Update generated Python Op docs.

Change: 130061676
This commit is contained in:
A. Unique TensorFlower 2016-08-11 18:49:21 -08:00 committed by TensorFlower Gardener
parent bc15695781
commit d9511bb9f6
4 changed files with 20 additions and 18 deletions

View File

@ -19,7 +19,7 @@ The class uses optional peep-hole connections, optional cell clipping, and
an optional projection layer.
- - -
#### `tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=False, activation=tanh)` {#LSTMCell.__init__}
#### `tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=True, activation=tanh)` {#LSTMCell.__init__}
Initialize the parameters for an LSTM cell.
@ -47,8 +47,8 @@ Initialize the parameters for an LSTM cell.
in order to reduce the scale of forgetting at the beginning of
the training.
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. By default (False), they are concatenated
along the column axis. This default behavior will soon be deprecated.
the `c_state` and `m_state`. If False, they are concatenated
along the column axis. This latter behavior will soon be deprecated.
* <b>`activation`</b>: Activation function of the inner states.

View File

@ -11,7 +11,7 @@ use peep-hole connections: it is the basic baseline.
For advanced models, please use the full LSTMCell that follows.
- - -
#### `tf.nn.rnn_cell.BasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, state_is_tuple=False, activation=tanh)` {#BasicLSTMCell.__init__}
#### `tf.nn.rnn_cell.BasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=tanh)` {#BasicLSTMCell.__init__}
Initialize the basic LSTM cell.
@ -22,8 +22,8 @@ Initialize the basic LSTM cell.
* <b>`forget_bias`</b>: float, The bias added to forget gates (see above).
* <b>`input_size`</b>: Deprecated and unused.
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. By default (False), they are concatenated
along the column axis. This default behavior will soon be deprecated.
the `c_state` and `m_state`. If False, they are concatenated
along the column axis. The latter behavior will soon be deprecated.
* <b>`activation`</b>: Activation function of the inner states.

View File

@ -1,7 +1,7 @@
RNN cell composed sequentially of multiple simple cells.
- - -
#### `tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=False)` {#MultiRNNCell.__init__}
#### `tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=True)` {#MultiRNNCell.__init__}
Create a RNN cell composed sequentially of a number of RNNCells.
@ -10,8 +10,9 @@ Create a RNN cell composed sequentially of a number of RNNCells.
* <b>`cells`</b>: list of RNNCells that will be composed in this order.
* <b>`state_is_tuple`</b>: If True, accepted and returned states are n-tuples, where
`n = len(cells)`. By default (False), the states are all
concatenated along the column axis.
`n = len(cells)`. If False, the states are all
concatenated along the column axis. This latter behavior will soon be
deprecated.
##### Raises:

View File

@ -141,7 +141,7 @@ use peep-hole connections: it is the basic baseline.
For advanced models, please use the full LSTMCell that follows.
- - -
#### `tf.nn.rnn_cell.BasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, state_is_tuple=False, activation=tanh)` {#BasicLSTMCell.__init__}
#### `tf.nn.rnn_cell.BasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=tanh)` {#BasicLSTMCell.__init__}
Initialize the basic LSTM cell.
@ -152,8 +152,8 @@ Initialize the basic LSTM cell.
* <b>`forget_bias`</b>: float, The bias added to forget gates (see above).
* <b>`input_size`</b>: Deprecated and unused.
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. By default (False), they are concatenated
along the column axis. This default behavior will soon be deprecated.
the `c_state` and `m_state`. If False, they are concatenated
along the column axis. The latter behavior will soon be deprecated.
* <b>`activation`</b>: Activation function of the inner states.
@ -268,7 +268,7 @@ The class uses optional peep-hole connections, optional cell clipping, and
an optional projection layer.
- - -
#### `tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=False, activation=tanh)` {#LSTMCell.__init__}
#### `tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=True, activation=tanh)` {#LSTMCell.__init__}
Initialize the parameters for an LSTM cell.
@ -296,8 +296,8 @@ Initialize the parameters for an LSTM cell.
in order to reduce the scale of forgetting at the beginning of
the training.
* <b>`state_is_tuple`</b>: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. By default (False), they are concatenated
along the column axis. This default behavior will soon be deprecated.
the `c_state` and `m_state`. If False, they are concatenated
along the column axis. This latter behavior will soon be deprecated.
* <b>`activation`</b>: Activation function of the inner states.
@ -382,7 +382,7 @@ Alias for field number 1
RNN cell composed sequentially of multiple simple cells.
- - -
#### `tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=False)` {#MultiRNNCell.__init__}
#### `tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=True)` {#MultiRNNCell.__init__}
Create a RNN cell composed sequentially of a number of RNNCells.
@ -391,8 +391,9 @@ Create a RNN cell composed sequentially of a number of RNNCells.
* <b>`cells`</b>: list of RNNCells that will be composed in this order.
* <b>`state_is_tuple`</b>: If True, accepted and returned states are n-tuples, where
`n = len(cells)`. By default (False), the states are all
concatenated along the column axis.
`n = len(cells)`. If False, the states are all
concatenated along the column axis. This latter behavior will soon be
deprecated.
##### Raises: