Support Sparse-Sparse cwise ops; use for tf.sparse_{minimum,maximum}().

This change adds the CPU kernel and Python ifaces.  For now, assumes both
operands have the same shapes.
Change: 126348349
This commit is contained in:
Zongheng Yang 2016-06-30 14:04:12 -08:00 committed by TensorFlower Gardener
parent 379df09118
commit d04c05def5
7 changed files with 461 additions and 17 deletions

View File

@ -1562,6 +1562,7 @@ tf_kernel_libraries(
"sparse_concat_op",
"sparse_reduce_sum_op",
"sparse_dense_binary_op_shared",
"sparse_sparse_binary_op_shared",
"sparse_reorder_op",
"sparse_reshape_op",
"sparse_softmax",

View File

@ -54,31 +54,32 @@ class SparseAddOp : public OpKernel {
b_values_t->shape().DebugString()));
auto a_values = ctx->input(1).vec<T>();
auto b_values = ctx->input(4).vec<T>();
OP_REQUIRES_OK(ctx, ctx->input("a_shape", &a_shape));
OP_REQUIRES_OK(ctx, ctx->input("b_shape", &b_shape));
OP_REQUIRES(ctx, TensorShapeUtils::IsVector(a_shape->shape()) &&
TensorShapeUtils::IsVector(b_shape->shape()),
errors::InvalidArgument(
"Input shape should be a vector but received shapes ",
a_shape->shape().DebugString(), " and ",
b_shape->shape().DebugString()));
OP_REQUIRES(
ctx, a_values.size() == a_nnz && b_values.size() == b_nnz,
errors::InvalidArgument("Expected ", a_nnz, " and ", b_nnz,
" non-empty input values, got ",
a_values.size(), " and ", b_values.size()));
OP_REQUIRES(ctx, a_shape->dims() == b_shape->dims(),
OP_REQUIRES_OK(ctx, ctx->input("a_shape", &a_shape));
OP_REQUIRES_OK(ctx, ctx->input("b_shape", &b_shape));
OP_REQUIRES(ctx, TensorShapeUtils::IsVector(a_shape->shape()) &&
TensorShapeUtils::IsVector(b_shape->shape()),
errors::InvalidArgument(
"Ranks of input tensors must match, but saw ranks: ",
a_shape->dims(), " and ", b_shape->dims()));
for (int i = 0; i < a_shape->dims(); ++i) {
OP_REQUIRES(ctx, a_shape->dim_size(i) == b_shape->dim_size(i),
"Input shapes should be a vector but received shapes ",
a_shape->shape().DebugString(), " and ",
b_shape->shape().DebugString()));
OP_REQUIRES(
ctx, a_shape->IsSameSize(*b_shape),
errors::InvalidArgument(
"Operands do not have the same ranks; got shapes: ",
a_shape->SummarizeValue(10), " and ", b_shape->SummarizeValue(10)));
const auto a_shape_flat = a_shape->flat<int64>();
const auto b_shape_flat = b_shape->flat<int64>();
for (int i = 0; i < a_shape->NumElements(); ++i) {
OP_REQUIRES(ctx, a_shape_flat(i) == b_shape_flat(i),
errors::InvalidArgument(
"Input shapes must match: got ", a_shape->dim_size(i),
" and ", b_shape->dim_size(i), " for dimension ", i));
"Operands' shapes do not match: got ", a_shape_flat(i),
" and ", b_shape_flat(i), " for dimension ", i));
}
OP_REQUIRES_OK(ctx, ctx->input("thresh", &thresh_t));

