Update generated Python Op docs.
Change: 130061676
This commit is contained in:
parent
bc15695781
commit
d9511bb9f6
@ -19,7 +19,7 @@ The class uses optional peep-hole connections, optional cell clipping, and
|
|||||||
an optional projection layer.
|
an optional projection layer.
|
||||||
- - -
|
- - -
|
||||||
|
|
||||||
#### `tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=False, activation=tanh)` {#LSTMCell.__init__}
|
#### `tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=True, activation=tanh)` {#LSTMCell.__init__}
|
||||||
|
|
||||||
Initialize the parameters for an LSTM cell.
|
Initialize the parameters for an LSTM cell.
|
||||||
|
|
||||||
@ -47,8 +47,8 @@ Initialize the parameters for an LSTM cell.
|
|||||||
in order to reduce the scale of forgetting at the beginning of
|
in order to reduce the scale of forgetting at the beginning of
|
||||||
the training.
|
the training.
|
||||||
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
|
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
|
||||||
the `c_state` and `m_state`. By default (False), they are concatenated
|
the `c_state` and `m_state`. If False, they are concatenated
|
||||||
along the column axis. This default behavior will soon be deprecated.
|
along the column axis. This latter behavior will soon be deprecated.
|
||||||
* <b>`activation`</b>: Activation function of the inner states.
|
* <b>`activation`</b>: Activation function of the inner states.
|
||||||
|
|
||||||
|
|
||||||
|
@ -11,7 +11,7 @@ use peep-hole connections: it is the basic baseline.
|
|||||||
For advanced models, please use the full LSTMCell that follows.
|
For advanced models, please use the full LSTMCell that follows.
|
||||||
- - -
|
- - -
|
||||||
|
|
||||||
#### `tf.nn.rnn_cell.BasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, state_is_tuple=False, activation=tanh)` {#BasicLSTMCell.__init__}
|
#### `tf.nn.rnn_cell.BasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=tanh)` {#BasicLSTMCell.__init__}
|
||||||
|
|
||||||
Initialize the basic LSTM cell.
|
Initialize the basic LSTM cell.
|
||||||
|
|
||||||
@ -22,8 +22,8 @@ Initialize the basic LSTM cell.
|
|||||||
* <b>`forget_bias`</b>: float, The bias added to forget gates (see above).
|
* <b>`forget_bias`</b>: float, The bias added to forget gates (see above).
|
||||||
* <b>`input_size`</b>: Deprecated and unused.
|
* <b>`input_size`</b>: Deprecated and unused.
|
||||||
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
|
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
|
||||||
the `c_state` and `m_state`. By default (False), they are concatenated
|
the `c_state` and `m_state`. If False, they are concatenated
|
||||||
along the column axis. This default behavior will soon be deprecated.
|
along the column axis. The latter behavior will soon be deprecated.
|
||||||
* <b>`activation`</b>: Activation function of the inner states.
|
* <b>`activation`</b>: Activation function of the inner states.
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
RNN cell composed sequentially of multiple simple cells.
|
RNN cell composed sequentially of multiple simple cells.
|
||||||
- - -
|
- - -
|
||||||
|
|
||||||
#### `tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=False)` {#MultiRNNCell.__init__}
|
#### `tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=True)` {#MultiRNNCell.__init__}
|
||||||
|
|
||||||
Create a RNN cell composed sequentially of a number of RNNCells.
|
Create a RNN cell composed sequentially of a number of RNNCells.
|
||||||
|
|
||||||
@ -10,8 +10,9 @@ Create a RNN cell composed sequentially of a number of RNNCells.
|
|||||||
|
|
||||||
* <b>`cells`</b>: list of RNNCells that will be composed in this order.
|
* <b>`cells`</b>: list of RNNCells that will be composed in this order.
|
||||||
* <b>`state_is_tuple`</b>: If True, accepted and returned states are n-tuples, where
|
* <b>`state_is_tuple`</b>: If True, accepted and returned states are n-tuples, where
|
||||||
`n = len(cells)`. By default (False), the states are all
|
`n = len(cells)`. If False, the states are all
|
||||||
concatenated along the column axis.
|
concatenated along the column axis. This latter behavior will soon be
|
||||||
|
deprecated.
