Add a memory threshold allocation test for the Keyword model.
This new test ensures that TF Micro does not regress current allocations (on x86-64 systems) for a canonical model. As RAM reduction changes are introduced, the values in this test can be updated from the console log of this test. Current output for the keyword model: Testing TestKeywordModelMemoryThreshold [RecordingMicroAllocator] Arena allocation total 21440 bytes [RecordingMicroAllocator] Arena allocation head 672 bytes [RecordingMicroAllocator] Arena allocation tail 20768 bytes [RecordingMicroAllocator] 'TfLiteTensor struct allocation' used 6048 bytes (requested 6048 bytes 54 times) [RecordingMicroAllocator] 'TfLiteTensor quantization data allocations' used 2160 bytes (requested 2160 bytes 162 times) [RecordingMicroAllocator] 'NodeAndRegistration struct allocation' used 1200 bytes (requested 1200 bytes 15 times) [RecordingMicroAllocator] 'Operator runtime data allocation' used 148 bytes (requested 148 bytes 13 times) PiperOrigin-RevId: 315958032 Change-Id: I226f6a01aa555970805388632559241a41ff8342
This commit is contained in:
parent
221d47c3b9
commit
d8881eb71d
@ -205,6 +205,7 @@ cc_library(
|
||||
],
|
||||
hdrs = [
|
||||
"recording_micro_allocator.h",
|
||||
"recording_micro_interpreter.h",
|
||||
"recording_simple_memory_allocator.h",
|
||||
],
|
||||
build_for_embedded = True,
|
||||
@ -361,3 +362,16 @@ tflite_micro_cc_test(
|
||||
"//tensorflow/lite/micro/testing:micro_test",
|
||||
],
|
||||
)
|
||||
|
||||
tflite_micro_cc_test(
|
||||
name = "memory_arena_threshold_test",
|
||||
srcs = [
|
||||
"memory_arena_threshold_test.cc",
|
||||
],
|
||||
deps = [
|
||||
":op_resolvers",
|
||||
":recording_allocators",
|
||||
"//tensorflow/lite/micro/benchmarks:keyword_scrambled_model_data",
|
||||
"//tensorflow/lite/micro/testing:micro_test",
|
||||
],
|
||||
)
|
||||
|
@ -1,5 +1,10 @@
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
package_group(
|
||||
name = "micro_top_level",
|
||||
packages = ["//tensorflow/lite/micro"],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "micro_benchmark",
|
||||
hdrs = [
|
||||
@ -47,6 +52,9 @@ cc_library(
|
||||
hdrs = [
|
||||
"keyword_scrambled_model_data.h",
|
||||
],
|
||||
visibility = [
|
||||
":micro_top_level",
|
||||
],
|
||||
)
|
||||
|
||||
cc_binary(
|
||||
|
110
tensorflow/lite/micro/memory_arena_threshold_test.cc
Normal file
110
tensorflow/lite/micro/memory_arena_threshold_test.cc
Normal file
@ -0,0 +1,110 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "tensorflow/lite/micro/all_ops_resolver.h"
|
||||
#include "tensorflow/lite/micro/benchmarks/keyword_scrambled_model_data.h"
|
||||
#include "tensorflow/lite/micro/recording_micro_allocator.h"
|
||||
#include "tensorflow/lite/micro/recording_micro_interpreter.h"
|
||||
#include "tensorflow/lite/micro/testing/micro_test.h"
|
||||
|
||||
/**
|
||||
* Tests to ensure arena memory allocation does not regress by more than 3%.
|
||||
*/
|
||||
|
||||
namespace {
|
||||
|
||||
// Ensure memory doesn't expand more that 3%:
|
||||
constexpr float kAllocationThreshold = 0.03;
|
||||
const bool kIs64BitSystem = sizeof(void*) == 8;
|
||||
|
||||
constexpr int kKeywordTensorArenaSize = 22 * 1024;
|
||||
uint8_t tensor_arena[kKeywordTensorArenaSize];
|
||||
|
||||
constexpr int kKeywordModelTensorCount = 54;
|
||||
constexpr int kKeywordModelNodeAndRegistrationCount = 15;
|
||||
|
||||
// NOTE: These values are measured on x86-64:
|
||||
// TODO(b/158651472): Consider auditing these values on non-64 bit systems.
