Update generated Python Op docs.

Change: 130061676
This commit is contained in:
A. Unique TensorFlower 2016-08-11 18:49:21 -08:00 committed by TensorFlower Gardener
parent bc15695781
commit d9511bb9f6
4 changed files with 20 additions and 18 deletions

View File

@ -19,7 +19,7 @@ The class uses optional peep-hole connections, optional cell clipping, and
an optional projection layer. an optional projection layer.
- - - - - -
#### `tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=False, activation=tanh)` {#LSTMCell.__init__} #### `tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=True, activation=tanh)` {#LSTMCell.__init__}
Initialize the parameters for an LSTM cell. Initialize the parameters for an LSTM cell.
@ -47,8 +47,8 @@ Initialize the parameters for an LSTM cell.
in order to reduce the scale of forgetting at the beginning of in order to reduce the scale of forgetting at the beginning of
the training. the training.
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of * <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. By default (False), they are concatenated the `c_state` and `m_state`. If False, they are concatenated
along the column axis. This default behavior will soon be deprecated. along the column axis. This latter behavior will soon be deprecated.
* <b>`activation`</b>: Activation function of the inner states. * <b>`activation`</b>: Activation function of the inner states.

View File

@ -11,7 +11,7 @@ use peep-hole connections: it is the basic baseline.
For advanced models, please use the full LSTMCell that follows. For advanced models, please use the full LSTMCell that follows.
- - - - - -
#### `tf.nn.rnn_cell.BasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, state_is_tuple=False, activation=tanh)` {#BasicLSTMCell.__init__} #### `tf.nn.rnn_cell.BasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=tanh)` {#BasicLSTMCell.__init__}
Initialize the basic LSTM cell. Initialize the basic LSTM cell.
@ -22,8 +22,8 @@ Initialize the basic LSTM cell.
* <b>`forget_bias`</b>: float, The bias added to forget gates (see above). * <b>`forget_bias`</b>: float, The bias added to forget gates (see above).
* <b>`input_size`</b>: Deprecated and unused. * <b>`input_size`</b>: Deprecated and unused.
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of * <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. By default (False), they are concatenated the `c_state` and `m_state`. If False, they are concatenated
along the column axis. This default behavior will soon be deprecated. along the column axis. The latter behavior will soon be deprecated.
* <b>`activation`</b>: Activation function of the inner states. * <b>`activation`</b>: Activation function of the inner states.

View File

@ -1,7 +1,7 @@
RNN cell composed sequentially of multiple simple cells. RNN cell composed sequentially of multiple simple cells.
- - - - - -
#### `tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=False)` {#MultiRNNCell.__init__} #### `tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=True)` {#MultiRNNCell.__init__}
Create a RNN cell composed sequentially of a number of RNNCells. Create a RNN cell composed sequentially of a number of RNNCells.
@ -10,8 +10,9 @@ Create a RNN cell composed sequentially of a number of RNNCells.
* <b>`cells`</b>: list of RNNCells that will be composed in this order. * <b>`cells`</b>: list of RNNCells that will be composed in this order.
* <b>`state_is_tuple`</b>: If True, accepted and returned states are n-tuples, where * <b>`state_is_tuple`</b>: If True, accepted and returned states are n-tuples, where
`n = len(cells)`. By default (False), the states are all `n = len(cells)`. If False, the states are all
concatenated along the column axis. concatenated along the column axis. This latter behavior will soon be
deprecated.
##### Raises: ##### Raises:

View File

@ -141,7 +141,7 @@ use peep-hole connections: it is the basic baseline.
For advanced models, please use the full LSTMCell that follows. For advanced models, please use the full LSTMCell that follows.
- - - - - -
#### `tf.nn.rnn_cell.BasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, state_is_tuple=False, activation=tanh)` {#BasicLSTMCell.__init__} #### `tf.nn.rnn_cell.BasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=tanh)` {#BasicLSTMCell.__init__}
Initialize the basic LSTM cell. Initialize the basic LSTM cell.
@ -152,8 +152,8 @@ Initialize the basic LSTM cell.
* <b>`forget_bias`</b>: float, The bias added to forget gates (see above). * <b>`forget_bias`</b>: float, The bias added to forget gates (see above).
* <b>`input_size`</b>: Deprecated and unused. * <b>`input_size`</b>: Deprecated and unused.
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of * <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. By default (False), they are concatenated the `c_state` and `m_state`. If False, they are concatenated
along the column axis. This default behavior will soon be deprecated. along the column axis. The latter behavior will soon be deprecated.
* <b>`activation`</b>: Activation function of the inner states. * <b>`activation`</b>: Activation function of the inner states.
@ -268,7 +268,7 @@ The class uses optional peep-hole connections, optional cell clipping, and
an optional projection layer. an optional projection layer.
- - - - - -
#### `tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=False, activation=tanh)` {#LSTMCell.__init__} #### `tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=True, activation=tanh)` {#LSTMCell.__init__}
Initialize the parameters for an LSTM cell. Initialize the parameters for an LSTM cell.
@ -296,8 +296,8 @@ Initialize the parameters for an LSTM cell.
in order to reduce the scale of forgetting at the beginning of in order to reduce the scale of forgetting at the beginning of
the training. the training.
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of * <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. By default (False), they are concatenated the `c_state` and `m_state`. If False, they are concatenated
along the column axis. This default behavior will soon be deprecated. along the column axis. This latter behavior will soon be deprecated.
* <b>`activation`</b>: Activation function of the inner states. * <b>`activation`</b>: Activation function of the inner states.
@ -382,7 +382,7 @@ Alias for field number 1
RNN cell composed sequentially of multiple simple cells. RNN cell composed sequentially of multiple simple cells.
- - - - - -
#### `tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=False)` {#MultiRNNCell.__init__} #### `tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=True)` {#MultiRNNCell.__init__}
Create a RNN cell composed sequentially of a number of RNNCells. Create a RNN cell composed sequentially of a number of RNNCells.
@ -391,8 +391,9 @@ Create a RNN cell composed sequentially of a number of RNNCells.
* <b>`cells`</b>: list of RNNCells that will be composed in this order. * <b>`cells`</b>: list of RNNCells that will be composed in this order.
* <b>`state_is_tuple`</b>: If True, accepted and returned states are n-tuples, where * <b>`state_is_tuple`</b>: If True, accepted and returned states are n-tuples, where
`n = len(cells)`. By default (False), the states are all `n = len(cells)`. If False, the states are all
concatenated along the column axis. concatenated along the column axis. This latter behavior will soon be
deprecated.
##### Raises: ##### Raises: