[TF:XLA] Add implementation of ResourceApplyPowerSign and ResourceApplyAddSign.
PiperOrigin-RevId: 203547001
This commit is contained in:
parent
1caaea99e0
commit
d7416d53ef
@ -111,6 +111,34 @@ tf_xla_py_test(
|
|||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
tf_xla_py_test(
|
||||||
|
name = "addsign_test",
|
||||||
|
size = "small",
|
||||||
|
srcs = ["addsign_test.py"],
|
||||||
|
deps = [
|
||||||
|
":xla_test",
|
||||||
|
"//tensorflow/contrib/opt:opt_py",
|
||||||
|
"//tensorflow/python:array_ops",
|
||||||
|
"//tensorflow/python:client_testlib",
|
||||||
|
"//tensorflow/python:framework",
|
||||||
|
"//tensorflow/python:training",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
tf_xla_py_test(
|
||||||
|
name = "powersign_test",
|
||||||
|
size = "small",
|
||||||
|
srcs = ["powersign_test.py"],
|
||||||
|
deps = [
|
||||||
|
":xla_test",
|
||||||
|
"//tensorflow/contrib/opt:opt_py",
|
||||||
|
"//tensorflow/python:array_ops",
|
||||||
|
"//tensorflow/python:client_testlib",
|
||||||
|
"//tensorflow/python:framework",
|
||||||
|
"//tensorflow/python:training",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
tf_xla_py_test(
|
tf_xla_py_test(
|
||||||
name = "argminmax_test",
|
name = "argminmax_test",
|
||||||
size = "small",
|
size = "small",
|
||||||
|
145
tensorflow/compiler/tests/addsign_test.py
Normal file
145
tensorflow/compiler/tests/addsign_test.py
Normal file
@ -0,0 +1,145 @@
|
|||||||
|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
"""Tests for AddSign."""
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from tensorflow.compiler.tests import xla_test
|
||||||
|
from tensorflow.contrib.opt.python.training import addsign
|
||||||
|
from tensorflow.contrib.opt.python.training import sign_decay
|
||||||
|
from tensorflow.python.framework import constant_op
|
||||||
|
from tensorflow.python.framework import dtypes
|
||||||
|
from tensorflow.python.ops import resource_variable_ops
|
||||||
|
from tensorflow.python.ops import variables
|
||||||
|
from tensorflow.python.platform import test
|
||||||
|
|
||||||
|
|
||||||
|
def py_linear_decay_fn(decay_steps):
|
||||||
|
def linear_decay(step):
|
||||||
|
step = min(step, decay_steps)
|
||||||
|
return float(decay_steps - step) / decay_steps
|
||||||
|
return linear_decay
|
||||||
|
|
||||||
|
|
||||||
|
def addsign_update_numpy(params,
|
||||||
|
g_t,
|
||||||
|
m,
|
||||||
|
lr,
|
||||||
|
alpha=1.0,
|
||||||
|
beta=0.9,
|
||||||
|
py_sign_decay_fn=None,
|
||||||
|
t=None):
|
||||||
|
m_t = beta * m + (1 - beta) * g_t
|
||||||
|
if py_sign_decay_fn is None:
|
||||||
|
sign_decayed = 1.0
|
||||||
|
else:
|
||||||
|
sign_decayed = py_sign_decay_fn(t-1)
|
||||||
|
multiplier = alpha + sign_decayed * np.sign(g_t) * np.sign(m_t)
|
||||||
|
params_t = params - lr * multiplier * g_t
|
||||||
|
return params_t, m_t
|
||||||
|
|
||||||
|
|
||||||
|
class AddSignTest(xla_test.XLATestCase):
|
||||||
|
|
||||||
|
def _testDense(self,
|
||||||
|
learning_rate=0.1,
|
||||||
|
sign_decay_fn=None,
|
||||||
|
py_sign_decay_fn=None,
|
||||||
|
alpha=1.0,
|
||||||
|
beta=0.9):
|
||||||
|
for dtype in self.float_types:
