Annotate tests only compatible with graph mode

PiperOrigin-RevId: 235952819
This commit is contained in:
Gaurav Jain 2019-02-27 11:01:24 -08:00 committed by TensorFlower Gardener
parent 8951b7fb56
commit d535cfc63d
8 changed files with 137 additions and 82 deletions

View File

@ -244,6 +244,7 @@ class TrtConvertTest(test_util.TensorFlowTestCase):
"output:0",
feed_dict={"input:0": [[[test_data]]]}))
@test_util.deprecated_graph_mode_only
def testTrtGraphConverter_BasicConversion(self):
"""Test case for trt_convert.TrtGraphConverter()."""
if not is_tensorrt_enabled():
@ -276,6 +277,7 @@ class TrtConvertTest(test_util.TensorFlowTestCase):
self.assertEqual(execute_native_segment_test_value,
get_test_value("TRTEngineOp_0:ExecuteNativeSegment"))
@test_util.deprecated_graph_mode_only
def testTrtGraphConverter_MinimumSegmentSize(self):
if not is_tensorrt_enabled():
return
@ -290,6 +292,7 @@ class TrtConvertTest(test_util.TensorFlowTestCase):
"output": "Identity"
}, node_name_to_op)
@test_util.deprecated_graph_mode_only
def testTrtGraphConverter_DynamicOp(self):
if not is_tensorrt_enabled():
return
@ -329,6 +332,7 @@ class TrtConvertTest(test_util.TensorFlowTestCase):
# the max, it should evict an old engine and create a new one.
self._TestRun(sess, 3, True)
@test_util.deprecated_graph_mode_only
def testTrtGraphConverter_StaticOp(self):
if not is_tensorrt_enabled():
return

View File

@ -36,7 +36,7 @@ from tensorflow.python.util import compat as util_compat
# TODO(b/117581999): add eager coverage when supported.
class CopyToDeviceTest(test_base.DatasetTestBase):
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testCopyToDevice(self):
host_dataset = dataset_ops.Dataset.range(10)
device_dataset = host_dataset.apply(
@ -61,7 +61,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testCopyToDeviceInt32(self):
host_dataset = dataset_ops.Dataset.from_tensors([0, 1, 2, 3])
device_dataset = host_dataset.apply(
@ -85,7 +85,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testCopyToSameDevice(self):
host_dataset = dataset_ops.Dataset.range(10)
device_dataset = host_dataset.apply(
@ -110,7 +110,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testCopyToDeviceWithPrefetch(self):
host_dataset = dataset_ops.Dataset.range(10)
device_dataset = host_dataset.apply(
@ -135,7 +135,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testCopyDictToDevice(self):
host_dataset = dataset_ops.Dataset.range(10).map(lambda x: {"a": x})
device_dataset = host_dataset.apply(
@ -160,7 +160,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testCopyDictToDeviceWithPrefetch(self):
host_dataset = dataset_ops.Dataset.range(10).map(lambda x: {"a": x})
device_dataset = host_dataset.apply(
@ -185,7 +185,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testCopySparseTensorsToDevice(self):
def make_tensor(i):
@ -218,7 +218,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testCopySparseTensorsToDeviceWithPrefetch(self):
def make_tensor(i):
@ -251,6 +251,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.deprecated_graph_mode_only
def testCopyToDeviceGpu(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
@ -271,6 +272,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.deprecated_graph_mode_only
def testCopyToDeviceGpuWithPrefetch(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
@ -291,6 +293,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.deprecated_graph_mode_only
def testCopyToDeviceGpuWithMap(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
@ -328,6 +331,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.deprecated_graph_mode_only
def testCopyToDeviceGpuInt32(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
@ -347,6 +351,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.deprecated_graph_mode_only
def testCopyToDeviceGpuInt32AndPrefetch(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
@ -366,6 +371,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.deprecated_graph_mode_only
def testCopyToDeviceGpuStrings(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
@ -385,6 +391,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.deprecated_graph_mode_only
def testCopyToDeviceGpuStringsAndPrefetch(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
@ -404,6 +411,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.deprecated_graph_mode_only
def testCopyToDevicePingPongCPUGPU(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
@ -427,7 +435,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testCopyToDeviceWithReInit(self):
host_dataset = dataset_ops.Dataset.range(10)
device_dataset = host_dataset.apply(
@ -456,7 +464,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testCopyToDeviceWithReInitAndPrefetch(self):
host_dataset = dataset_ops.Dataset.range(10)
device_dataset = host_dataset.apply(
@ -485,6 +493,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.deprecated_graph_mode_only
def testCopyToDeviceGpuWithReInit(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
@ -508,6 +517,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.deprecated_graph_mode_only
def testCopyToDeviceGpuWithReInitAndPrefetch(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
@ -531,6 +541,7 @@ class CopyToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.deprecated_graph_mode_only
def testIteratorGetNextAsOptionalOnGPU(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")