|
||||
constexpr int kKeywordModelTotalSize = 21440;
|
||||
constexpr int kKeywordModelHeadSize = 672;
|
||||
constexpr int kKeywordModelTailSize = 20768;
|
||||
constexpr int kKeywordModelTfLiteTensorQuantizationDataSize = 2160;
|
||||
constexpr int kKeywordModelOpRuntimeDataSize = 148;
|
||||
|
||||
void EnsureAllocatedSizeThreshold(size_t actual, size_t expected) {
|
||||
// TODO(b/158651472): Better auditing of non-64 bit systems:
|
||||
if (kIs64BitSystem) {
|
||||
// 64-bit systems should check floor and ceiling to catch memory savings:
|
||||
TF_LITE_MICRO_EXPECT_NEAR(actual, expected, kAllocationThreshold);
|
||||
} else {
|
||||
// Non-64 bit systems should just expect allocation does not exceed the
|
||||
// ceiling:
|
||||
TF_LITE_MICRO_EXPECT_LE(actual, expected + expected * kAllocationThreshold);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
TF_LITE_MICRO_TESTS_BEGIN
|
||||
|
||||
TF_LITE_MICRO_TEST(TestKeywordModelMemoryThreshold) {
|
||||
tflite::AllOpsResolver all_ops_resolver;
|
||||
tflite::RecordingMicroInterpreter interpreter(
|
||||
tflite::GetModel(g_keyword_scrambled_model_data), &all_ops_resolver,
|
||||
tensor_arena, kKeywordTensorArenaSize, micro_test::reporter);
|
||||
|
||||
interpreter.AllocateTensors();
|
||||
|
||||
const tflite::RecordingMicroAllocator& allocator =
|
||||
interpreter.GetMicroAllocator();
|
||||
allocator.PrintAllocations();
|
||||
|
||||
EnsureAllocatedSizeThreshold(
|
||||
allocator.GetSimpleMemoryAllocator()->GetUsedBytes(),
|
||||
kKeywordModelTotalSize);
|
||||
EnsureAllocatedSizeThreshold(
|
||||
allocator.GetSimpleMemoryAllocator()->GetHeadUsedBytes(),
|
||||
kKeywordModelHeadSize);
|
||||
EnsureAllocatedSizeThreshold(
|
||||
allocator.GetSimpleMemoryAllocator()->GetTailUsedBytes(),
|
||||
kKeywordModelTailSize);
|
||||
EnsureAllocatedSizeThreshold(
|
||||
allocator
|
||||
.GetRecordedAllocation(
|
||||
tflite::RecordedAllocationType::kTfLiteTensorArray)
|
||||
.used_bytes,
|
||||
sizeof(TfLiteTensor) * kKeywordModelTensorCount);
|
||||
EnsureAllocatedSizeThreshold(
|
||||
allocator
|
||||
.GetRecordedAllocation(tflite::RecordedAllocationType::
|
||||
kTfLiteTensorArrayQuantizationData)
|
||||
.used_bytes,
|
||||
kKeywordModelTfLiteTensorQuantizationDataSize);
|
||||
EnsureAllocatedSizeThreshold(
|
||||
allocator
|
||||
.GetRecordedAllocation(
|
||||
tflite::RecordedAllocationType::kNodeAndRegistrationArray)
|
||||
.used_bytes,
|
||||
sizeof(tflite::NodeAndRegistration) *
|
||||
kKeywordModelNodeAndRegistrationCount);
|
||||
EnsureAllocatedSizeThreshold(
|
||||
allocator.GetRecordedAllocation(tflite::RecordedAllocationType::kOpData)
|
||||
.used_bytes,
|
||||
kKeywordModelOpRuntimeDataSize);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TESTS_END
|
@ -718,7 +718,9 @@ TfLiteStatus MicroAllocator::PrepareNodeAndRegistrationDataFromFlatbuffer(
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
ErrorReporter* MicroAllocator::error_reporter() { return error_reporter_; }
|
||||
ErrorReporter* MicroAllocator::error_reporter() const {
|
||||
return error_reporter_;
|
||||
}
|
||||
|
||||
TfLiteStatus MicroAllocator::InitGraphAndContextTensorData(
|
||||
const Model* model, TfLiteContext* context, const SubGraph* subgraph) {
|
||||
|
@ -172,7 +172,7 @@ class MicroAllocator {
|
||||
const MicroOpResolver& op_resolver,
|
||||
NodeAndRegistration* node_and_registrations);
|
||||
|
||||
ErrorReporter* error_reporter();
|
||||
ErrorReporter* error_reporter() const;
|
||||
|
||||
private:
|
||||
// Initializes the graph and allocates TfLiteContext tensor data.