|
||||||
|
# TODO(b/111123982): remove once the bug is fixed.
|
||||||
|
if dtype == dtypes.float16:
|
||||||
|
continue
|
||||||
|
with self.test_session(), self.test_scope():
|
||||||
|
# Initialize variables for numpy implementation.
|
||||||
|
m0, m1 = 0.0, 0.0
|
||||||
|
var0_np = np.array([1.0, 2.0], dtype=dtype)
|
||||||
|
grads0_np = np.array([0.1, 0.1], dtype=dtype)
|
||||||
|
var1_np = np.array([3.0, 4.0], dtype=dtype)
|
||||||
|
grads1_np = np.array([0.01, 0.01], dtype=dtype)
|
||||||
|
|
||||||
|
var0 = resource_variable_ops.ResourceVariable(var0_np)
|
||||||
|
var1 = resource_variable_ops.ResourceVariable(var1_np)
|
||||||
|
global_step = resource_variable_ops.ResourceVariable(0, trainable=False)
|
||||||
|
grads0 = constant_op.constant(grads0_np)
|
||||||
|
grads1 = constant_op.constant(grads1_np)
|
||||||
|
|
||||||
|
opt = addsign.AddSignOptimizer(
|
||||||
|
learning_rate=learning_rate,
|
||||||
|
alpha=alpha,
|
||||||
|
beta=beta,
|
||||||
|
sign_decay_fn=sign_decay_fn,
|
||||||
|
)
|
||||||
|
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]),
|
||||||
|
global_step=global_step)
|
||||||
|
neg_update = opt.apply_gradients(zip([-grads0, -grads1], [var0, var1]),
|
||||||
|
global_step=global_step)
|
||||||
|
variables.global_variables_initializer().run()
|
||||||
|
|
||||||
|
# Fetch params to validate initial values
|
||||||
|
self.assertAllClose([1.0, 2.0], var0.eval())
|
||||||
|
self.assertAllClose([3.0, 4.0], var1.eval())
|
||||||
|
|
||||||
|
# Run 7 steps of AddSign
|
||||||
|
# first 4 steps with positive gradient
|
||||||
|
# last 3 steps with negative gradient (sign(gm) should be -1)
|
||||||
|
for t in range(1, 8):
|
||||||
|
if t < 5:
|
||||||
|
update.run()
|
||||||
|
else:
|
||||||
|
neg_update.run()
|
||||||
|
|
||||||
|
var0_np, m0 = addsign_update_numpy(
|
||||||
|
var0_np,
|
||||||
|
grads0_np if t < 5 else -grads0_np,
|
||||||
|
m0,
|
||||||
|
learning_rate,
|
||||||
|
alpha=alpha,
|
||||||
|
beta=beta,
|
||||||
|
py_sign_decay_fn=py_sign_decay_fn,
|
||||||
|
t=t,
|
||||||
|
)
|
||||||
|
var1_np, m1 = addsign_update_numpy(
|
||||||
|
var1_np,
|
||||||
|
grads1_np if t < 5 else -grads1_np,
|
||||||
|
m1,
|
||||||
|
learning_rate,
|
||||||
|
alpha=alpha,
|
||||||
|
beta=beta,
|
||||||
|
py_sign_decay_fn=py_sign_decay_fn,
|
||||||
|
t=t,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Validate updated params
|
||||||
|
self.assertAllCloseAccordingToType(var0_np, var0.eval())
|
||||||
|
self.assertAllCloseAccordingToType(var1_np, var1.eval())
|
||||||
|
|
||||||
|
def testDense(self):
|
||||||
|
decay_steps = 10
|
||||||
|
sign_decay_fn = sign_decay.get_linear_decay_fn(decay_steps)
|
||||||
|
py_sign_decay_fn = py_linear_decay_fn(decay_steps)
|
||||||
|
self._testDense()
|
||||||
|
self._testDense(learning_rate=0.01, alpha=0.1, beta=0.8)
|
||||||
|
self._testDense(
|
||||||
|
sign_decay_fn=sign_decay_fn, py_sign_decay_fn=py_sign_decay_fn)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test.main()
|
142
tensorflow/compiler/tests/powersign_test.py
Normal file
142
tensorflow/compiler/tests/powersign_test.py
Normal file
@ -0,0 +1,142 @@
|
|||||||
|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
"""Tests for PowerSign."""
