Update the misleading comment for cifar10.py's softmax_linear layer (#5259)
* Update the misunderstanding comment for cifar10.py A fix for the issue #5251, make the comment more meaningful. * Update comment to be a bit more precise. * wrap to 80
This commit is contained in:
parent
799162580c
commit
d131c5d35b
@ -256,7 +256,10 @@ def inference(images):
|
|||||||
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
|
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
|
||||||
_activation_summary(local4)
|
_activation_summary(local4)
|
||||||
|
|
||||||
# softmax, i.e. softmax(WX + b)
|
# linear layer(WX + b),
|
||||||
|
# We don't apply softmax here because
|
||||||
|
# tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits
|
||||||
|
# and performs the softmax internally for efficiency.
|
||||||
with tf.variable_scope('softmax_linear') as scope:
|
with tf.variable_scope('softmax_linear') as scope:
|
||||||
weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
|
weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
|
||||||
stddev=1/192.0, wd=0.0)
|
stddev=1/192.0, wd=0.0)
|
||||||
|
Loading…
Reference in New Issue
Block a user