View File

@ -32,7 +32,7 @@ from tensorflow.python.platform import test
# TODO(b/117581999): add eager coverage when supported.
class PrefetchToDeviceTest(test_base.DatasetTestBase):
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testPrefetchToDevice(self):
host_dataset = dataset_ops.Dataset.range(10)
device_dataset = host_dataset.apply(
@ -57,7 +57,7 @@ class PrefetchToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testPrefetchToSameDevice(self):
host_dataset = dataset_ops.Dataset.range(10)
device_dataset = host_dataset.apply(
@ -82,7 +82,7 @@ class PrefetchToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testPrefetchDictToDevice(self):
host_dataset = dataset_ops.Dataset.range(10).map(lambda x: {"a": x})
device_dataset = host_dataset.apply(
@ -107,7 +107,7 @@ class PrefetchToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testPrefetchSparseTensorsToDevice(self):
def make_tensor(i):
return sparse_tensor.SparseTensorValue(
@ -138,6 +138,7 @@ class PrefetchToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.deprecated_graph_mode_only
def testPrefetchToDeviceGpu(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
@ -157,7 +158,7 @@ class PrefetchToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testPrefetchToDeviceWithReInit(self):
host_dataset = dataset_ops.Dataset.range(10)
device_dataset = host_dataset.apply(
@ -186,6 +187,7 @@ class PrefetchToDeviceTest(test_base.DatasetTestBase):
with self.assertRaises(errors.OutOfRangeError):
self.evaluate(next_element)
@test_util.deprecated_graph_mode_only
def testPrefetchToDeviceGpuWithReInit(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")