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from tensorflow.compiler.tests import xla_test
|
||||||
|
from tensorflow.contrib.opt.python.training import powersign
|
||||||
|
from tensorflow.contrib.opt.python.training import sign_decay
|
||||||
|
from tensorflow.python.framework import constant_op
|
||||||
|
from tensorflow.python.ops import resource_variable_ops
|
||||||
|
from tensorflow.python.ops import variables
|
||||||
|
from tensorflow.python.platform import test
|
||||||
|
|
||||||
|
|
||||||
|
def py_linear_decay_fn(decay_steps):
|
||||||
|
def linear_decay(step):
|
||||||
|
step = min(step, decay_steps)
|
||||||
|
return float(decay_steps - step) / decay_steps
|
||||||
|
return linear_decay
|
||||||
|
|
||||||
|
|
||||||
|
def powersign_update_numpy(params,
|
||||||
|
g_t,
|
||||||
|
m,
|
||||||
|
lr,
|
||||||
|
base=math.e,
|
||||||
|
beta=0.9,
|
||||||
|
py_sign_decay_fn=None,
|
||||||
|
t=None):
|
||||||
|
m_t = beta * m + (1 - beta) * g_t
|
||||||
|
if py_sign_decay_fn is None:
|
||||||
|
sign_decayed = 1.0
|
||||||
|
else:
|
||||||
|
sign_decayed = py_sign_decay_fn(t-1)
|
||||||
|
multiplier = base ** (sign_decayed * np.sign(g_t) * np.sign(m_t))
|
||||||
|
params_t = params - lr * multiplier * g_t
|
||||||
|
return params_t, m_t
|
||||||
|
|
||||||
|
|
||||||
|
class PowerSignTest(xla_test.XLATestCase):
|
||||||
|
|
||||||
|
def _testDense(self,
|
||||||
|
learning_rate=0.1,
|
||||||
|
sign_decay_fn=None,
|
||||||
|
py_sign_decay_fn=None,
|
||||||
|
base=math.e,
|
||||||
|
beta=0.9):
|
||||||
|
for dtype in self.float_types:
|
||||||
|
with self.test_session(), self.test_scope():
|
||||||
|
# Initialize variables for numpy implementation.
|
||||||
|
m0, m1 = 0.0, 0.0
|
||||||
|
var0_np = np.array([1.0, 2.0], dtype=dtype)
|
||||||
|
grads0_np = np.array([0.1, 0.1], dtype=dtype)
|
||||||
|
var1_np = np.array([3.0, 4.0], dtype=dtype)
|
||||||
|
grads1_np = np.array([0.01, 0.01], dtype=dtype)
|
||||||
|
|
||||||
|
var0 = resource_variable_ops.ResourceVariable(var0_np)
|
||||||
|
var1 = resource_variable_ops.ResourceVariable(var1_np)
|
||||||
|
global_step = resource_variable_ops.ResourceVariable(0, trainable=False)
|
||||||
|
grads0 = constant_op.constant(grads0_np)
|
||||||
|
grads1 = constant_op.constant(grads1_np)
|
||||||
|
|
||||||
|
opt = powersign.PowerSignOptimizer(
|
||||||
|
learning_rate=learning_rate,
|
||||||
|
base=base,
|
||||||
|
beta=beta,
|
||||||
|
sign_decay_fn=sign_decay_fn,
|
||||||
|
)
|
||||||
|
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]),
|
||||||
|
global_step=global_step)
|
||||||
|
neg_update = opt.apply_gradients(zip([-grads0, -grads1], [var0, var1]),
|
||||||
|
global_step=global_step)
|
||||||
|
|
||||||
|
variables.global_variables_initializer().run()
|
||||||
|
# Fetch params to validate initial values
|
