Avoid memory 'leak' in Go with multple inputs
Fixes #40758. Go map iteration order is random. If we send randomly ordered lists of inputs to the C core it will create a key in the session executors_ cache for each of the random orderings. With more than a handful of inputs this can get big very quickly.
This commit is contained in:
parent
098a3eacfd
commit
d118d28e00
@ -24,6 +24,7 @@ import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"runtime"
|
||||
"sort"
|
||||
"sync"
|
||||
"unsafe"
|
||||
)
|
||||
@ -359,16 +360,56 @@ type cRunArgs struct {
|
||||
targets []*C.TF_Operation
|
||||
}
|
||||
|
||||
type feedsort struct {
|
||||
feeds []C.TF_Output
|
||||
feedTensors []*C.TF_Tensor
|
||||
}
|
||||
|
||||
func (f *feedsort) Less(i, j int) bool {
|
||||
// Ideally we would sort on the output names. But that's not easy for us to
|
||||
// do efficiently as loads of Go name strings would be created from the C
|
||||
// strings and destroyed. But we can sort on the addresses of the operation
|
||||
// names. This won't sort alphabetically, but for a given set of feeds it
|
||||
// should give consistent results from one run to the next.
|
||||
ni := uintptr(unsafe.Pointer(C.TF_OperationName(f.feeds[i].oper)))
|
||||
nj := uintptr(unsafe.Pointer(C.TF_OperationName(f.feeds[j].oper)))
|
||||
if ni == nj {
|
||||
// if the names are the same the index may differ
|
||||
return f.feeds[i].index < f.feeds[j].index
|
||||
}
|
||||
return ni < nj
|
||||
}
|
||||
|
||||
func (f *feedsort) Swap(i, j int) {
|
||||
f.feeds[i], f.feeds[j] = f.feeds[j], f.feeds[i]
|
||||
f.feedTensors[i], f.feedTensors[j] = f.feedTensors[j], f.feedTensors[i]
|
||||
}
|
||||
|
||||
func (f *feedsort) Len() int {
|
||||
return len(f.feeds)
|
||||
}
|
||||
|
||||
func newCRunArgs(feeds map[Output]*Tensor, fetches []Output, targets []*Operation) *cRunArgs {
|
||||
c := &cRunArgs{
|
||||
fetches: make([]C.TF_Output, len(fetches)),
|
||||
fetchTensors: make([]*C.TF_Tensor, len(fetches)),
|
||||
targets: make([]*C.TF_Operation, len(targets)),
|
||||
}
|
||||
// Go map iteration order is random. So our list of input names will be
|
||||
// random for each Run. This interacts badly with the TF core code which
|
||||
// builds a executor cache key from these names in the order we provide
|
||||
// them. We'll eventually enumerate every possible order and store it in the
|
||||
// executor cache. With n inputs that's n! entries. That gets very big very
|
||||
// quickly.
|
||||
for o, t := range feeds {
|
||||
c.feeds = append(c.feeds, o.c())
|
||||
c.feedTensors = append(c.feedTensors, t.c)
|
||||
}
|
||||
if len(c.feeds) > 1 {
|
||||
fs := feedsort{feeds: c.feeds, feedTensors: c.feedTensors}
|
||||
sort.Sort(&fs)
|
||||
}
|
||||
|
||||
for i, o := range fetches {
|
||||
c.fetches[i] = o.c()
|
||||
}
|
||||
|
@ -74,6 +74,120 @@ func TestSessionRunNeg(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestMultipleInput(t *testing.T) {
|
||||
// The inputs to the graph get sorted. This test checks that process works
|
||||
// OK and that we still get the right output.
|
||||
graph := NewGraph()
|
||||
|
||||
inputs := make([]Output, 20)
|
||||
layer2 := make([]Output, len(inputs))
|
||||
for i := range inputs {
|
||||
in, err := Placeholder(graph, fmt.Sprintf("input%d", i), Int64)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
inputs[i] = in
|
||||
|
||||
factor, err := Const(graph, fmt.Sprintf("factor%d", i), int64(i+1))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
l2, err := graph.AddOperation(OpSpec{
|
||||
Type: "Mul",
|
||||
Name: fmt.Sprintf("Mul%d", i),
|
||||
Input: []Input{
|
||||
in,
|
||||
factor,
|
||||
},
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
layer2[i] = l2.Output(0)
|
||||
}
|
||||
|
||||
fetch, err := graph.AddOperation(OpSpec{
|
||||
Type: "AddN",
|
||||
Input: []Input{
|
||||
OutputList(layer2),
|
||||
},
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
session, err := NewSession(graph, nil)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer func() {
|
||||
if err := session.Close(); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}()
|
||||
|
||||
feeds := make(map[Output]*Tensor, len(inputs))
|
||||
for i, in := range inputs {
|
||||
tensor, err := NewTensor(int64(i + 1))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
feeds[in] = tensor
|
||||
}
|
||||
|
||||
output, err := session.Run(
|
||||
feeds,
|
||||
[]Output{
|
||||
fetch.Output(0),
|
||||
},
|
||||
nil,
|
||||
)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
var exp int64
|
||||
for i := range inputs {
|
||||
exp += int64((i + 1) * (i + 1))
|
||||
}
|
||||
if v := output[0].Value().(int64); v != exp {
|
||||
t.Fatalf("expected %d got %d", exp, v)
|
||||
}
|
||||
}
|
||||
|
||||
func TestInputOrderStable(t *testing.T) {
|
||||
graph := NewGraph()
|
||||
|
||||
inputs := make([]Output, 20)
|
||||
for i := range inputs {
|
||||
in, err := Placeholder(graph, fmt.Sprintf("input%d", i), Int64)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
in.Index = i
|
||||
inputs[i] = in
|
||||
}
|
||||
|
||||
makeArgs := func() *cRunArgs {
|
||||
feeds := make(map[Output]*Tensor, len(inputs))
|
||||
for i, in := range inputs {
|
||||
tensor, err := NewTensor(int64(i + 1))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
feeds[in] = tensor
|
||||
}
|
||||
|
||||
return newCRunArgs(feeds, nil, nil)
|
||||
}
|
||||
args1 := makeArgs()
|
||||
args2 := makeArgs()
|
||||
|
||||
if !reflect.DeepEqual(args1.feeds, args2.feeds) {
|
||||
t.Fatalf("order is not stable")
|
||||
}
|
||||
}
|
||||
|
||||
func TestSessionRunConcat(t *testing.T) {
|
||||
// Runs the Concat operation on two matrices: m1 and m2, along the
|
||||
// first dimension (dim1).
|
||||
|
Loading…
Reference in New Issue
Block a user