View File

@ -55,7 +55,7 @@ from tensorflow.python.util import compat
class IteratorTest(test.TestCase, parameterized.TestCase):
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testNoGradients(self):
component = constant_op.constant([1.])
side = constant_op.constant(0.)
@ -66,7 +66,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
self.assertIsNone(gradients_impl.gradients(value, side)[0])
self.assertIsNone(gradients_impl.gradients(value, [component, side])[0])
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testCapturingStateInOneShotRaisesException(self):
var = variables.Variable(37.0, name="myvar")
dataset = (
@ -77,7 +77,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
"datasets that capture stateful objects.+myvar"):
dataset_ops.make_one_shot_iterator(dataset)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testOneShotIterator(self):
components = (np.arange(7),
np.array([[1, 2, 3]]) * np.arange(7)[:, np.newaxis],
@ -103,7 +103,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
with self.assertRaises(errors.OutOfRangeError):
sess.run(get_next)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testOneShotIteratorCaptureByValue(self):
components = (np.arange(7),
np.array([[1, 2, 3]]) * np.arange(7)[:, np.newaxis],
@ -166,7 +166,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
with self.assertRaises(errors.OutOfRangeError):
sess.run(get_next)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testOneShotIteratorNonBlocking(self):
dataset = dataset_ops.Dataset.from_tensors([1, 2, 3]).map(lambda x: x * x)
iterator = dataset_ops.make_one_shot_iterator(dataset)
@ -205,7 +205,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
len([None for r in results if r is None]))
self.assertAllEqual([[1, 4, 9]], [r for r in results if r is not None])
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testOneShotIteratorInitializerFails(self):
# Define a dataset whose initialization will always fail.
dataset = dataset_ops.Dataset.from_tensors(
@ -286,7 +286,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
with self.assertRaises(errors.OutOfRangeError):
sess.run(get_next)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testNotInitializedError(self):
components = (np.array(1), np.array([1, 2, 3]), np.array(37.0))
iterator = dataset_ops.make_initializable_iterator(
@ -298,7 +298,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
"iterator has not been initialized"):
sess.run(get_next)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testReinitializableIterator(self):
dataset_3 = dataset_ops.Dataset.from_tensors(
constant_op.constant([1, 2, 3]))
@ -339,7 +339,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
with self.assertRaises(errors.OutOfRangeError):
sess.run(get_next)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testReinitializableIteratorWithFunctions(self):
def g():
@ -399,7 +399,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
(constant_op.constant([1, 2, 3], dtype=dtypes.int64),
constant_op.constant([4., 5., 6., 7.], dtype=dtypes.float64))))
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testIteratorStringHandle(self):
dataset_3 = dataset_ops.Dataset.from_tensor_slices([1, 2, 3])
dataset_4 = dataset_ops.Dataset.from_tensor_slices([10, 20, 30, 40])
@ -457,7 +457,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
sess.run(
next_element, feed_dict={handle_placeholder: iterator_4_handle})
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testIteratorStringHandleFuture(self):
with forward_compat.forward_compatibility_horizon(2018, 8, 4):
dataset_3 = dataset_ops.Dataset.from_tensor_slices([1, 2, 3])
@ -523,7 +523,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
sess.run(
next_element, feed_dict={handle_placeholder: iterator_4_handle})
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testIteratorStringHandleReuseTensorObject(self):
dataset = dataset_ops.Dataset.from_tensor_slices([1, 2, 3])
one_shot_iterator = dataset_ops.make_one_shot_iterator(dataset)
@ -552,7 +552,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
self.assertEqual("foo_1", handle_with_same_name.op.name)
self.assertIsNot(handle_with_name, handle_with_same_name)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testIteratorStringHandleError(self):
dataset_int_scalar = (
dataset_ops.Dataset.from_tensor_slices([1, 2, 3]).repeat())
@ -593,7 +593,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
feedable_int_vector.get_next(),
feed_dict={handle_placeholder: handle_float_vector}))
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testRemoteIteratorUsingRemoteCallOpDirectSession(self):
worker_config = config_pb2.ConfigProto()
worker_config.device_count["CPU"] = 3
@ -651,7 +651,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
target_placeholder: "/job:localhost/replica:0/task:0/cpu:1"
})
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testRemoteIteratorUsingRemoteCallOpMultiWorkers(self):
s1 = server_lib.Server.create_local_server()
s2 = server_lib.Server.create_local_server()
@ -705,6 +705,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
with self.assertRaises(errors.OutOfRangeError):
sess.run(n)
@test_util.deprecated_graph_mode_only
def testRemoteIteratorUsingRemoteCallOpDirectSessionGPUCPU(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
@ -761,7 +762,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
target_placeholder: "/job:localhost/replica:0/task:0/cpu:0"
})
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testIncorrectIteratorRestore(self):
def _path():
@ -820,7 +821,7 @@ class IteratorTest(test.TestCase, parameterized.TestCase):
with self.assertRaises(errors.InvalidArgumentError):
sess.run(restore_op)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testRepeatedGetNextWarning(self):
iterator = dataset_ops.make_one_shot_iterator(dataset_ops.Dataset.range(10))
warnings.simplefilter("always")

View File

@ -283,6 +283,7 @@ class LayoutOptimizerTest(test.TestCase):
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.deprecated_graph_mode_only
def testSplitWithNonConstAxis(self):
if test.is_gpu_available(cuda_only=True):
random_seed.set_random_seed(0)
@ -318,6 +319,7 @@ class LayoutOptimizerTest(test.TestCase):
self._assert_map_nhwc_to_nchw('split-0', nodes)
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.deprecated_graph_mode_only
def testSplitVWithNonConstAxis(self):
if test.is_gpu_available(cuda_only=True):
random_seed.set_random_seed(0)
@ -745,6 +747,7 @@ class LayoutOptimizerTest(test.TestCase):
self.assertIn('concat-2-LayoutOptimizer', nodes)
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.deprecated_graph_mode_only
def testFill(self):
if test.is_gpu_available(cuda_only=True):
random_seed.set_random_seed(0)
@ -788,6 +791,7 @@ class LayoutOptimizerTest(test.TestCase):
self._assert_trans_nchw_to_nhwc('Fill-0-0', nodes)
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.deprecated_graph_mode_only
def testTile(self):
if test.is_gpu_available(cuda_only=True):
random_seed.set_random_seed(0)
@ -856,6 +860,7 @@ class LayoutOptimizerTest(test.TestCase):
self.assertIn('ReverseV2-1-LayoutOptimizer', nodes)
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.deprecated_graph_mode_only
def testReverseWithNonConstDims(self):
if test.is_gpu_available(cuda_only=True):
random_seed.set_random_seed(0)
@ -923,6 +928,7 @@ class LayoutOptimizerTest(test.TestCase):
self._assert_trans_nchw_to_nhwc('Select-0-0', nodes)
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.deprecated_graph_mode_only
def testSelectOpConditionUnknownShape(self):
if test.is_gpu_available(cuda_only=True):
random_seed.set_random_seed(0)
@ -984,6 +990,7 @@ class LayoutOptimizerTest(test.TestCase):
self._assert_trans_nchw_to_nhwc('Select-0-0', nodes)
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.deprecated_graph_mode_only
def testPadWithNonConstPaddings(self):
if test.is_gpu_available(cuda_only=True):
random_seed.set_random_seed(0)
@ -1020,6 +1027,7 @@ class LayoutOptimizerTest(test.TestCase):
self._assert_vec_nhwc_to_nchw('Pad-1', nodes)
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.deprecated_graph_mode_only
def testMaxPoolV2(self):
if test.is_gpu_available(cuda_only=True):
random_seed.set_random_seed(0)
@ -1056,6 +1064,7 @@ class LayoutOptimizerTest(test.TestCase):
self.assertIn('MaxPoolV2-1-LayoutOptimizer', nodes)
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.deprecated_graph_mode_only
def testMaxPoolGradV2(self):
if test.is_gpu_available(cuda_only=True):
random_seed.set_random_seed(0)
@ -1093,6 +1102,7 @@ class LayoutOptimizerTest(test.TestCase):
self.assertIn('MaxPoolGradV2-3-LayoutOptimizer', nodes)
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.deprecated_graph_mode_only
def testSliceWithNonConstAxis(self):
if test.is_gpu_available(cuda_only=True):
random_seed.set_random_seed(0)
@ -1129,6 +1139,7 @@ class LayoutOptimizerTest(test.TestCase):
self._assert_vec_nhwc_to_nchw('Slice-2', nodes)
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.deprecated_graph_mode_only
def testStridedSliceWithNonConstAxis(self):
if test.is_gpu_available(cuda_only=True):
random_seed.set_random_seed(0)
@ -1237,6 +1248,7 @@ class LayoutOptimizerTest(test.TestCase):
self.assertIn('strided_slice-3-LayoutOptimizer', nodes)
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.deprecated_graph_mode_only
def testStridedSliceGradWithNonConstAxis(self):
if test.is_gpu_available(cuda_only=True):
random_seed.set_random_seed(0)
@ -1279,6 +1291,7 @@ class LayoutOptimizerTest(test.TestCase):
self.assertIn('StridedSlice-2-LayoutOptimizer', nodes)
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.deprecated_graph_mode_only
def testShapeN(self):
if test.is_gpu_available(cuda_only=True):
x = array_ops.placeholder(dtype='float32')
@ -1310,6 +1323,7 @@ class LayoutOptimizerTest(test.TestCase):
self._assert_vec_nchw_to_nhwc('ShapeN-0-0', nodes)
self.assertAllEqual(output_val_ref, output_val)
@test_util.deprecated_graph_mode_only
def testShapeNFollowedByNotConvertibleNodeReshape(self):
if test.is_gpu_available(cuda_only=True):
x = array_ops.placeholder(dtype='float32')
@ -1416,6 +1430,7 @@ class LayoutOptimizerTest(test.TestCase):
self._assert_trans_nchw_to_nhwc('map/while/Add_1-0-2', nodes)
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.deprecated_graph_mode_only
def testBinaryOpSecondPort(self):
if test.is_gpu_available(cuda_only=True):
output = _model_with_second_port()
@ -1440,7 +1455,7 @@ class LayoutOptimizerTest(test.TestCase):
self._assert_trans_nchw_to_nhwc('Add-0-0', nodes)
self.assertAllClose(output_val_ref, output_val, atol=1e-3)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testGradient(self):
meta_graph = _simple_metagraph()
config = config_pb2.ConfigProto()
@ -1458,7 +1473,7 @@ class LayoutOptimizerTest(test.TestCase):
self.assertEqual(node.attr['data_format'].s, b'NCHW')
self.assertEqual(found, 5)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testDepthwise(self):
meta_graph = _simple_metagraph(depthwise=True)
config = config_pb2.ConfigProto()