|
||||
|
@ -159,6 +159,10 @@ class MicroInterpreter {
|
||||
// arena_used_bytes() + 16.
|
||||
size_t arena_used_bytes() const { return allocator_.used_bytes(); }
|
||||
|
||||
protected:
|
||||
const MicroAllocator& allocator() const { return allocator_; }
|
||||
const TfLiteContext& context() const { return context_; }
|
||||
|
||||
private:
|
||||
// TODO(b/158263161): Consider switching to Create() function to enable better
|
||||
// error reporting during initialization.
|
||||
|
@ -29,18 +29,23 @@ RecordingMicroAllocator::RecordingMicroAllocator(
|
||||
recording_memory_allocator_(recording_memory_allocator) {}
|
||||
|
||||
RecordingMicroAllocator* RecordingMicroAllocator::Create(
|
||||
RecordingSimpleMemoryAllocator* memory_allocator,
|
||||
ErrorReporter* error_reporter) {
|
||||
TFLITE_DCHECK(memory_allocator != nullptr);
|
||||
uint8_t* allocator_buffer = memory_allocator->AllocateFromTail(
|
||||
uint8_t* tensor_arena, size_t arena_size, ErrorReporter* error_reporter) {
|
||||
TFLITE_DCHECK(error_reporter != nullptr);
|
||||
|
||||
RecordingSimpleMemoryAllocator* simple_memory_allocator =
|
||||
RecordingSimpleMemoryAllocator::Create(error_reporter, tensor_arena,
|
||||
arena_size);
|
||||
TFLITE_DCHECK(simple_memory_allocator != nullptr);
|
||||
|
||||
uint8_t* allocator_buffer = simple_memory_allocator->AllocateFromTail(
|
||||
sizeof(RecordingMicroAllocator), alignof(RecordingMicroAllocator));
|
||||
RecordingMicroAllocator* allocator = new (allocator_buffer)
|
||||
RecordingMicroAllocator(memory_allocator, error_reporter);
|
||||
RecordingMicroAllocator(simple_memory_allocator, error_reporter);
|
||||
return allocator;
|
||||
}
|
||||
|
||||
RecordedAllocation RecordingMicroAllocator::GetRecordedAllocation(
|
||||
RecordedAllocationType allocation_type) {
|
||||
RecordedAllocationType allocation_type) const {
|
||||
switch (allocation_type) {
|
||||
case RecordedAllocationType::kTfLiteTensorArray:
|
||||
return recorded_tflite_tensor_array_data_;
|
||||
@ -56,7 +61,12 @@ RecordedAllocation RecordingMicroAllocator::GetRecordedAllocation(
|
||||
return RecordedAllocation();
|
||||
}
|
||||
|
||||
void RecordingMicroAllocator::PrintAllocations() {
|
||||
const RecordingSimpleMemoryAllocator*
|
||||
RecordingMicroAllocator::GetSimpleMemoryAllocator() const {
|
||||
return recording_memory_allocator_;
|
||||
}
|
||||
|
||||
void RecordingMicroAllocator::PrintAllocations() const {
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter(),
|
||||
"[RecordingMicroAllocator] Arena allocation total %d bytes",
|
||||
@ -70,24 +80,27 @@ void RecordingMicroAllocator::PrintAllocations() {
|
||||
"[RecordingMicroAllocator] Arena allocation tail %d bytes",
|
||||
recording_memory_allocator_->GetTailUsedBytes());
|
||||
PrintRecordedAllocation(RecordedAllocationType::kTfLiteTensorArray,
|
||||
"TfLiteTensor struct allocation");
|
||||
"TfLiteTensor struct allocation", "tensors");
|
||||
PrintRecordedAllocation(
|
||||
RecordedAllocationType::kTfLiteTensorArrayQuantizationData,
|
||||
"TfLiteTensor quantization data allocations");
|
||||
"TfLiteTensor quantization data allocations", "allocations");
|
||||
PrintRecordedAllocation(RecordedAllocationType::kNodeAndRegistrationArray,
|
||||
"NodeAndRegistration struct allocation");
|
||||
"NodeAndRegistration struct allocation",
|
||||
"NodeAndRegistration structs");
|
||||
PrintRecordedAllocation(RecordedAllocationType::kOpData,
|
||||
"Operator runtime data allocation");
|
||||
"Operator runtime data allocation", "OpData structs");