View File

@ -0,0 +1,230 @@
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// SparseSparseBinaryOpShared is the shared code for binary coefficient-wise
// (cwise) operations of the following form:
//
// sparse_t <binary cwise op> sparse_t -> new sparse_t
//
// The output SparseTensor may store up to "a_nnz + b_nnz" elements.
// IMPLEMENTATION DETAILS (not part of the interface specification).
//
// This kernel implements the "union" semantics on the non-zeros: namely, any
// non-zero from either side participate in the calculations, and any resultant
// zeros will NOT be excluded from the output storage.
//
// (In the future, we could always add a pruning op the prunes away the zeros,
// if desirable.)
// See docs of all registered ops in ../ops/sparse_ops.cc.
#define EIGEN_USE_THREADS
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_util.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/kernels/cwise_ops.h"
#include "tensorflow/core/kernels/cwise_ops_common.h"
#include "tensorflow/core/util/sparse/sparse_tensor.h"
namespace tensorflow {
typedef Eigen::ThreadPoolDevice CPUDevice;
namespace {
// Unions the sparse indices and outputs corresponding values: namely, if a
// non-zero appear in one side, it will participate in the calculation, where
// the counterpart on the other side is either a value or an implicit zero.
//
// On exit, outputs the augmented values in "{a,b}_augmented_values", and fills
// "entries_to_copy" with "(from_a?, index)" pairs. All three vectors have the
// same size.
//
// The input and output sparse tensors are assumed ordered in the canonical
// row-major order.
template <typename T>
void UnionSparseIndicesAndValues(
typename TTypes<int64>::ConstMatrix a_indices_mat,
typename TTypes<T>::ConstFlat a_values, int64 a_nnz,
typename TTypes<int64>::ConstMatrix b_indices_mat,
typename TTypes<T>::ConstFlat b_values, int64 b_nnz, int num_dims,
std::vector<T> *a_augmented_values, std::vector<T> *b_augmented_values,
std::vector<std::pair<bool, int64>> *entries_to_copy) {
entries_to_copy->reserve(a_nnz + b_nnz);
a_augmented_values->reserve(a_nnz);
b_augmented_values->reserve(b_nnz);
int64 i = 0, j = 0;
const T kZero = T(0);
while (i < a_nnz && j < b_nnz) {
switch (sparse::DimComparator::cmp(a_indices_mat, b_indices_mat, i, j,
num_dims)) {
case -1:
entries_to_copy->emplace_back(true, i);
a_augmented_values->push_back(a_values(i));
b_augmented_values->push_back(kZero);
++i;
break;
case 0:
entries_to_copy->emplace_back(true, i);
a_augmented_values->push_back(a_values(i));
b_augmented_values->push_back(b_values(j));
++i;
++j;
break;
case 1:
entries_to_copy->emplace_back(false, j);
a_augmented_values->push_back(kZero);
b_augmented_values->push_back(b_values(j));
++j;
break;
}
}
// Handles leftovers; at most one loop runs.
while (i < a_nnz) {
entries_to_copy->emplace_back(/* is_a */ true, i);
a_augmented_values->push_back(a_values(i++));
b_augmented_values->push_back(kZero);
}
while (j < b_nnz) {
entries_to_copy->emplace_back(/* is_a */ false, j);
a_augmented_values->push_back(kZero);
b_augmented_values->push_back(b_values(j++));
}
}
} // anonymous namespace
// Device: CPUDevice. GPU kernel is not supported currently.
// T: dtype of the SparseTensor's.
// Functor: binary cwise operation to perform on the corresponding operand
// values. See cwise_ops.h for a list of possible functors to register with.
template <typename Device, typename T, typename Functor>
class SparseSparseBinaryOpShared : public OpKernel {
public:
explicit SparseSparseBinaryOpShared(OpKernelConstruction *ctx)
: OpKernel(ctx) {}
void Compute(OpKernelContext *ctx) override {
const Tensor *a_indices_t, *a_values_t, *a_shape_t, *b_indices_t,
*b_values_t, *b_shape_t;
OP_REQUIRES_OK(ctx, ctx->input("a_indices", &a_indices_t));
OP_REQUIRES_OK(ctx, ctx->input("a_values", &a_values_t));
OP_REQUIRES_OK(ctx, ctx->input("a_shape", &a_shape_t));