||||||
|
self.assertAllClose([1.0, 2.0], var0.eval())
|
||||||
|
self.assertAllClose([3.0, 4.0], var1.eval())
|
||||||
|
|
||||||
|
# Run 7 steps of powersign
|
||||||
|
# first 4 steps with positive gradient
|
||||||
|
# last 3 steps with negative gradient (sign(gm) should be -1)
|
||||||
|
for t in range(1, 8):
|
||||||
|
if t < 5:
|
||||||
|
update.run()
|
||||||
|
else:
|
||||||
|
neg_update.run()
|
||||||
|
|
||||||
|
var0_np, m0 = powersign_update_numpy(
|
||||||
|
var0_np,
|
||||||
|
grads0_np if t < 5 else -grads0_np,
|
||||||
|
m0,
|
||||||
|
learning_rate,
|
||||||
|
base=base,
|
||||||
|
beta=beta,
|
||||||
|
py_sign_decay_fn=py_sign_decay_fn,
|
||||||
|
t=t,
|
||||||
|
)
|
||||||
|
var1_np, m1 = powersign_update_numpy(
|
||||||
|
var1_np,
|
||||||
|
grads1_np if t < 5 else -grads1_np,
|
||||||
|
m1,
|
||||||
|
learning_rate,
|
||||||
|
base=base,
|
||||||
|
beta=beta,
|
||||||
|
py_sign_decay_fn=py_sign_decay_fn,
|
||||||
|
t=t,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Validate updated params
|
||||||
|
self.assertAllCloseAccordingToType(var0_np, var0.eval())
|
||||||
|
self.assertAllCloseAccordingToType(var1_np, var1.eval())
|
||||||
|
|
||||||
|
def testDense(self):
|
||||||
|
decay_steps = 10
|
||||||
|
sign_decay_fn = sign_decay.get_linear_decay_fn(decay_steps)
|
||||||
|
py_sign_decay_fn = py_linear_decay_fn(decay_steps)
|
||||||
|
self._testDense()
|
||||||
|
self._testDense(learning_rate=0.1, base=10.0, beta=0.8)
|
||||||
|
self._testDense(
|
||||||
|
sign_decay_fn=sign_decay_fn, py_sign_decay_fn=py_sign_decay_fn)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test.main()
|
@ -640,5 +640,109 @@ class ResourceApplyAdadelta : public XlaOpKernel {
|
|||||||
REGISTER_XLA_OP(Name("ResourceApplyAdadelta").TypeConstraint("T", kFloatTypes),
|
REGISTER_XLA_OP(Name("ResourceApplyAdadelta").TypeConstraint("T", kFloatTypes),
|
||||||
ResourceApplyAdadelta);
|
ResourceApplyAdadelta);
|
||||||
|
|
||||||
|
class ResourceApplySignBase : public XlaOpKernel {
|
||||||
|
public:
|
||||||
|
explicit ResourceApplySignBase(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {
|
||||||
|
OP_REQUIRES_OK(ctx, ctx->GetAttr("T", &dtype_));
|
||||||
|
}
|
||||||
|
|
||||||
|
void Compile(XlaOpKernelContext* ctx) override {
|
||||||
|
TensorShape var_shape, m_shape;
|
||||||
|
xla::XlaOp var, m;
|
||||||
|
OP_REQUIRES_OK(ctx, ctx->ReadVariableInput(0, dtype_, &var_shape, &var));
|
||||||
|
OP_REQUIRES_OK(ctx, ctx->ReadVariableInput(1, dtype_, &m_shape, &m));
|
||||||
|
OP_REQUIRES(ctx, var_shape.IsSameSize(m_shape),
|
||||||
|
errors::InvalidArgument("var and m do not have the same shape",
|
||||||
|
var_shape.DebugString(), " ",
|
||||||
|
m_shape.DebugString()));
|
||||||
|
TensorShape grad_shape = ctx->InputShape(6);
|
||||||
|
