TFL MCU: Move reference ResizeNearestNeighbor implementation into its own file.
so that we won't need to import all the dependencies. This CL simply copies the existing code into the new file. PiperOrigin-RevId: 306480426 Change-Id: I672a14c3edeeab975b5e75c18d632c8d71ecead4
This commit is contained in:
parent
3cfc29aa36
commit
d58a4dfc54
tensorflow/lite/kernels/internal
@ -472,6 +472,7 @@ cc_library(
|
||||
"reference/reduce.h",
|
||||
"reference/reference_ops.h",
|
||||
"reference/requantize.h",
|
||||
"reference/resize_nearest_neighbor.h",
|
||||
"reference/round.h",
|
||||
"reference/softmax.h",
|
||||
"reference/sparse_ops/fully_connected.h",
|
||||
@ -541,6 +542,7 @@ cc_library(
|
||||
"reference/reduce.h",
|
||||
"reference/reference_ops.h",
|
||||
"reference/requantize.h",
|
||||
"reference/resize_nearest_neighbor.h",
|
||||
"reference/round.h",
|
||||
"reference/softmax.h",
|
||||
"reference/strided_slice.h",
|
||||
|
@ -53,6 +53,7 @@ limitations under the License.
|
||||
#include "tensorflow/lite/kernels/internal/reference/quantize.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/reduce.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/requantize.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/resize_nearest_neighbor.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/round.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/softmax.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/strided_slice.h"
|
||||
@ -2459,60 +2460,6 @@ inline void BroadcastPow4DSlow(const RuntimeShape& unextended_input1_shape,
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void ResizeNearestNeighbor(
|
||||
const tflite::ResizeNearestNeighborParams& op_params,
|
||||
const RuntimeShape& unextended_input_shape, const T* input_data,
|
||||
const RuntimeShape& output_size_shape, const int32* output_size_data,
|
||||
const RuntimeShape& unextended_output_shape, T* output_data) {
|
||||
// Align corners = true is not supported.
|
||||
TFLITE_DCHECK(!op_params.align_corners);
|
||||
TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
|
||||
|
||||
const RuntimeShape input_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_input_shape);
|
||||
const RuntimeShape output_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_output_shape);
|
||||
|
||||
int32 batches = MatchingDim(input_shape, 0, output_shape, 0);
|
||||
int32 input_height = input_shape.Dims(1);
|
||||
int32 input_width = input_shape.Dims(2);
|
||||
int32 depth = MatchingDim(input_shape, 3, output_shape, 3);
|
||||
|
||||
// The Tensorflow version of this op allows resize on the width and height
|
||||
// axis only.
|
||||
TFLITE_DCHECK_EQ(output_size_shape.FlatSize(), 2);
|
||||
int32 output_height = output_size_data[0];
|
||||
int32 output_width = output_size_data[1];
|
||||
|
||||
// We use float to ensure agreement with the Tensorflow implementation.
|
||||
const float height_scale = static_cast<float>(input_height) / output_height;
|
||||
const float width_scale = static_cast<float>(input_width) / output_width;
|
||||
|
||||
const int col_offset = input_shape.Dims(3);
|
||||
const int row_offset = input_shape.Dims(2) * col_offset;
|
||||
const int batch_offset = input_shape.Dims(1) * row_offset;
|
||||
|
||||
const T* input_ptr = input_data;
|
||||
T* output_ptr = output_data;
|
||||
for (int b = 0; b < batches; ++b) {
|
||||
for (int y = 0; y < output_height; ++y) {
|
||||
int32 in_y = std::min(static_cast<int32>(std::floor(y * height_scale)),
|
||||
input_height - 1);
|
||||
const T* y_input_ptr = input_ptr + in_y * row_offset;
|
||||
for (int x = 0; x < output_width; ++x) {
|
||||
int32 in_x = std::min(static_cast<int32>(std::floor(x * width_scale)),
|
||||
input_width - 1);
|
||||
const T* x_input_ptr = y_input_ptr + in_x * col_offset;
|
||||
memcpy(output_ptr, x_input_ptr, depth * sizeof(T));
|
||||
output_ptr += depth;
|
||||
}
|
||||
}
|
||||
input_ptr += batch_offset;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void Fill(const RuntimeShape& value_shape, const T* value_data,
|
||||
const RuntimeShape& output_shape, T* output_data) {
|
||||
|
@ -0,0 +1,83 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_NEAREST_NEIGHBOR_H_
|
||||
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_NEAREST_NEIGHBOR_H_
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/types.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
namespace reference_ops {
|
||||
|
||||
template <typename T>
|
||||
inline void ResizeNearestNeighbor(
|
||||
const tflite::ResizeNearestNeighborParams& op_params,
|
||||
const RuntimeShape& unextended_input_shape, const T* input_data,
|
||||
const RuntimeShape& output_size_shape, const int32* output_size_data,
|
||||
const RuntimeShape& unextended_output_shape, T* output_data) {
|
||||
// Align corners = true is not supported.
|
||||
TFLITE_DCHECK(!op_params.align_corners);
|
||||
TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
|
||||
|
||||
const RuntimeShape input_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_input_shape);
|
||||
const RuntimeShape output_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_output_shape);
|
||||
|
||||
int32 batches = MatchingDim(input_shape, 0, output_shape, 0);
|
||||
int32 input_height = input_shape.Dims(1);
|
||||
int32 input_width = input_shape.Dims(2);
|
||||
int32 depth = MatchingDim(input_shape, 3, output_shape, 3);
|
||||
|
||||
// The Tensorflow version of this op allows resize on the width and height
|
||||
// axis only.
|
||||
TFLITE_DCHECK_EQ(output_size_shape.FlatSize(), 2);
|
||||
int32 output_height = output_size_data[0];
|
||||
int32 output_width = output_size_data[1];
|
||||
|
||||
// We use float to ensure agreement with the Tensorflow implementation.
|
||||
const float height_scale = static_cast<float>(input_height) / output_height;
|
||||
const float width_scale = static_cast<float>(input_width) / output_width;
|
||||
|
||||
const int col_offset = input_shape.Dims(3);
|
||||
const int row_offset = input_shape.Dims(2) * col_offset;
|
||||
const int batch_offset = input_shape.Dims(1) * row_offset;
|
||||
|
||||
const T* input_ptr = input_data;
|
||||
T* output_ptr = output_data;
|
||||
for (int b = 0; b < batches; ++b) {
|
||||
for (int y = 0; y < output_height; ++y) {
|
||||
int32 in_y = std::min(static_cast<int32>(std::floor(y * height_scale)),
|
||||
input_height - 1);
|
||||
const T* y_input_ptr = input_ptr + in_y * row_offset;
|
||||
for (int x = 0; x < output_width; ++x) {
|
||||
int32 in_x = std::min(static_cast<int32>(std::floor(x * width_scale)),
|
||||
input_width - 1);
|
||||
const T* x_input_ptr = y_input_ptr + in_x * col_offset;
|
||||
memcpy(output_ptr, x_input_ptr, depth * sizeof(T));
|
||||
output_ptr += depth;
|
||||
}
|
||||
}
|
||||
input_ptr += batch_offset;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace reference_ops
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_NEAREST_NEIGHBOR_H_
|
Loading…
Reference in New Issue
Block a user