View File

@ -1161,6 +1161,7 @@ class Conv2DTest(test.TestCase):
tf_logging.debug("actual = %s", value)
self.assertArrayNear(value_2.flatten(), value.flatten(), err)
@test_util.deprecated_graph_mode_only
def testConv2D2x2Depth3ValidBackpropFilterStride1x1Dilation2x1(self):
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
for (data_format, use_gpu) in GetTestConfigs():
@ -1175,6 +1176,7 @@ class Conv2DTest(test.TestCase):
use_gpu=use_gpu,
err=1e-5)
@test_util.deprecated_graph_mode_only
def testConv2D2x2Depth1ValidBackpropFilterDilation1x2(self):
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
for (data_format, use_gpu) in GetTestConfigs():
@ -1203,6 +1205,7 @@ class Conv2DTest(test.TestCase):
use_gpu=use_gpu,
err=1e-5)
@test_util.deprecated_graph_mode_only
def testConv2D2x2Depth3ValidBackpropFilterDilation2x2(self):
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
for (data_format, use_gpu) in GetTestConfigs():
@ -1231,6 +1234,7 @@ class Conv2DTest(test.TestCase):
use_gpu=use_gpu,
err=1e-5)
@test_util.deprecated_graph_mode_only
def testConv2D2x2Depth3ValidBackpropInputStride1x1Dilation2x1(self):
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
for (data_format, use_gpu) in GetTestConfigs():
@ -1245,6 +1249,7 @@ class Conv2DTest(test.TestCase):
use_gpu=use_gpu,
err=1e-5)
@test_util.deprecated_graph_mode_only
def testConv2D2x2Depth1ValidBackpropInputDilation1x2(self):
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
for (data_format, use_gpu) in GetTestConfigs():
@ -1273,6 +1278,7 @@ class Conv2DTest(test.TestCase):
use_gpu=use_gpu,
err=1e-5)
@test_util.deprecated_graph_mode_only
def testConv2D2x2Depth3ValidBackpropInputDilation2x1(self):
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
for (data_format, use_gpu) in GetTestConfigs():
@ -1703,7 +1709,7 @@ class Conv2DTest(test.TestCase):
tf_logging.debug("conv_2d gradient error = %s", err)
self.assertLess(err, max_err)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testInputGradientValidPaddingStrideOne(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1721,7 +1727,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testFilterGradientValidPaddingStrideOne(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1739,7 +1745,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testInputGradientValidPaddingStrideTwo(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1757,7 +1763,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testFilterGradientValidPaddingStrideTwo(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1775,7 +1781,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testInputGradientValidPaddingStrideThree(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1793,7 +1799,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testFilterGradientValidPaddingStrideThree(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1811,7 +1817,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testInputGradientSamePaddingStrideOne(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1829,7 +1835,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testFilterGradientSamePaddingStrideOne(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1847,7 +1853,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testInputGradientSamePaddingStrideTwo(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1865,7 +1871,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testFilterGradientSamePaddingStrideTwo(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1883,7 +1889,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testInputGradientSamePaddingStrideThree(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1901,7 +1907,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testFilterGradientSamePaddingStrideThree(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1919,7 +1925,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testFilterGradientSamePaddingStride2x1(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1937,7 +1943,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testInputGradientKernelSizeMatchesInputSize(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1955,7 +1961,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testFilterGradientKernelSizeMatchesInputSize(self):
for (data_format, use_gpu) in GetTestConfigs():
self.ConstructAndTestGradient(
@ -1973,6 +1979,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.deprecated_graph_mode_only
def testInputGradient1x1PaddingStrideOne(self):
if not test.is_gpu_available(cuda_only=True):
return
@ -1994,6 +2001,7 @@ class Conv2DTest(test.TestCase):
use_gpu=use_gpu,
max_err=0.0025)
@test_util.deprecated_graph_mode_only
def testFilterGradient1x1PaddingStrideOne(self):
if not test.is_gpu_available(cuda_only=True):
return
@ -2014,6 +2022,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.deprecated_graph_mode_only
def testInputGradient1x1PaddingStrideTwo(self):
if not test.is_gpu_available(cuda_only=True):
return
@ -2034,6 +2043,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.deprecated_graph_mode_only
def testFilterGradient1x1PaddingStrideTwo(self):
if not test.is_gpu_available(cuda_only=True):
return
@ -2054,6 +2064,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.deprecated_graph_mode_only
def testInputGradient2x2PaddingStrideOne(self):
if not test.is_gpu_available(cuda_only=True):
return
@ -2074,6 +2085,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.deprecated_graph_mode_only
def testFilterGradient2x2PaddingStrideOne(self):
if not test.is_gpu_available(cuda_only=True):
return
@ -2095,6 +2107,7 @@ class Conv2DTest(test.TestCase):
use_gpu=use_gpu,
max_err=0.003)
@test_util.deprecated_graph_mode_only
def testInputGradient1_2_3_4PaddingStride3x2(self):
if not test.is_gpu_available(cuda_only=True):
return
@ -2115,6 +2128,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.deprecated_graph_mode_only
def testFilterGradient1_2_3_4PaddingStride3x2(self):
if not test.is_gpu_available(cuda_only=True):
return
@ -2135,6 +2149,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.deprecated_graph_mode_only
def testInputGradient4_3_2_1PaddingStride2x1(self):
if not test.is_gpu_available(cuda_only=True):
return
@ -2155,6 +2170,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.deprecated_graph_mode_only
def testFilterGradient4_3_2_1PaddingStride2x1(self):
if not test.is_gpu_available(cuda_only=True):
return
@ -2175,6 +2191,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.deprecated_graph_mode_only
def testInputGradient0_0_0_5PaddingStride1x2(self):
if not test.is_gpu_available(cuda_only=True):
return
@ -2195,6 +2212,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.deprecated_graph_mode_only
def testFilterGradient0_0_0_5PaddingStride1x2(self):
if not test.is_gpu_available(cuda_only=True):
return
@ -2215,7 +2233,7 @@ class Conv2DTest(test.TestCase):
data_format=data_format,
use_gpu=use_gpu)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testShapeFunctionEdgeCases(self):
# All shapes unknown.
c1 = nn_ops.conv2d(
@ -2302,7 +2320,7 @@ class Conv2DTest(test.TestCase):
strides=[1, 1, 1, 1],
padding=[0, 0, 0, 0])
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
@test_util.disable_xla("b/123337890") # Error messages differ
def testOpEdgeCases(self):
with self.cached_session() as sess:

View File

@ -81,7 +81,7 @@ class SparseTensorDenseMatMulTest(test.TestCase):
self.assertEqual(tf_value_ans.get_shape()[1], np_ans.shape[1])
self.assertEqual(tf_tensor_ans.get_shape()[1], np_ans.shape[1])
for out in (tf_value_ans.eval(), self.evaluate(tf_tensor_ans)):
for out in (self.evaluate(tf_value_ans), self.evaluate(tf_tensor_ans)):
if x.dtype == np.float32:
self.assertAllClose(np_ans, out, rtol=1e-4, atol=1e-4)
elif x.dtype == np.float64:
@ -134,6 +134,7 @@ class SparseTensorDenseMatMulTest(test.TestCase):
with self.assertRaisesRegexp(ValueError, "Dimensions must be equal"):
sparse_ops.sparse_tensor_dense_matmul(x_st_shape_inconsistent, y)
@test_util.deprecated_graph_mode_only
def testInvalidIndicesForSparseTensorDenseMatmul(self):
# Note: use_gpu=False because nice errors are only returned from CPU kernel.
with self.session(use_gpu=False):
@ -147,23 +148,25 @@ class SparseTensorDenseMatMulTest(test.TestCase):
dense_t = np.matrix([[1] * 5, [2] * 5], dtype=np.float32)
with self.assertRaisesOpError(
"k .10. from index.0,1. out of bounds .>=2."):
sparse_ops.sparse_tensor_dense_matmul(sparse_t, dense_t).eval()
self.evaluate(sparse_ops.sparse_tensor_dense_matmul(sparse_t, dense_t))
dense_t = np.matrix([[1] * 500, [2] * 500], dtype=np.float32)
with self.assertRaisesOpError(
"k .10. from index.0,1. out of bounds .>=2."):
sparse_ops.sparse_tensor_dense_matmul(sparse_t, dense_t).eval()
self.evaluate(sparse_ops.sparse_tensor_dense_matmul(sparse_t, dense_t))
# Repeat with adjoint_a, to get a different error.
dense_t = np.matrix([[1] * 5, [2] * 5, [3] * 5], dtype=np.float32)
with self.assertRaisesOpError(
"m .10. from index.0,1. out of bounds .>=2."):
sparse_ops.sparse_tensor_dense_matmul(
sparse_t, dense_t, adjoint_a=True).eval()
self.evaluate(
sparse_ops.sparse_tensor_dense_matmul(
sparse_t, dense_t, adjoint_a=True))
dense_t = np.matrix([[1] * 500, [2] * 500, [3] * 500], dtype=np.float32)
with self.assertRaisesOpError(
"m .10. from index.0,1. out of bounds .>=2."):
sparse_ops.sparse_tensor_dense_matmul(
sparse_t, dense_t, adjoint_a=True).eval()
self.evaluate(
sparse_ops.sparse_tensor_dense_matmul(
sparse_t, dense_t, adjoint_a=True))
def testInvalidIndicesForSparseTensorDenseMatmulOnGPU(self):
# Note: use_gpu=False because nice errors are only returned from CPU kerne
@ -181,13 +184,13 @@ class SparseTensorDenseMatMulTest(test.TestCase):
expected_t = np.array([[0] * 5, [np.nan] * 5, [0] * 5], dtype=np.float32)
self.assertAllClose(expected_t,
sparse_ops.sparse_tensor_dense_matmul(
sparse_t, dense_t).eval())
sparse_t, dense_t))
dense_t = np.matrix([[1] * 500, [2] * 500], dtype=np.float32)
expected_t = np.array(
[[0] * 500, [np.nan] * 500, [0] * 500], dtype=np.float32)
self.assertAllClose(expected_t,
sparse_ops.sparse_tensor_dense_matmul(
sparse_t, dense_t).eval())
sparse_t, dense_t))
# Repeat with adjoint_a, now the error is that the sparse index
# is OOO w.r.t. the output. The GPU kernel can't do much here,
@ -197,13 +200,13 @@ class SparseTensorDenseMatMulTest(test.TestCase):
expected_t = np.array([[0] * 5, [0] * 5], dtype=np.float32)
self.assertAllClose(expected_t,
sparse_ops.sparse_tensor_dense_matmul(
sparse_t, dense_t, adjoint_a=True).eval())
sparse_t, dense_t, adjoint_a=True))
dense_t = np.matrix([[1] * 500, [2] * 500, [3] * 500], dtype=np.float32)
expected_t = np.array([[0] * 500, [0] * 500], dtype=np.float32)
self.assertAllClose(expected_t,
sparse_ops.sparse_tensor_dense_matmul(
sparse_t, dense_t, adjoint_a=True).eval())
sparse_t, dense_t, adjoint_a=True))
# Tests setting one dimension to be a high value.
def _testLarge(self, np_dtype):

