Fix some metric doc strings.
PiperOrigin-RevId: 227880840
This commit is contained in:
parent
59d5fbcc1a
commit
d28fddf859
@ -1382,8 +1382,8 @@ class MeanAbsoluteError(MeanMetricWrapper):
|
||||
|
||||
Usage:
|
||||
```python
|
||||
mae = tf.metrics.MeanAbsoluteError()
|
||||
mae.update_state([0., 0., 1., 1.], [1., 1., 1., 0.])
|
||||
m = tf.metrics.MeanAbsoluteError()
|
||||
m.update_state([0., 0., 1., 1.], [1., 1., 1., 0.])
|
||||
print('Final result: ', m.result().numpy()) # Final result: 0.75
|
||||
```
|
||||
|
||||
@ -1391,7 +1391,7 @@ class MeanAbsoluteError(MeanMetricWrapper):
|
||||
|
||||
```python
|
||||
model = keras.models.Model(inputs, outputs)
|
||||
model.compile('sgd', loss=tf.keras.losses.MeanAbsoluteError())
|
||||
model.compile('sgd', metrics=[tf.keras.metrics.MeanAbsoluteError()])
|
||||
```
|
||||
"""
|
||||
|
||||
@ -1416,8 +1416,8 @@ class MeanAbsolutePercentageError(MeanMetricWrapper):
|
||||
Usage:
|
||||
|
||||
```python
|
||||
mape = tf.keras.losses.MeanAbsolutePercentageError()
|
||||
mape.update_state([0., 0., 1., 1.], [1., 1., 1., 0.])
|
||||
m = tf.keras.metrics.MeanAbsolutePercentageError()
|
||||
m.update_state([0., 0., 1., 1.], [1., 1., 1., 0.])
|
||||
print('Final result: ', m.result().numpy()) # Final result: 5e+08
|
||||
```
|
||||
|
||||
@ -1425,7 +1425,7 @@ class MeanAbsolutePercentageError(MeanMetricWrapper):
|
||||
|
||||
```python
|
||||
model = keras.models.Model(inputs, outputs)
|
||||
model.compile('sgd', loss=tf.keras.losses.MeanAbsolutePercentageError())
|
||||
model.compile('sgd', metrics=[tf.keras.metrics.MeanAbsolutePercentageError()])
|
||||
```
|
||||
"""
|
||||
|
||||
@ -1450,8 +1450,8 @@ class MeanSquaredError(MeanMetricWrapper):
|
||||
Usage:
|
||||
|
||||
```python
|
||||
mape = tf.keras.losses.MeanSquaredError()
|
||||
mape.update_state([0., 0., 1., 1.], [1., 1., 1., 0.])
|
||||
m = tf.keras.metrics.MeanSquaredError()
|
||||
m.update_state([0., 0., 1., 1.], [1., 1., 1., 0.])
|
||||
print('Final result: ', m.result().numpy()) # Final result: 0.75
|
||||
```
|
||||
|
||||
@ -1459,7 +1459,7 @@ class MeanSquaredError(MeanMetricWrapper):
|
||||
|
||||
```python
|
||||
model = keras.models.Model(inputs, outputs)
|
||||
model.compile('sgd', loss=tf.keras.losses.MeanSquaredError())
|
||||
model.compile('sgd', metrics=[tf.keras.metrics.MeanSquaredError()])
|
||||
```
|
||||
"""
|
||||
|
||||
@ -1484,8 +1484,8 @@ class MeanSquaredLogarithmicError(MeanMetricWrapper):
|
||||
Usage:
|
||||
|
||||
```python
|
||||
msle = tf.keras.losses.MeanSquaredLogarithmicError()
|
||||
msle.update_state([0., 0., 1., 1.], [1., 1., 1., 0.])
|
||||
m = tf.keras.metrics.MeanSquaredLogarithmicError()
|
||||
m.update_state([0., 0., 1., 1.], [1., 1., 1., 0.])
|
||||
print('Final result: ', m.result().numpy()) # Final result: 0.36034
|
||||
```
|
||||
|
||||
@ -1493,7 +1493,7 @@ class MeanSquaredLogarithmicError(MeanMetricWrapper):
|
||||
|
||||
```python
|
||||
model = keras.models.Model(inputs, outputs)
|
||||
model.compile('sgd', loss=tf.keras.losses.MeanSquaredLogarithmicError())
|
||||
model.compile('sgd', metrics=[tf.keras.metrics.MeanSquaredLogarithmicError()])
|
||||
```
|
||||
"""
|
||||
|
||||
@ -1518,8 +1518,8 @@ class Hinge(MeanMetricWrapper):
|
||||
Usage:
|
||||
|
||||
```python
|
||||
h = tf.keras.metrics.Hinge()
|
||||
h.update_state([0., 1., 1.], [1., 0., 1.])
|
||||
m = tf.keras.metrics.Hinge()
|
||||
m.update_state([0., 1., 1.], [1., 0., 1.])
|
||||
print('Final result: ', m.result().numpy()) # Final result: 0.66
|
||||
```
|
||||
|
||||
@ -1527,7 +1527,7 @@ class Hinge(MeanMetricWrapper):
|
||||
|
||||
```python
|
||||
model = keras.models.Model(inputs, outputs)
|
||||
model.compile('sgd', loss=tf.keras.metrics.Hinge())
|
||||
model.compile('sgd', metrics=[tf.keras.metrics.Hinge()])
|
||||
```
|
||||
"""
|
||||
|
||||
@ -1551,8 +1551,8 @@ class SquaredHinge(MeanMetricWrapper):
|
||||
Usage:
|
||||
|
||||
```python
|
||||
h = tf.keras.metrics.SquaredHinge()
|
||||
h.update_state([0., 1., 1.], [1., 0., 1.])
|
||||
m = tf.keras.metrics.SquaredHinge()
|
||||
m.update_state([0., 1., 1.], [1., 0., 1.])
|
||||
print('Final result: ', m.result().numpy()) # Final result: 0.66
|
||||
```
|
||||
|
||||
@ -1560,7 +1560,7 @@ class SquaredHinge(MeanMetricWrapper):
|
||||
|
||||
```python
|
||||
model = keras.models.Model(inputs, outputs)
|
||||
model.compile('sgd', loss=tf.keras.metrics.SquaredHinge())
|
||||
model.compile('sgd', metrics=[tf.keras.metrics.SquaredHinge()])
|
||||
```
|
||||
"""
|
||||
|
||||
@ -1584,8 +1584,8 @@ class CategoricalHinge(MeanMetricWrapper):
|
||||
Usage:
|
||||
|
||||
```python
|
||||
h = tf.keras.metrics.CategoricalHinge()
|
||||
h.update_state([0., 1., 1.], [1., 0., 1.])
|
||||
m = tf.keras.metrics.CategoricalHinge()
|
||||
m.update_state([0., 1., 1.], [1., 0., 1.])
|
||||
print('Final result: ', m.result().numpy()) # Final result: 1.0
|
||||
```
|
||||
|
||||
@ -1593,7 +1593,7 @@ class CategoricalHinge(MeanMetricWrapper):
|
||||
|
||||
```python
|
||||
model = keras.models.Model(inputs, outputs)
|
||||
model.compile('sgd', loss=tf.keras.metrics.CategoricalHinge())
|
||||
model.compile('sgd', metrics=[tf.keras.metrics.CategoricalHinge()])
|
||||
```
|
||||
"""
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user