|
||||
}
|
||||
|
||||
void RecordingMicroAllocator::PrintRecordedAllocation(
|
||||
RecordedAllocationType allocation_type, const char* allocation_name) {
|
||||
RecordedAllocationType allocation_type, const char* allocation_name,
|
||||
const char* allocation_description) const {
|
||||
RecordedAllocation allocation = GetRecordedAllocation(allocation_type);
|
||||
TF_LITE_REPORT_ERROR(error_reporter(),
|
||||
"[RecordingMicroAllocator] '%s' used %d bytes "
|
||||
"(requested %d bytes %d times)",
|
||||
allocation_name, allocation.used_bytes,
|
||||
allocation.requested_bytes, allocation.count);
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter(),
|
||||
"[RecordingMicroAllocator] '%s' used %d bytes with alignment overhead "
|
||||
"(requested %d bytes for %d %s)",
|
||||
allocation_name, allocation.used_bytes, allocation.requested_bytes,
|
||||
allocation.count, allocation_description);
|
||||
}
|
||||
|
||||
TfLiteStatus RecordingMicroAllocator::AllocateTfLiteTensorArray(
|
||||
|
@ -51,17 +51,19 @@ typedef struct RecordedAllocation {
|
||||
// auditing memory usage or integration testing.
|
||||
class RecordingMicroAllocator : public MicroAllocator {
|
||||
public:
|
||||
static RecordingMicroAllocator* Create(
|
||||
RecordingSimpleMemoryAllocator* memory_allocator,
|
||||
ErrorReporter* error_reporter);
|
||||
static RecordingMicroAllocator* Create(uint8_t* tensor_arena,
|
||||
size_t arena_size,
|
||||
ErrorReporter* error_reporter);
|
||||
|
||||
// Returns the recorded allocations information for a given allocation type.
|
||||
RecordedAllocation GetRecordedAllocation(
|
||||
RecordedAllocationType allocation_type);
|
||||
RecordedAllocationType allocation_type) const;
|
||||
|
||||
const RecordingSimpleMemoryAllocator* GetSimpleMemoryAllocator() const;
|
||||
|
||||
// Logs out through the ErrorReporter all allocation recordings by type
|
||||
// defined in RecordedAllocationType.
|
||||
void PrintAllocations();
|
||||
void PrintAllocations() const;
|
||||
|
||||
protected:
|
||||
TfLiteStatus AllocateTfLiteTensorArray(TfLiteContext* context,
|
||||
@ -85,9 +87,10 @@ class RecordingMicroAllocator : public MicroAllocator {
|
||||
ErrorReporter* error_reporter);
|
||||
|
||||
void PrintRecordedAllocation(RecordedAllocationType allocation_type,
|
||||
const char* allocation_name);
|
||||
const char* allocation_name,
|
||||
const char* allocation_description) const;
|
||||
|
||||
RecordingSimpleMemoryAllocator* recording_memory_allocator_;
|
||||
const RecordingSimpleMemoryAllocator* recording_memory_allocator_;
|
||||
|
||||
RecordedAllocation recorded_tflite_tensor_array_data_;
|
||||
RecordedAllocation recorded_tflite_tensor_array_quantization_data_;
|
||||
|
@ -39,11 +39,9 @@ TF_LITE_MICRO_TEST(TestRecordsTfLiteTensorArrayData) {
|
||||
tflite::NodeAndRegistration* node_and_registration;
|
||||
const tflite::Model* model = tflite::GetModel(kTestConvModelData);
|
||||
uint8_t arena[kTestConvArenaSize];
|
||||
tflite::RecordingSimpleMemoryAllocator memory_allocator(
|
||||
micro_test::reporter, arena, kTestConvArenaSize);
|
||||
|
||||
tflite::RecordingMicroAllocator* micro_allocator =
|
||||
tflite::RecordingMicroAllocator::Create(&memory_allocator,
|
||||
tflite::RecordingMicroAllocator::Create(arena, kTestConvArenaSize,
|
||||
micro_test::reporter);
|
||||
TF_LITE_MICRO_EXPECT_NE(nullptr, micro_allocator);
|
||||
TF_LITE_MICRO_EXPECT_GE(kTfLiteOk, micro_allocator->StartModelAllocation(
|
||||
@ -68,11 +66,9 @@ TF_LITE_MICRO_TEST(TestRecordsTensorArrayQuantizationData) {