OP_REQUIRES(ctx, var_shape.IsSameSize(grad_shape),
|
||||||
|
errors::InvalidArgument(
|
||||||
|
"var and grad do not have the same shape",
|
||||||
|
var_shape.DebugString(), " ", grad_shape.DebugString()));
|
||||||
|
CheckScalarParams(ctx);
|
||||||
|
|
||||||
|
xla::XlaOp lr = ctx->Input(2);
|
||||||
|
xla::XlaOp alpha = ctx->Input(3);
|
||||||
|
xla::XlaOp sign_decay = ctx->Input(4);
|
||||||
|
xla::XlaOp beta = ctx->Input(5);
|
||||||
|
xla::XlaOp grad = ctx->Input(6);
|
||||||
|
|
||||||
|
m = m * beta + grad * (xla::ScalarLike(beta, 1.0) - beta);
|
||||||
|
xla::XlaOp decay = xla::Sign(grad) * xla::Sign(m) * sign_decay;
|
||||||
|
|
||||||
|
xla::XlaOp grad_scale = ComputeGradientScale(alpha, decay);
|
||||||
|
var = var - lr * grad_scale * grad;
|
||||||
|
OP_REQUIRES_OK(ctx, ctx->AssignVariable(0, dtype_, var));
|
||||||
|
OP_REQUIRES_OK(ctx, ctx->AssignVariable(1, dtype_, m));
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual void CheckScalarParams(XlaOpKernelContext* ctx) {
|
||||||
|
TensorShape lr_shape = ctx->InputShape(2);
|
||||||
|
TensorShape sign_decay_shape = ctx->InputShape(4);
|
||||||
|
TensorShape beta_shape = ctx->InputShape(5);
|
||||||
|
|
||||||
|
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(lr_shape),
|
||||||
|
errors::InvalidArgument("lr is not a scalar: ",
|
||||||
|
lr_shape.DebugString()));
|
||||||
|
|
||||||
|
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(sign_decay_shape),
|
||||||
|
errors::InvalidArgument("sign_decay is not a scalar: ",
|
||||||
|
sign_decay_shape.DebugString()));
|
||||||
|
|
||||||
|
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(beta_shape),
|
||||||
|
errors::InvalidArgument("beta is not a scalar: ",
|
||||||
|
beta_shape.DebugString()));
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual xla::XlaOp ComputeGradientScale(xla::XlaOp alpha,
|
||||||
|
xla::XlaOp decay) = 0;
|
||||||
|
|
||||||
|
private:
|
||||||
|
DataType dtype_;
|
||||||
|
};
|
||||||
|
|
||||||
|
class ResourceApplyAddSign : public ResourceApplySignBase {
|
||||||
|
public:
|
||||||
|
explicit ResourceApplyAddSign(OpKernelConstruction* ctx)
|
||||||
|
: ResourceApplySignBase(ctx) {}
|
||||||
|
|
||||||
|
void CheckScalarParams(XlaOpKernelContext* ctx) override {
|
||||||
|
ResourceApplySignBase::CheckScalarParams(ctx);
|
||||||
|
TensorShape alpha_shape = ctx->InputShape(3);
|
||||||
|
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(alpha_shape),
|
||||||
|
errors::InvalidArgument("alpha is not a scalar: ",
|
||||||
|
alpha_shape.DebugString()));
|
||||||
|
}
|
||||||
|
|
||||||
|
xla::XlaOp ComputeGradientScale(xla::XlaOp alpha, xla::XlaOp decay) override {
|
||||||
|
return alpha + decay;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
// TODO(b/111123982): Use kFloatTypes once the bug is fixed.
