1.0f;
|
||||
const int input_zero_point = 0;
|
||||
const int output_zero_point = 0;
|
||||
|
||||
int8_t input_quantized[tflite::testing::kInputElements];
|
||||
int8_t filter_quantized[tflite::testing::kFilterElements];
|
||||
int32_t bias_quantized[tflite::testing::kBiasElements];
|
||||
int8_t golden_quantized[tflite::testing::kOutputElements];
|
||||
int zero_points[tflite::testing::kBiasElements + 1];
|
||||
float scales[tflite::testing::kBiasElements + 1];
|
||||
|
||||
tflite::testing::TestConvQuantizedPerChannel(
|
||||
tflite::testing::kInputShape, tflite::testing::kInputData,
|
||||
input_quantized, input_scale, input_zero_point,
|
||||
tflite::testing::kFilterShape, tflite::testing::kFilterData,
|
||||
filter_quantized, tflite::testing::kBiasShape, tflite::testing::kBiasData,
|
||||
bias_quantized, scales, zero_points, tflite::testing::kOutputShape,
|
||||
tflite::testing::kGoldenData, golden_quantized, output_scale,
|
||||
output_zero_point, &tflite::testing::common_conv_params,
|
||||
tflite::Register_TRANSPOSE_CONV_2D(), output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(InputOutputDifferentTypeIsError) {
|
||||
using tflite::testing::CreateQuantizedTensor;
|
||||
using tflite::testing::CreateTensor;
|
||||
using tflite::testing::IntArrayFromInts;
|
||||
|
||||
TfLiteIntArray* input_dims = IntArrayFromInts(tflite::testing::kInputShape);
|
||||
TfLiteIntArray* filter_dims = IntArrayFromInts(tflite::testing::kFilterShape);
|
||||
TfLiteIntArray* bias_dims = IntArrayFromInts(tflite::testing::kBiasShape);
|
||||
TfLiteIntArray* output_dims = IntArrayFromInts(tflite::testing::kOutputShape);
|
||||
const int output_dims_count = tflite::ElementCount(*output_dims);
|
||||
constexpr int inputs_size = 3;
|
||||
constexpr int outputs_size = 1;
|
||||
constexpr int tensors_size = inputs_size + outputs_size;
|
||||
|
||||
int8_t output_data[tflite::testing::kOutputElements];
|
||||
TfLiteTensor tensors[tensors_size] = {
|
||||
CreateTensor(tflite::testing::kInputData, input_dims),
|
||||
CreateTensor(tflite::testing::kFilterData, filter_dims),
|
||||
CreateTensor(tflite::testing::kBiasData, bias_dims),
|
||||
CreateQuantizedTensor(output_data, output_dims, /*scale=*/1.0f,
|
||||
/*zero_point=*/0),
|
||||
};
|
||||
TF_LITE_MICRO_EXPECT_EQ(
|
||||
kTfLiteError, tflite::testing::InvokeConv(
|
||||
tensors, tensors_size, output_dims_count,
|
||||
&tflite::testing::common_conv_params,
|
||||
tflite::Register_TRANSPOSE_CONV_2D(), output_data));
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(HybridModeIsError) {
|
||||
using tflite::testing::CreateQuantizedTensor;
|
||||
using tflite::testing::CreateTensor;
|
||||
using tflite::testing::IntArrayFromInts;
|
||||
|
||||
TfLiteIntArray* input_dims = IntArrayFromInts(tflite::testing::kInputShape);
|
||||
TfLiteIntArray* filter_dims = IntArrayFromInts(tflite::testing::kFilterShape);
|
||||
TfLiteIntArray* bias_dims = IntArrayFromInts(tflite::testing::kBiasShape);
|
||||
TfLiteIntArray* output_dims = IntArrayFromInts(tflite::testing::kOutputShape);
|
||||
const int output_dims_count = tflite::ElementCount(*output_dims);
|
||||
constexpr int inputs_size = 3;
|
||||
constexpr int outputs_size = 1;
|
||||