|
||||
tflite::NodeAndRegistration* node_and_registration;
|
||||
const tflite::Model* model = tflite::GetModel(kTestConvModelData);
|
||||
uint8_t arena[kTestConvArenaSize];
|
||||
tflite::RecordingSimpleMemoryAllocator memory_allocator(
|
||||
micro_test::reporter, arena, kTestConvArenaSize);
|
||||
|
||||
tflite::RecordingMicroAllocator* micro_allocator =
|
||||
tflite::RecordingMicroAllocator::Create(&memory_allocator,
|
||||
tflite::RecordingMicroAllocator::Create(arena, kTestConvArenaSize,
|
||||
micro_test::reporter);
|
||||
TF_LITE_MICRO_EXPECT_NE(nullptr, micro_allocator);
|
||||
TF_LITE_MICRO_EXPECT_GE(kTfLiteOk, micro_allocator->StartModelAllocation(
|
||||
@ -126,11 +122,9 @@ TF_LITE_MICRO_TEST(TestRecordsNodeAndRegistrationArrayData) {
|
||||
tflite::NodeAndRegistration* node_and_registration;
|
||||
const tflite::Model* model = tflite::GetModel(kTestConvModelData);
|
||||
uint8_t arena[kTestConvArenaSize];
|
||||
tflite::RecordingSimpleMemoryAllocator memory_allocator(
|
||||
micro_test::reporter, arena, kTestConvArenaSize);
|
||||
|
||||
tflite::RecordingMicroAllocator* micro_allocator =
|
||||
tflite::RecordingMicroAllocator::Create(&memory_allocator,
|
||||
tflite::RecordingMicroAllocator::Create(arena, kTestConvArenaSize,
|
||||
micro_test::reporter);
|
||||
TF_LITE_MICRO_EXPECT_NE(nullptr, micro_allocator);
|
||||
TF_LITE_MICRO_EXPECT_GE(kTfLiteOk, micro_allocator->StartModelAllocation(
|
||||
|
58
tensorflow/lite/micro/recording_micro_interpreter.h
Normal file
58
tensorflow/lite/micro/recording_micro_interpreter.h
Normal file
@ -0,0 +1,58 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_RECORDING_MICRO_INTERPRETER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_RECORDING_MICRO_INTERPRETER_H_
|
||||
|
||||
#include "tensorflow/lite/micro/micro_interpreter.h"
|
||||
#include "tensorflow/lite/micro/recording_micro_allocator.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// Utility subclass that enables internal recordings of the MicroInterpreter.
|
||||
// This class should be used to audit and analyze memory arena usage for a given
|
||||
// model and interpreter.
|
||||
//
|
||||
// After construction and the first Invoke() or AllocateTensors() call - the
|
||||
// memory usage is recorded and available through the GetMicroAllocator()
|
||||
// function. See RecordingMicroAlloctor for more details on what is currently
|
||||
// recorded from arena allocations.
|
||||
//
|
||||
// It is recommended for users to increase the tensor arena size by at least 1kb
|
||||
// to ensure enough additional memory is available for internal recordings.
|
||||
class RecordingMicroInterpreter : public MicroInterpreter {
|
||||
public:
|
||||
RecordingMicroInterpreter(const Model* model,
|
||||
const MicroOpResolver* op_resolver,
|
||||
uint8_t* tensor_arena, size_t tensor_arena_size,
|
||||
ErrorReporter* error_reporter)
|
||||
: MicroInterpreter(model, op_resolver,
|
||||
RecordingMicroAllocator::Create(
|
||||
tensor_arena, tensor_arena_size, error_reporter),
|
||||
error_reporter),
|
||||
recording_micro_allocator_(
|
||||
static_cast<const RecordingMicroAllocator&>(allocator())) {}
|
||||
|
||||
const RecordingMicroAllocator& GetMicroAllocator() const {
|
||||
return recording_micro_allocator_;
|
||||
}
|
||||
|
||||
private:
|
||||
const RecordingMicroAllocator& recording_micro_allocator_;
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_RECORDING_MICRO_INTERPRETER_H_
|
@ -15,6 +15,10 @@ limitations under the License.