OP_REQUIRES_OK(ctx, ctx->input("b_indices", &b_indices_t));
OP_REQUIRES_OK(ctx, ctx->input("b_values", &b_values_t));
OP_REQUIRES_OK(ctx, ctx->input("b_shape", &b_shape_t));
// Validations.
OP_REQUIRES(
ctx, TensorShapeUtils::IsMatrix(a_indices_t->shape()) &&
TensorShapeUtils::IsMatrix(b_indices_t->shape()),
errors::InvalidArgument("Inputs a_indices and b_indices should be "
"matrices but received shapes: ",
a_indices_t->shape().DebugString(), ", ",
b_indices_t->shape().DebugString()));
OP_REQUIRES(ctx, TensorShapeUtils::IsVector(a_values_t->shape()) &&
TensorShapeUtils::IsVector(b_values_t->shape()),
errors::InvalidArgument(
"Inputs a_values and b_values should be vectors "
"but received shapes: ",
a_values_t->shape().DebugString(), " and ",
b_values_t->shape().DebugString()));
const int64 a_nnz = a_indices_t->dim_size(0);
const int64 b_nnz = b_indices_t->dim_size(0);
const auto a_values = a_values_t->vec<T>();
const auto b_values = b_values_t->vec<T>();
OP_REQUIRES(
ctx, a_values.size() == a_nnz && b_values.size() == b_nnz,
errors::InvalidArgument("Expected ", a_nnz, " and ", b_nnz,
" non-empty input values, got ",
a_values.size(), " and ", b_values.size()));
OP_REQUIRES(ctx, TensorShapeUtils::IsVector(a_shape_t->shape()) &&
TensorShapeUtils::IsVector(b_shape_t->shape()),
errors::InvalidArgument(
"Input shapes should be a vector but received shapes ",
a_shape_t->shape().DebugString(), " and ",
b_shape_t->shape().DebugString()));
OP_REQUIRES(ctx, a_shape_t->IsSameSize(*b_shape_t),
errors::InvalidArgument(
"Operands do not have the same ranks; got shapes: ",
a_shape_t->SummarizeValue(10), " and ",
b_shape_t->SummarizeValue(10)));
const auto a_shape = a_shape_t->flat<int64>();
const auto b_shape = b_shape_t->flat<int64>();
for (int i = 0; i < a_shape_t->NumElements(); ++i) {
OP_REQUIRES(ctx, a_shape(i) == b_shape(i),
errors::InvalidArgument("Operands' shapes do not match: got ",
a_shape(i), " and ", b_shape(i),
" for dimension ", i));
}
const int num_dims = a_indices_t->dim_size(1);
const auto a_indices_mat = a_indices_t->matrix<int64>();
const auto b_indices_mat = b_indices_t->matrix<int64>();
std::vector<T> a_augmented_values, b_augmented_values;
std::vector<std::pair<bool, int64>> entries_to_copy; // from_a?, idx
UnionSparseIndicesAndValues(a_indices_mat, a_values, a_nnz, b_indices_mat,
b_values, b_nnz, num_dims, &a_augmented_values,
&b_augmented_values, &entries_to_copy);
// Allocates and fills output tensors.
const int64 sum_nnz = a_augmented_values.size();
Tensor *output_indices_t, *output_values_t;
OP_REQUIRES_OK(ctx,
ctx->allocate_output(0, TensorShape({sum_nnz, num_dims}),
&output_indices_t));
OP_REQUIRES_OK(
ctx, ctx->allocate_output(1, TensorShape({sum_nnz}), &output_values_t));
auto output_indices_mat = output_indices_t->matrix<int64>();
for (int64 i = 0; i < sum_nnz; ++i) {
const bool from_a = entries_to_copy[i].first;
const int64 idx = entries_to_copy[i].second;
output_indices_mat.chip<0>(i) =
from_a ? a_indices_mat.chip<0>(idx) : b_indices_mat.chip<0>(idx);
}
// Performs the functor operation using Eigen.
using TensorMap =
Eigen::TensorMap<Eigen::Tensor<const T, 1, Eigen::RowMajor>,
Eigen::Aligned>;
auto a_augmented_values_t = TensorMap(a_augmented_values.data(), sum_nnz);
auto b_augmented_values_t = TensorMap(b_augmented_values.data(), sum_nnz);
output_values_t->flat<T>().device(ctx->eigen_device<Device>()) =
a_augmented_values_t.binaryExpr(b_augmented_values_t,
typename Functor::func());
}
};
#define REGISTER_KERNELS(T) \
REGISTER_KERNEL_BUILDER( \
Name("SparseSparseMinimum").Device(DEVICE_CPU).TypeConstraint<T>("T"), \
SparseSparseBinaryOpShared<CPUDevice, T, functor::minimum<T>>) \
\
REGISTER_KERNEL_BUILDER( \
Name("SparseSparseMaximum").Device(DEVICE_CPU).TypeConstraint<T>("T"), \
SparseSparseBinaryOpShared<CPUDevice, T, functor::maximum<T>>)
TF_CALL_REAL_NUMBER_TYPES(REGISTER_KERNELS);
#undef REGISTER_KERNELS
} // namespace tensorflow