constexpr int tensors_size = inputs_size + outputs_size;
|
||||
|
||||
int8_t filter_data[tflite::testing::kFilterElements] = {};
|
||||
float output_data[tflite::testing::kOutputElements];
|
||||
TfLiteTensor tensors[tensors_size] = {
|
||||
CreateTensor(tflite::testing::kInputData, input_dims),
|
||||
CreateQuantizedTensor(filter_data, filter_dims,
|
||||
/*scale=*/1.0f,
|
||||
/*zero_point=*/0),
|
||||
CreateTensor(tflite::testing::kBiasData, bias_dims),
|
||||
CreateTensor(output_data, output_dims),
|
||||
};
|
||||
TF_LITE_MICRO_EXPECT_EQ(
|
||||
kTfLiteError, tflite::testing::InvokeConv(
|
||||
tensors, tensors_size, output_dims_count,
|
||||
&tflite::testing::common_conv_params,
|
||||
tflite::Register_TRANSPOSE_CONV_2D(), output_data));
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TESTS_END
|
@ -305,6 +305,7 @@ tensorflow/lite/micro/kernels/strided_slice_test.cc \
|
||||
tensorflow/lite/micro/kernels/sub_test.cc \
|
||||
tensorflow/lite/micro/kernels/svdf_test.cc \
|
||||
tensorflow/lite/micro/kernels/tanh_test.cc \
|
||||
tensorflow/lite/micro/kernels/transpose_conv_test.cc \
|
||||
tensorflow/lite/micro/kernels/unpack_test.cc \
|
||||
tensorflow/lite/micro/memory_planner/greedy_memory_planner_test.cc \
|
||||
tensorflow/lite/micro/memory_planner/linear_memory_planner_test.cc
|
||||
@ -318,6 +319,7 @@ tensorflow/lite/micro/kernels/circular_buffer.cc \
|
||||
tensorflow/lite/micro/kernels/comparisons.cc \
|
||||
tensorflow/lite/micro/kernels/concatenation.cc \
|
||||
tensorflow/lite/micro/kernels/conv.cc \
|
||||
tensorflow/lite/micro/kernels/conv_test_common.cc \
|
||||
tensorflow/lite/micro/kernels/depthwise_conv.cc \
|
||||
tensorflow/lite/micro/kernels/dequantize.cc \
|
||||
tensorflow/lite/micro/kernels/detection_postprocess.cc \
|
||||
@ -354,6 +356,7 @@ tensorflow/lite/micro/kernels/sub.cc \
|
||||
tensorflow/lite/micro/kernels/svdf.cc \
|
||||
tensorflow/lite/micro/kernels/svdf_common.cc \
|
||||
tensorflow/lite/micro/kernels/tanh.cc \
|
||||
tensorflow/lite/micro/kernels/transpose_conv.cc \
|
||||
tensorflow/lite/micro/kernels/unpack.cc
|
||||
|
||||
MICROLITE_TEST_HDRS := \
|
||||
@ -418,6 +421,7 @@ tensorflow/lite/kernels/internal/reference/integer_ops/mean.h \
|
||||
tensorflow/lite/kernels/internal/reference/integer_ops/mul.h \
|
||||
tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h \
|
||||
tensorflow/lite/kernels/internal/reference/integer_ops/tanh.h \
|
||||
tensorflow/lite/kernels/internal/reference/integer_ops/transpose_conv.h \
|
||||
tensorflow/lite/kernels/internal/reference/l2normalization.h \
|
||||
tensorflow/lite/kernels/internal/reference/maximum_minimum.h \
|
||||
tensorflow/lite/kernels/internal/reference/mul.h \
|
||||
@ -436,6 +440,7 @@ tensorflow/lite/kernels/internal/reference/sub.h \
|
||||
tensorflow/lite/kernels/internal/reference/logistic.h \
|
||||
tensorflow/lite/kernels/internal/reference/strided_slice.h \
|
||||
tensorflow/lite/kernels/internal/reference/tanh.h \
|
||||
tensorflow/lite/kernels/internal/reference/transpose_conv.h \
|
||||
tensorflow/lite/kernels/internal/cppmath.h \
|
||||
tensorflow/lite/kernels/internal/max.h \
|
||||
tensorflow/lite/kernels/internal/min.h \
|
||||
|
Loading…
x
Reference in New Issue
Block a user