Adds GraphTransformation to add QuantizeAndDequantize nodes in GPU graph

PiperOrigin-RevId: 302038856
Change-Id: I009684ea5b611a3bfc05c88b4fd8a40c570cfd86
This commit is contained in:
Sachin Joglekar 2020-03-20 09:07:06 -07:00 committed by TensorFlower Gardener
parent bb97495f77
commit d46aa971be
6 changed files with 363 additions and 0 deletions

View File

@ -92,6 +92,7 @@ cc_library(
":tensor",
"@com_google_absl//absl/memory",
"@com_google_absl//absl/types:any",
"@com_google_absl//absl/types:optional",
],
)

View File

@ -24,6 +24,7 @@ limitations under the License.
#include "absl/memory/memory.h"
#include "absl/types/any.h"
#include "absl/types/optional.h"
#include "tensorflow/lite/delegates/gpu/common/data_type.h"
#include "tensorflow/lite/delegates/gpu/common/shape.h"
#include "tensorflow/lite/delegates/gpu/common/status.h"
@ -39,6 +40,13 @@ using ValueId = uint32_t;
using NodeId = uint32_t;
// Used to emulate quantized behavior.
struct QuantizationParams {
float min = 0;
float max = 0;
float scale = 0;
};
// Connects tensor's producer and operation that depends on this tensor.
template <typename TensorT>
struct Value {
@ -47,6 +55,8 @@ struct Value {
const ValueId id;
TensorType tensor;
absl::optional<QuantizationParams> quant_params;
};
struct Operation {

View File

@ -19,6 +19,37 @@ cc_library(
],
)
cc_library(
name = "add_quant_adjustments",
srcs = ["add_quant_adjustments.cc"],
hdrs = ["add_quant_adjustments.h"],
deps = [
"//tensorflow/lite/delegates/gpu/common:data_type",
"//tensorflow/lite/delegates/gpu/common:model",
"//tensorflow/lite/delegates/gpu/common:model_transformer",
"//tensorflow/lite/delegates/gpu/common:operations",
"//tensorflow/lite/delegates/gpu/common:status",
"@com_google_absl//absl/memory",
"@com_google_absl//absl/strings",
"@com_google_absl//absl/types:any",
],
)
cc_test(
name = "add_quant_adjustments_test",
srcs = ["add_quant_adjustments_test.cc"],
deps = [
":add_quant_adjustments",
"//tensorflow/lite/delegates/gpu/common:model",
"//tensorflow/lite/delegates/gpu/common:model_transformer",
"//tensorflow/lite/delegates/gpu/common:operations",
"//tensorflow/lite/delegates/gpu/common:shape",
"@com_google_absl//absl/types:any",
"@com_google_absl//absl/types:optional",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "fuse_add_to_conv",
srcs = ["fuse_add_to_conv.cc"],

View File

@ -0,0 +1,110 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/delegates/gpu/common/transformations/add_quant_adjustments.h"
#include <string>
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/types/any.h"
#include "tensorflow/lite/delegates/gpu/common/data_type.h"
#include "tensorflow/lite/delegates/gpu/common/model.h"
#include "tensorflow/lite/delegates/gpu/common/operations.h"
#include "tensorflow/lite/delegates/gpu/common/status.h"
namespace tflite {
namespace gpu {
class AddQuantAdjustments : public NodeTransformation {
public:
TransformResult ApplyToNode(Node* node, GraphFloat32* graph) final {
if (node->operation.type ==
ToString(OperationType::QUANTIZE_AND_DEQUANTIZE)) {
return {TransformStatus::SKIPPED, ""};
}
bool transform_applied = false;
auto node_outputs = graph->FindOutputs(node->id);
for (auto output_value : node_outputs) {
// Skip if quantization doesn't apply.
if (!output_value->quant_params) continue;
auto consumers = graph->FindConsumers(output_value->id);
// No need to do anything if this isn't consumed by another node.
if (consumers.empty()) {
continue;
}
// Add a new QuantizeAndDequantize node.
auto* quant_and_dequant_node = graph->NewNode();
quant_and_dequant_node->operation.type =
ToString(OperationType::QUANTIZE_AND_DEQUANTIZE);
QuantizeAndDequantizeAttributes attr;
attr.min = output_value->quant_params.value().min;
attr.max = output_value->quant_params.value().max;
attr.scale = output_value->quant_params.value().scale;
quant_and_dequant_node->operation.attributes = attr;
// Add one output Value for the new node.
// The tensor information should rename the same.
Value<TensorRef<BHWC>>* adjusted_value = graph->NewValue();
adjusted_value->tensor = output_value->tensor;
Status status =
graph->SetProducer(quant_and_dequant_node->id, adjusted_value->id);
if (!status.ok()) {
return {TransformStatus::INVALID,
"Could not create QuantizeAndDequantize node."};
}
// Replace output_value with adjusted_value on all consumers.
for (auto& consumer : consumers) {
status = graph->ReplaceInput(consumer->id, output_value->id,
adjusted_value->id);
if (!status.ok()) {
return {TransformStatus::INVALID,
absl::StrCat(
"Failed to associate quant-adjusted value for consumer: ",
status.message())};
}
}
// Add QuantizeAndDequantize node as a consumer of output_value.
status = graph->AddConsumer(quant_and_dequant_node->id, output_value->id);
if (!status.ok()) {
return {TransformStatus::INVALID,
absl::StrCat(
"Could not associate output to QuantizeAndDequantize: ",
status.message())};
}
// Remove quant params on output_value, to make the transformation
// idempotent.
output_value->quant_params.reset();
transform_applied = true;
}
if (transform_applied) {
return {TransformStatus::APPLIED, ""};
}
return {TransformStatus::SKIPPED, ""};
}
};
std::unique_ptr<NodeTransformation> NewAddQuantAdjustments() {
return absl::make_unique<AddQuantAdjustments>();
}
} // namespace gpu
} // namespace tflite