View File

@ -162,7 +162,7 @@ class TensorArrayTest(test.TestCase):
convert([[4.0, 5.0], [104.0, 105.0], [204.0, 205.0], [6.0, 7.0],
[106.0, 107.0], [8.0, 9.0]]), c0)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testTensorArrayWriteConcat(self):
self._testTensorArrayWriteConcat(dtypes.float32)
self._testTensorArrayWriteConcat(dtypes.float64)
@ -308,7 +308,7 @@ class TensorArrayTest(test.TestCase):
self.assertAllEqual(convert([]).reshape(0, 2), d1)
self.assertAllEqual(convert([[3.0, 301.0]]), d2)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testTensorArraySplitRead(self):
self._testTensorArraySplitRead(dtypes.float32)
self._testTensorArraySplitRead(dtypes.float64)
@ -353,7 +353,7 @@ class TensorArrayTest(test.TestCase):
self.assertAllEqual([[2.0]], g_d1)
self.assertAllEqual(-2.0, g_d2)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerTensorArrayGradGrad(self):
if not control_flow_util.ENABLE_CONTROL_FLOW_V2:
self.skipTest("Legacy TensorArray does not support double derivatives.")
@ -745,7 +745,7 @@ class TensorArrayTest(test.TestCase):
self.assertAllEqual(c([[3.0, 2.0]]), grad_vals[0])
self.assertAllEqual(c(-2.0), grad_vals[1])
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerTensorArrayGradientWriteRead(self):
for dtype in (np.float32, np.float64, np.complex64, np.complex128):
self._testTensorArrayGradientWriteReadType(dtype)
@ -782,7 +782,7 @@ class TensorArrayTest(test.TestCase):
self.assertAllClose([2.0 - 0.5 + 20.0, 3.0 + 1.5 + 30.0], grad_vals[0])
self.assertAllEqual([4.0 + 40.0, 5.0 + 50.0], grad_vals[1])
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerTensorArrayGradientWritePackConcatAndRead(self):
self._testTensorArrayGradientWritePackConcatAndRead()
@ -841,11 +841,11 @@ class TensorArrayTest(test.TestCase):
self.assertEqual(len(grad_vals), 1)
self.assertAllEqual([[2.0 - 1.5, 3.0 + 1.5], [4.0, 5.0]], grad_vals[0])
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerTensorArrayGradientUnpackRead(self):
self._testTensorArrayGradientUnpackRead()
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerTensorArrayGradientSplitConcat(self):
with self.session(use_gpu=True) as session:
ta = tensor_array_ops.TensorArray(
@ -891,7 +891,7 @@ class TensorArrayTest(test.TestCase):
self.assertEqual(len(grad_vals), 1)
self.assertAllEqual([[2.0, 3.0], [4.0, 5.0]], grad_vals[0])
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerTensorArrayGradientDynamicUnpackRead(self):
self._testTensorArrayGradientDynamicUnpackRead()
@ -1056,7 +1056,7 @@ class TensorArrayTest(test.TestCase):
grad = gradients_impl.gradients(loop(x), [x])[0]
self.assertAllClose(31.0, self.evaluate(grad))
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerSumOfTwoReadVariablesWithoutRepeatGrad(self):
with self.session(use_gpu=True) as session:
a = array_ops.identity(
@ -1092,7 +1092,7 @@ class TensorArrayTest(test.TestCase):
def _grad_source_for_name(self, name):
return tensor_array_grad._GetGradSource(constant_op.constant(0, name=name))
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerGetGradSource_Invalid(self):