View File

@ -570,4 +570,58 @@ sp_shape: 1-D. Shape of the input SparseTensor.
output: 1-D. The `NNZ` values for the result `SparseTensor`.
)doc");
REGISTER_OP("SparseSparseMaximum")
.Input("a_indices: int64")
.Input("a_values: T")
.Input("a_shape: int64")
.Input("b_indices: int64")
.Input("b_values: T")
.Input("b_shape: int64")
.Output("output_indices: int64")
.Output("output_values: T")
.Attr("T: realnumbertype")
.Doc(R"doc(
Returns the element-wise max of two SparseTensors.
Assumes the two SparseTensors have the same shape, i.e., no broadcasting.
a_indices: 2-D. `N x R` matrix with the indices of non-empty values in a
SparseTensor, in the canonical lexicographic ordering.
a_values: 1-D. `N` non-empty values corresponding to `a_indices`.
a_shape: 1-D. Shape of the input SparseTensor.
b_indices: counterpart to `a_indices` for the other operand.
b_values: counterpart to `a_values` for the other operand; must be of the same dtype.
b_shape: counterpart to `a_shape` for the other operand; the two shapes must be equal.
output_indices: 2-D. The indices of the output SparseTensor.
output_values: 1-D. The values of the output SparseTensor.
)doc");
REGISTER_OP("SparseSparseMinimum")
.Input("a_indices: int64")
.Input("a_values: T")
.Input("a_shape: int64")
.Input("b_indices: int64")
.Input("b_values: T")
.Input("b_shape: int64")
.Output("output_indices: int64")
.Output("output_values: T")
.Attr("T: numbertype")
.Doc(R"doc(
Returns the element-wise min of two SparseTensors.
Assumes the two SparseTensors have the same shape, i.e., no broadcasting.
a_indices: 2-D. `N x R` matrix with the indices of non-empty values in a
SparseTensor, in the canonical lexicographic ordering.
a_values: 1-D. `N` non-empty values corresponding to `a_indices`.
a_shape: 1-D. Shape of the input SparseTensor.
b_indices: counterpart to `a_indices` for the other operand.
b_values: counterpart to `a_values` for the other operand; must be of the same dtype.
b_shape: counterpart to `a_shape` for the other operand; the two shapes must be equal.
output_indices: 2-D. The indices of the output SparseTensor.
output_values: 1-D. The values of the output SparseTensor.
)doc");
} // namespace tensorflow