View File

@ -0,0 +1,45 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TRANSFORMATIONS_ADD_QUANT_ADJUSTMENTS_H_
#define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TRANSFORMATIONS_ADD_QUANT_ADJUSTMENTS_H_
#include <memory>
#include "tensorflow/lite/delegates/gpu/common/model_transformer.h"
namespace tflite {
namespace gpu {
// This pass is used to support inference on quantized models with the GPU
// delegate.
//
// When delegating quantized models, we still run float-point inference on GPU
// under-the-hood. This is done by dequantizing inputs (at runtime) & constants
// (during delegation).
// However, intermediate tensors can still deviate from the original quantized
// inference, since activations may not follow the attributes set by the
// original quantizion parameters.
// To prevent this, we add "QuantizeAndDequantize" nodes for each node-output
// that was originally fixed-point:
// op1 -> op2
// becomes
// op1 -> QuantizeAndDequantize -> op2
std::unique_ptr<NodeTransformation> NewAddQuantAdjustments();
} // namespace gpu
} // namespace tflite
#endif // TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TRANSFORMATIONS_ADD_QUANT_ADJUSTMENTS_H_

View File

@ -0,0 +1,166 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/delegates/gpu/common/transformations/add_quant_adjustments.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "absl/types/any.h"
#include "absl/types/optional.h"
#include "tensorflow/lite/delegates/gpu/common/model.h"
#include "tensorflow/lite/delegates/gpu/common/model_transformer.h"
#include "tensorflow/lite/delegates/gpu/common/operations.h"
#include "tensorflow/lite/delegates/gpu/common/shape.h"
namespace tflite {
namespace gpu {
namespace {
void AddQuantParams(absl::optional<QuantizationParams>* params, float min,
float max, float scale) {
params->emplace();
params->value().min = min;
params->value().max = max;
params->value().scale = scale;
}
// Scenario:
// -> Add ->
//
// Since there is only one node output with no consumers, no new node should be
// added.
TEST(AddQuantAdjustments, OneNode) {
GraphFloat32 graph;
auto input = graph.NewValue();
input->tensor.shape = BHWC(1, 4, 4, 8);
AddQuantParams(&input->quant_params, /*min=*/0.0, /*max=*/1.0,
/*scale=*/0.004);
Tensor<Linear, DataType::FLOAT32> add_tensor;
add_tensor.shape = Linear(8);
add_tensor.data.resize(8);
AddAttributes add_attr;
add_attr.param = add_tensor;
auto add_node = graph.NewNode();
add_node->operation.type = ToString(OperationType::ADD);
add_node->operation.attributes = add_attr;
ASSERT_TRUE(graph.AddConsumer(add_node->id, input->id).ok());
Value<TensorRef<BHWC>>* output;
AddQuantParams(&input->quant_params, /*min=*/0.0, /*max=*/2.0,
/*scale=*/0.008);
ASSERT_TRUE(AddOutput(&graph, add_node, &output).ok());
output->tensor.shape = BHWC(1, 4, 4, 8);
ASSERT_EQ(1, graph.nodes().size());
ASSERT_EQ(2, graph.values().size());
auto transformation = NewAddQuantAdjustments();
ModelTransformer transformer(&graph, nullptr);
transformer.Apply("add_quant_adjustments", transformation.get());
EXPECT_EQ(1, graph.nodes().size());
EXPECT_EQ(2, graph.values().size());
}
// Scenario:
// -> Add -> QuantizeAndDequantize -> Add ->
// | ^