|
||||||
|
REGISTER_XLA_OP(Name("ResourceApplyAddSign")
|
||||||
|
.TypeConstraint("T", {DT_FLOAT, DT_DOUBLE, DT_BFLOAT16}),
|
||||||
|
ResourceApplyAddSign);
|
||||||
|
|
||||||
|
class ResourceApplyPowerSign : public ResourceApplySignBase {
|
||||||
|
public:
|
||||||
|
explicit ResourceApplyPowerSign(OpKernelConstruction* ctx)
|
||||||
|
: ResourceApplySignBase(ctx) {}
|
||||||
|
|
||||||
|
void CheckScalarParams(XlaOpKernelContext* ctx) override {
|
||||||
|
ResourceApplySignBase::CheckScalarParams(ctx);
|
||||||
|
TensorShape logbase_shape = ctx->InputShape(3);
|
||||||
|
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(logbase_shape),
|
||||||
|
errors::InvalidArgument("logbase is not a scalar: ",
|
||||||
|
logbase_shape.DebugString()));
|
||||||
|
}
|
||||||
|
|
||||||
|
xla::XlaOp ComputeGradientScale(xla::XlaOp alpha, xla::XlaOp decay) override {
|
||||||
|
return xla::Exp(alpha * decay);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
REGISTER_XLA_OP(Name("ResourceApplyPowerSign").TypeConstraint("T", kFloatTypes),
|
||||||
|
ResourceApplyPowerSign);
|
||||||
|
|
||||||
} // namespace
|
} // namespace
|
||||||
} // namespace tensorflow
|
} // namespace tensorflow
|
||||||
|
@ -214,7 +214,7 @@ class AddSignTest(test.TestCase):
|
|||||||
# Run 7 steps of AddSign
|
# Run 7 steps of AddSign
|
||||||
# first 4 steps with positive gradient
|
# first 4 steps with positive gradient
|
||||||
# last 3 steps with negative gradient (sign(gm) should be -1)
|
# last 3 steps with negative gradient (sign(gm) should be -1)
|
||||||
for t in range(1, 4):
|
for t in range(1, 8):
|
||||||
if t < 5:
|
if t < 5:
|
||||||
update.run()
|
update.run()
|
||||||
else:
|
else:
|
||||||
@ -222,7 +222,7 @@ class AddSignTest(test.TestCase):
|
|||||||
|
|
||||||
var0_np, m0 = addsign_update_numpy(
|
var0_np, m0 = addsign_update_numpy(
|
||||||
var0_np,
|
var0_np,
|
||||||
grads0_np,
|
grads0_np if t < 5 else -grads0_np,
|
||||||
m0,
|
m0,
|
||||||
learning_rate,
|
learning_rate,
|
||||||
alpha=alpha,
|
alpha=alpha,
|
||||||
@ -232,7 +232,7 @@ class AddSignTest(test.TestCase):
|
|||||||
)
|
)
|
||||||
var1_np, m1 = addsign_update_numpy(
|
var1_np, m1 = addsign_update_numpy(
|
||||||
var1_np,
|
var1_np,
|
||||||
grads1_np,
|
grads1_np if t < 5 else -grads1_np,
|
||||||
m1,
|
m1,
|
||||||
learning_rate,
|
learning_rate,
|
||||||
alpha=alpha,
|
alpha=alpha,
|
||||||
|
@ -216,7 +216,7 @@ class PowerSignTest(test.TestCase):
|
|||||||
self.assertAllClose([1.0, 2.0], var0.eval())
|
self.assertAllClose([1.0, 2.0], var0.eval())
|
||||||
self.assertAllClose([3.0, 4.0], var1.eval())
|
self.assertAllClose([3.0, 4.0], var1.eval())
|
||||||
|
|
||||||
# Run 3 steps of powersign
|
# Run 7 steps of powersign
|
||||||
# first 4 steps with positive gradient
|
# first 4 steps with positive gradient
|
||||||
# last 3 steps with negative gradient (sign(gm) should be -1)
|
# last 3 steps with negative gradient (sign(gm) should be -1)
|
||||||
for t in range(1, 8):
|
for t in range(1, 8):
|
||||||
|
Loading…
x
Reference in New Issue
Block a user