View File

@ -649,5 +649,68 @@ class SparseSoftmaxTest(test_util.TensorFlowTestCase):
self.assertLess(err, 1e-4)
class SparseMinimumMaximumTest(test_util.TensorFlowTestCase):
def _assertSparseTensorValueEqual(self, a, b):
self.assertAllEqual(a.indices, b.indices)
self.assertAllEqual(a.values, b.values)
self.assertAllEqual(a.shape, b.shape)
def testBasic(self):
with self.test_session(use_gpu=False):
# 1-D, values at index 0.
sp_zero = ops.SparseTensor([[0]], [0], [7])
sp_one = ops.SparseTensor([[0]], [1], [7])
max_tf = tf.sparse_maximum(sp_zero, sp_one).eval()
min_tf = tf.sparse_minimum(sp_zero, sp_one).eval()
self._assertSparseTensorValueEqual(sp_one.eval(), max_tf)
self._assertSparseTensorValueEqual(sp_zero.eval(), min_tf)
# Values at different indices.
sp_zero = ops.SparseTensor([[0]], [0], [7])
sp_zero_2 = ops.SparseTensor([[1]], [0], [7])
expected = ops.SparseTensor([[0], [1]], [0, 0], [7])
max_tf = tf.sparse_maximum(sp_zero, sp_zero_2).eval()
min_tf = tf.sparse_minimum(sp_zero, sp_zero_2).eval()
self._assertSparseTensorValueEqual(expected.eval(), max_tf)
self._assertSparseTensorValueEqual(expected.eval(), min_tf)
def testRandom(self):
np.random.seed(1618)
shapes = [(13,), (6, 8), (1, 7, 1)]
for shape in shapes:
for dtype in [np.int32, np.int64, np.float16, np.float32, np.float64]:
a_np = np.random.randn(*shape).astype(dtype)
b_np = np.random.randn(*shape).astype(dtype)
sp_a, unused_a_nnz = _sparsify(a_np, thresh=-.5)
sp_b, unused_b_nnz = _sparsify(b_np, thresh=-.5)
with self.test_session(use_gpu=False):
maximum_tf = tf.sparse_maximum(sp_a, sp_b)
maximum_tf_densified = tf.sparse_tensor_to_dense(maximum_tf).eval()
minimum_tf = tf.sparse_minimum(sp_a, sp_b)
minimum_tf_densified = tf.sparse_tensor_to_dense(minimum_tf).eval()
a_densified = tf.sparse_tensor_to_dense(sp_a).eval()
b_densified = tf.sparse_tensor_to_dense(sp_b).eval()
self.assertAllEqual(np.maximum(a_densified, b_densified),
maximum_tf_densified)
self.assertAllEqual(np.minimum(a_densified, b_densified),
minimum_tf_densified)
def testMismatchedShapes(self):
with self.test_session(use_gpu=False):
sp_zero = ops.SparseTensor([[0, 0]], [0], [1, 1])
sp_one = ops.SparseTensor([[0]], [1], [2])
with self.assertRaisesOpError("Operands do not have the same ranks"):
tf.sparse_maximum(sp_zero, sp_one).eval()
sp_zero = ops.SparseTensor([[0]], [0], [1])
sp_one = ops.SparseTensor([[0]], [1], [2])
with self.assertRaisesOpError("Operands' shapes do not match"):
tf.sparse_maximum(sp_zero, sp_one).eval()
if __name__ == "__main__":
googletest.main()

View File

@ -256,3 +256,15 @@ def _SparseSoftmaxGrad(op, grad):
grad_x = sp_sum.values * sp_output.values
return [None, grad_x, None]
@ops.RegisterGradient("SparseSparseMaximum")
def _SparseSparseMaximumGrad(unused_op, unused_grad):
raise NotImplementedError("Gradient for SparseSparseMaximum is currently not"
" implemented yet.")
@ops.RegisterGradient("SparseSparseMinimum")
def _SparseSparseMinimumGrad(unused_op, unused_grad):
raise NotImplementedError("Gradient for SparseSparseMinimum is currently not"
" implemented yet.")