// | |
// ------------------------------
//
// A new QuantizeAndDequantize should only be added after the left/first 'Add'
// op, and it should connect to both its consumers.
TEST(AddQuantAdjustments, GeneralCase) {
GraphFloat32 graph;
auto input = graph.NewValue();
input->tensor.shape = BHWC(1, 4, 4, 8);
AddQuantParams(&input->quant_params, /*min=*/0.0, /*max=*/1.0,
/*scale=*/0.004);
// First Add.
Tensor<Linear, DataType::FLOAT32> add_tensor;
add_tensor.shape = Linear(8);
add_tensor.data.resize(8);
AddAttributes add_attr;
add_attr.param = add_tensor;
auto add1_node = graph.NewNode();
add1_node->operation.type = ToString(OperationType::ADD);
add1_node->operation.attributes = add_attr;
// QuantizeAndDequantize.
QuantizeAndDequantizeAttributes quant_attr;
quant_attr.min = -1.0;
quant_attr.max = 1.0;
quant_attr.scale = 0.008;
auto quant_node = graph.NewNode();
quant_node->operation.type = ToString(OperationType::QUANTIZE_AND_DEQUANTIZE);
quant_node->operation.attributes = quant_attr;
// Second Add.
auto add2_node = graph.NewNode();
add2_node->operation.type = ToString(OperationType::ADD);
// Connections.
ASSERT_TRUE(graph.AddConsumer(add1_node->id, input->id).ok());
Value<TensorRef<BHWC>>* link1;
ASSERT_TRUE(ConnectTwoNodes(&graph, add1_node, quant_node, &link1).ok());
AddQuantParams(&link1->quant_params, /*min=*/0.0, /*max=*/2.0,
/*scale=*/0.008);
link1->tensor.shape = BHWC(1, 4, 4, 8);
ASSERT_TRUE(graph.AddConsumer(add2_node->id, link1->id).ok());
Value<TensorRef<BHWC>>* link2;
ASSERT_TRUE(ConnectTwoNodes(&graph, quant_node, add2_node, &link2).ok());
AddQuantParams(&link2->quant_params, /*min=*/-1.0, /*max=*/1.0,
/*scale=*/0.008);
link2->tensor.shape = BHWC(1, 4, 4, 8);
Value<TensorRef<BHWC>>* output;
ASSERT_TRUE(AddOutput(&graph, add2_node, &output).ok());
AddQuantParams(&output->quant_params, /*min=*/-1.0, /*max=*/1.0,
/*scale=*/0.008);
output->tensor.shape = BHWC(1, 4, 4, 8);
ASSERT_EQ(3, graph.nodes().size());
ASSERT_EQ(4, graph.values().size());
auto transformation = NewAddQuantAdjustments();
ModelTransformer transformer(&graph, nullptr);
transformer.Apply("add_quant_adjustments", transformation.get());
EXPECT_EQ(4, graph.nodes().size());
EXPECT_EQ(5, graph.values().size());
EXPECT_EQ(ToString(OperationType::ADD), graph.nodes()[0]->operation.type);
EXPECT_EQ(ToString(OperationType::QUANTIZE_AND_DEQUANTIZE),
graph.nodes()[1]->operation.type);
EXPECT_EQ(ToString(OperationType::ADD), graph.nodes()[2]->operation.type);
EXPECT_EQ(ToString(OperationType::QUANTIZE_AND_DEQUANTIZE),
graph.nodes()[3]->operation.type);
auto new_quant_attr = absl::any_cast<QuantizeAndDequantizeAttributes>(
graph.nodes()[3]->operation.attributes);
EXPECT_EQ(0.0, new_quant_attr.min);
EXPECT_EQ(2.0, new_quant_attr.max);
const auto& new_quant_consumers = graph.FindConsumers(graph.values()[4]->id);
EXPECT_EQ(2, new_quant_consumers.size());
EXPECT_EQ(quant_node, new_quant_consumers[0]);
EXPECT_EQ(add2_node, new_quant_consumers[1]);
// Transformation should be idempotent.
transformer.Apply("add_quant_adjustments", transformation.get());
EXPECT_EQ(4, graph.nodes().size());
EXPECT_EQ(5, graph.values().size());
}
} // namespace
} // namespace gpu
} // namespace tflite