var = list() --> var = []
This commit is contained in:
parent
f370495c73
commit
d3c1e397f6
tensorflow
contrib
examples
python
eager
kernel_tests
tpu
@ -266,7 +266,7 @@ class BatchNormalization(bijector.Bijector):
|
||||
else:
|
||||
# At training-time, ildj is computed from the mean and log-variance across
|
||||
# the current minibatch.
|
||||
_, v = nn.moments(y, axes=reduction_axes, keep_dims=True)
|
||||
_, v = nn.moments(y, axes=reduction_axes, keepdims=True)
|
||||
log_variance = math_ops.log(v + self.batchnorm.epsilon)
|
||||
|
||||
# `gamma` and `log Var(y)` reductions over event_dims.
|
||||
|
@ -110,7 +110,7 @@ class KinesisDatasetTest(test.TestCase):
|
||||
init_batch_op = iterator.make_initializer(batch_dataset)
|
||||
get_next = iterator.get_next()
|
||||
|
||||
data = list()
|
||||
data = []
|
||||
with self.cached_session() as sess:
|
||||
# Basic test: read from shard 0 of stream 2.
|
||||
sess.run(
|
||||
|
@ -84,7 +84,7 @@ def word2vec_basic(log_dir):
|
||||
dictionary = dict()
|
||||
for word, _ in count:
|
||||
dictionary[word] = len(dictionary)
|
||||
data = list()
|
||||
data = []
|
||||
unk_count = 0
|
||||
for word in words:
|
||||
index = dictionary.get(word, 0)
|
||||
|
@ -254,7 +254,7 @@
|
||||
" dictionary = dict()\n",
|
||||
" for word, _ in count:\n",
|
||||
" dictionary[word] = len(dictionary)\n",
|
||||
" data = list()\n",
|
||||
" data = []\n",
|
||||
" unk_count = 0\n",
|
||||
" for word in words:\n",
|
||||
" if word in dictionary:\n",
|
||||
|
@ -554,7 +554,7 @@
|
||||
" return output_gate * tf.tanh(state), state\n",
|
||||
"\n",
|
||||
" # Input data.\n",
|
||||
" train_data = list()\n",
|
||||
" train_data = []\n",
|
||||
" for _ in range(num_unrollings + 1):\n",
|
||||
" train_data.append(\n",
|
||||
" tf.placeholder(tf.float32, shape=[batch_size,vocabulary_size]))\n",
|
||||
@ -562,7 +562,7 @@
|
||||
" train_labels = train_data[1:] # labels are inputs shifted by one time step.\n",
|
||||
"\n",
|
||||
" # Unrolled LSTM loop.\n",
|
||||
" outputs = list()\n",
|
||||
" outputs = []\n",
|
||||
" output = saved_output\n",
|
||||
" state = saved_state\n",
|
||||
" for i in train_inputs:\n",
|
||||
|
@ -582,8 +582,8 @@ class Function(object):
|
||||
concrete_functions.extend(
|
||||
self._stateless_fn._function_cache.all_values())
|
||||
# pylint: enable=protected-access
|
||||
deduplicated_concrete_functions = list()
|
||||
seen_signatures = list()
|
||||
deduplicated_concrete_functions = []
|
||||
seen_signatures = []
|
||||
# We are using a list so that:
|
||||
# - the returned collection is deterministic, and
|
||||
# - we can use a custom equality operator (is_same_structure).
|
||||
|
@ -1247,7 +1247,7 @@ class FIFOQueueTest(test.TestCase):
|
||||
def testSelectQueue(self):
|
||||
with self.cached_session():
|
||||
num_queues = 10
|
||||
qlist = list()
|
||||
qlist = []
|
||||
for _ in xrange(num_queues):
|
||||
qlist.append(data_flow_ops.FIFOQueue(10, dtypes_lib.float32))
|
||||
# Enqueue/Dequeue into a dynamically selected queue
|
||||
|
@ -1360,7 +1360,7 @@ class PaddingFIFOQueueTest(test.TestCase):
|
||||
def testSelectQueue(self):
|
||||
with self.cached_session():
|
||||
num_queues = 10
|
||||
qlist = list()
|
||||
qlist = []
|
||||
for _ in xrange(num_queues):
|
||||
qlist.append(
|
||||
data_flow_ops.PaddingFIFOQueue(10, dtypes_lib.float32, ((),)))
|
||||
|
@ -1197,7 +1197,7 @@ class RandomShuffleQueueTest(test.TestCase):
|
||||
def testSelectQueue(self):
|
||||
with self.cached_session():
|
||||
num_queues = 10
|
||||
qlist = list()
|
||||
qlist = []
|
||||
for _ in xrange(num_queues):
|
||||
qlist.append(
|
||||
data_flow_ops.RandomShuffleQueue(10, 0, dtypes_lib.float32))
|
||||
|
@ -669,8 +669,7 @@ class TPUEmbedding(object):
|
||||
Arguments for `enqueue_tpu_embedding_sparse_tensor_batch()`.
|
||||
"""
|
||||
|
||||
sample_idcs, embedding_idcs, aggregation_weights, table_ids = (
|
||||
list(), list(), list(), list())
|
||||
sample_idcs, embedding_idcs, aggregation_weights, table_ids = [], [], [], []
|
||||
for table_id, table in enumerate(self._table_to_features_dict):
|
||||
features = self._table_to_features_dict[table]
|
||||
for feature in features:
|
||||
|
Loading…
Reference in New Issue
Block a user