View File

@ -48,6 +48,8 @@ dimension, and dense along all other dimensions.
@@sparse_add
@@sparse_softmax
@@sparse_tensor_dense_matmul
@@sparse_maximum
@@sparse_minimum
"""
from __future__ import absolute_import
from __future__ import division
@ -1487,3 +1489,84 @@ def _SparseSoftmaxShape(op): # pylint: disable=invalid-name
unused_shape_shape = op.inputs[2].get_shape().with_rank(1)
nnz = values_shape[0]
return [tensor_shape.vector(nnz)]
def sparse_maximum(sp_a, sp_b, name=None):
"""Returns the element-wise max of two SparseTensors.
Assumes the two SparseTensors have the same shape, i.e., no broadcasting.
Example:
```python
sp_zero = ops.SparseTensor([[0]], [0], [7])
sp_one = ops.SparseTensor([[1]], [1], [7])
res = tf.sparse_maximum(sp_zero, sp_one).eval()
# "res" should be equal to SparseTensor([[0], [1]], [0, 1], [7]).
```
Args:
sp_a: a `SparseTensor` operand whose dtype is real, and indices
lexicographically ordered.
sp_b: the other `SparseTensor` operand with the same requirements (and the
same shape).
name: optional name of the operation.
Returns:
output: the output SparseTensor.
"""
with ops.op_scope([sp_a.indices, sp_a.values, sp_b.indices, sp_b.values],
name, "SparseSparseMaximum") as name:
out_indices, out_values = gen_sparse_ops.sparse_sparse_maximum(sp_a.indices,
sp_a.values,
sp_a.shape,
sp_b.indices,
sp_b.values,
sp_b.shape,
name=name)
return ops.SparseTensor(out_indices, out_values, sp_a.shape)
def sparse_minimum(sp_a, sp_b, name=None):
"""Returns the element-wise min of two SparseTensors.
Assumes the two SparseTensors have the same shape, i.e., no broadcasting.
Example:
```python
sp_zero = ops.SparseTensor([[0]], [0], [7])
sp_one = ops.SparseTensor([[1]], [1], [7])
res = tf.sparse_minimum(sp_zero, sp_one).eval()
# "res" should be equal to SparseTensor([[0], [1]], [0, 0], [7]).
```
Args:
sp_a: a `SparseTensor` operand whose dtype is real, and indices
lexicographically ordered.
sp_b: the other `SparseTensor` operand with the same requirements (and the
same shape).
name: optional name of the operation.
Returns:
output: the output SparseTensor.
"""
with ops.op_scope([sp_a.indices, sp_a.values, sp_b.indices, sp_b.values],
name, "SparseSparseMinimum") as name:
out_indices, out_values = gen_sparse_ops.sparse_sparse_minimum(sp_a.indices,
sp_a.values,
sp_a.shape,
sp_b.indices,
sp_b.values,
sp_b.shape,
name=name)
return ops.SparseTensor(out_indices, out_values, sp_a.shape)
@ops.RegisterShape("SparseSparseMaximum")
@ops.RegisterShape("SparseSparseMinimum")
def _SparseSparseMaximumMinimumShape(op): # pylint: disable=invalid-name
"""Shape function for SparseSparseMaximum and SparseSparseMinimum."""
op.inputs[0].get_shape().assert_has_rank(2) # a_indices
op.inputs[1].get_shape().assert_has_rank(1) # a_values
op.inputs[2].get_shape().assert_has_rank(1) # a_shape
op.inputs[3].get_shape().assert_has_rank(2) # b_indices
op.inputs[4].get_shape().assert_has_rank(1) # b_values
op.inputs[5].get_shape().assert_has_rank(1) # b_shape
return [tensor_shape.unknown_shape(2), tensor_shape.unknown_shape(1)]