|
||||
|
||||
#include "tensorflow/lite/micro/recording_simple_memory_allocator.h"
|
||||
|
||||
#include <new>
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
RecordingSimpleMemoryAllocator::RecordingSimpleMemoryAllocator(
|
||||
@ -26,6 +30,20 @@ RecordingSimpleMemoryAllocator::RecordingSimpleMemoryAllocator(
|
||||
|
||||
RecordingSimpleMemoryAllocator::~RecordingSimpleMemoryAllocator() {}
|
||||
|
||||
RecordingSimpleMemoryAllocator* RecordingSimpleMemoryAllocator::Create(
|
||||
ErrorReporter* error_reporter, uint8_t* buffer_head, size_t buffer_size) {
|
||||
TFLITE_DCHECK(error_reporter != nullptr);
|
||||
TFLITE_DCHECK(buffer_head != nullptr);
|
||||
RecordingSimpleMemoryAllocator tmp =
|
||||
RecordingSimpleMemoryAllocator(error_reporter, buffer_head, buffer_size);
|
||||
|
||||
uint8_t* allocator_buffer =
|
||||
tmp.AllocateFromTail(sizeof(RecordingSimpleMemoryAllocator),
|
||||
alignof(RecordingSimpleMemoryAllocator));
|
||||
// Use the default copy constructor to populate internal states.
|
||||
return new (allocator_buffer) RecordingSimpleMemoryAllocator(tmp);
|
||||
}
|
||||
|
||||
size_t RecordingSimpleMemoryAllocator::GetRequestedBytes() const {
|
||||
return requested_bytes_;
|
||||
}
|
||||
|
@ -32,6 +32,10 @@ class RecordingSimpleMemoryAllocator : public SimpleMemoryAllocator {
|
||||
// functions.
|
||||
~RecordingSimpleMemoryAllocator() override;
|
||||
|
||||
static RecordingSimpleMemoryAllocator* Create(ErrorReporter* error_reporter,
|
||||
uint8_t* buffer_head,
|
||||
size_t buffer_size);
|
||||
|
||||
// Returns the number of bytes requested from the head or tail.
|
||||
size_t GetRequestedBytes() const;
|
||||
|
||||
|
@ -111,13 +111,14 @@ $(wildcard tensorflow/lite/micro/memory_planner/*test.cc)
|
||||
|
||||
# TODO(b/152645559): move all benchmarks to benchmarks directory.
|
||||
MICROLITE_BENCHMARK_SRCS := \
|
||||
$(wildcard tensorflow/lite/micro/benchmarks/*.cc)
|
||||
$(wildcard tensorflow/lite/micro/benchmarks/*benchmark.cc)
|
||||
|
||||
MICROLITE_TEST_HDRS := \
|
||||
$(wildcard tensorflow/lite/micro/testing/*.h)
|
||||
|
||||
MICROLITE_CC_BASE_SRCS := \
|
||||
$(wildcard tensorflow/lite/micro/*.cc) \
|
||||
$(wildcard tensorflow/lite/micro/benchmarks/*model_data.cc) \
|
||||
$(wildcard tensorflow/lite/micro/kernels/*.cc) \
|
||||
$(wildcard tensorflow/lite/micro/memory_planner/*.cc) \
|
||||
$(wildcard tensorflow/lite/micro/testing/*model.cc) \
|
||||
@ -135,6 +136,7 @@ MICROLITE_CC_SRCS := $(filter-out $(MICROLITE_BENCHMARK_SRCS), $(MICROLITE_CC_SR
|
||||
|
||||
MICROLITE_CC_HDRS := \
|
||||
$(wildcard tensorflow/lite/micro/*.h) \
|
||||
$(wildcard tensorflow/lite/micro/benchmarks/*model_data.h) \
|
||||
$(wildcard tensorflow/lite/micro/kernels/*.h) \
|
||||
$(wildcard tensorflow/lite/micro/memory_planner/*.h) \
|
||||
LICENSE \
|
||||
|
Loading…
Reference in New Issue
Block a user