|
||||||
|
|
||||||
##### Raises:
|
##### Raises:
|
||||||
|
|
||||||
|
@ -141,7 +141,7 @@ use peep-hole connections: it is the basic baseline.
|
|||||||
For advanced models, please use the full LSTMCell that follows.
|
For advanced models, please use the full LSTMCell that follows.
|
||||||
- - -
|
- - -
|
||||||
|
|
||||||
#### `tf.nn.rnn_cell.BasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, state_is_tuple=False, activation=tanh)` {#BasicLSTMCell.__init__}
|
#### `tf.nn.rnn_cell.BasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=tanh)` {#BasicLSTMCell.__init__}
|
||||||
|
|
||||||
Initialize the basic LSTM cell.
|
Initialize the basic LSTM cell.
|
||||||
|
|
||||||
@ -152,8 +152,8 @@ Initialize the basic LSTM cell.
|
|||||||
* <b>`forget_bias`</b>: float, The bias added to forget gates (see above).
|
* <b>`forget_bias`</b>: float, The bias added to forget gates (see above).
|
||||||
* <b>`input_size`</b>: Deprecated and unused.
|
* <b>`input_size`</b>: Deprecated and unused.
|
||||||
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
|
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
|
||||||
the `c_state` and `m_state`. By default (False), they are concatenated
|
the `c_state` and `m_state`. If False, they are concatenated
|
||||||
along the column axis. This default behavior will soon be deprecated.
|
along the column axis. The latter behavior will soon be deprecated.
|
||||||
* <b>`activation`</b>: Activation function of the inner states.
|
* <b>`activation`</b>: Activation function of the inner states.
|
||||||
|
|
||||||
|
|
||||||
@ -268,7 +268,7 @@ The class uses optional peep-hole connections, optional cell clipping, and
|
|||||||
an optional projection layer.
|
an optional projection layer.
|
||||||
- - -
|
- - -
|
||||||
|
|
||||||
#### `tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=False, activation=tanh)` {#LSTMCell.__init__}
|
#### `tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=True, activation=tanh)` {#LSTMCell.__init__}
|
||||||
|
|
||||||
Initialize the parameters for an LSTM cell.
|
Initialize the parameters for an LSTM cell.
|
||||||
|
|
||||||
@ -296,8 +296,8 @@ Initialize the parameters for an LSTM cell.
|
|||||||
in order to reduce the scale of forgetting at the beginning of
|
in order to reduce the scale of forgetting at the beginning of
|
||||||
the training.
|
the training.
|
||||||
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
|
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
|
||||||
the `c_state` and `m_state`. By default (False), they are concatenated
|
the `c_state` and `m_state`. If False, they are concatenated
|
||||||
along the column axis. This default behavior will soon be deprecated.
|
along the column axis. This latter behavior will soon be deprecated.
|
||||||
* <b>`activation`</b>: Activation function of the inner states.
|
* <b>`activation`</b>: Activation function of the inner states.
|
||||||
|
|
||||||
|
|
||||||
@ -382,7 +382,7 @@ Alias for field number 1
|
|||||||
RNN cell composed sequentially of multiple simple cells.
|
RNN cell composed sequentially of multiple simple cells.
|
||||||
- - -
|
- - -
|
||||||
|
|
||||||
#### `tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=False)` {#MultiRNNCell.__init__}
|
#### `tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=True)` {#MultiRNNCell.__init__}
|
||||||
|
|
||||||
Create a RNN cell composed sequentially of a number of RNNCells.
|
Create a RNN cell composed sequentially of a number of RNNCells.
|
||||||
|
|
||||||
@ -391,8 +391,9 @@ Create a RNN cell composed sequentially of a number of RNNCells.
|
|||||||
|
|
||||||
* <b>`cells`</b>: list of RNNCells that will be composed in this order.
|
* <b>`cells`</b>: list of RNNCells that will be composed in this order.
|
||||||
* <b>`state_is_tuple`</b>: If True, accepted and returned states are n-tuples, where
|
* <b>`state_is_tuple`</b>: If True, accepted and returned states are n-tuples, where
|
||||||
`n = len(cells)`. By default (False), the states are all
|
`n = len(cells)`. If False, the states are all
|
||||||
concatenated along the column axis.
|
concatenated along the column axis. This latter behavior will soon be
|
||||||
|
deprecated.
|
||||||
|
|
||||||
##### Raises:
|
##### Raises:
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user