with self.assertRaises(ValueError):
self._grad_source_for_name("")
@ -1101,7 +1101,7 @@ class TensorArrayTest(test.TestCase):
with self.assertRaises(ValueError):
self._grad_source_for_name("foo/bar")
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerGetGradSource_NoEnclosingScope(self):
self.assertEqual("gradients:0", self._grad_source_for_name("gradients"))
self.assertEqual("gradients_0:0", self._grad_source_for_name("gradients_0"))
@ -1113,7 +1113,7 @@ class TensorArrayTest(test.TestCase):
self.assertEqual("gradients_0",
self._grad_source_for_name("gradients_0/foo/bar"))
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerGetGradSource_EnclosingScope(self):
self.assertEqual("foo/gradients:0",
self._grad_source_for_name("foo/gradients"))
@ -1128,13 +1128,13 @@ class TensorArrayTest(test.TestCase):
self.assertEqual("foo/bar/gradients_0",
self._grad_source_for_name("foo/bar/gradients_0/baz"))
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerGetGradSource_NestedUsesInnermost(self):
self.assertEqual(
"foo/gradients/bar/gradients_0",
self._grad_source_for_name("foo/gradients/bar/gradients_0/baz"))
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerWriteShape(self):
with self.session(use_gpu=True):
ta = tensor_array_ops.TensorArray(
@ -1159,7 +1159,7 @@ class TensorArrayTest(test.TestCase):
with self.assertRaises(ValueError):
w0.write(0, c2)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerPartlyUnknownShape(self):
with self.session(use_gpu=True):
ta = tensor_array_ops.TensorArray(
@ -1237,7 +1237,7 @@ class TensorArrayTest(test.TestCase):
def testUnpackShape(self):
self._testUnpackShape()
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSplitShape(self):
with self.session(use_gpu=True):
ta = tensor_array_ops.TensorArray(
@ -1269,7 +1269,7 @@ class TensorArrayTest(test.TestCase):
tensor_shape.TensorShape(
ta1.handle.op.get_attr("element_shape")).ndims, None)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerWriteUnknownShape(self):
with self.session(use_gpu=True):
ta = tensor_array_ops.TensorArray(
@ -1293,11 +1293,11 @@ class TensorArrayTest(test.TestCase):
grad_r0_vals = session.run(grad_r0)[0]
self.assertAllEqual(grad_r0_vals, [1.0, 0.0])
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerGradientWhenNotAllComponentsRead(self):
self._testGradientWhenNotAllComponentsRead()
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerWriteButNotAllComponentsReadGrad(self):
with self.cached_session(use_gpu=True) as session:
x0 = constant_op.constant(5.0)
@ -1645,7 +1645,7 @@ class TensorArrayTest(test.TestCase):
self.assertEqual(size0_v, 2)
self.assertEqual(size1_v, 4)
@test_util.run_deprecated_v1
@test_util.deprecated_graph_mode_only
def testSkipEagerTensorArrayGradYsInCorrectScope(self):
n_time = 1
n_dim = 1
@ -1664,6 +1664,7 @@ class TensorArrayTest(test.TestCase):
vdx, vdy = self.evaluate([dx, dy])
self.assertAllClose(vdx, vdy)
@test_util.deprecated_graph_mode_only
def testSkipEagerTensorArrayInt64GPU(self):
if not test.is_gpu_available():
return