This reverts commit a3539967e2, reversing
changes made to ee221cb625.
This commit is contained in:
Gunhan Gulsoy 2016-08-12 15:12:04 -07:00
parent 51e9756b62
commit d027643a74
3 changed files with 348 additions and 382 deletions

View File

@ -441,7 +441,7 @@ static void TF_Run_Helper(
const std::vector<tensorflow::string>& output_tensor_names, const std::vector<tensorflow::string>& output_tensor_names,
TF_Tensor** c_outputs, TF_Tensor** c_outputs,
// Target nodes // Target nodes
const std::vector<tensorflow::string>& target_oper_names, const std::vector<tensorflow::string>& target_node_names,
TF_Buffer* run_metadata, TF_Status* status) { TF_Buffer* run_metadata, TF_Status* status) {
const int noutputs = output_tensor_names.size(); const int noutputs = output_tensor_names.size();
std::vector<Tensor> outputs(noutputs); std::vector<Tensor> outputs(noutputs);
@ -464,7 +464,7 @@ static void TF_Run_Helper(
RunMetadata run_metadata_proto; RunMetadata run_metadata_proto;
result = session->Run(run_options_proto, input_pairs, output_tensor_names, result = session->Run(run_options_proto, input_pairs, output_tensor_names,
target_oper_names, &outputs, &run_metadata_proto); target_node_names, &outputs, &run_metadata_proto);
// Serialize back to upstream client, who now owns the new buffer // Serialize back to upstream client, who now owns the new buffer
if (run_metadata != nullptr) { if (run_metadata != nullptr) {
@ -512,9 +512,10 @@ void TF_Run(TF_Session* s, const TF_Buffer* run_options,
// Input tensors // Input tensors
const char** c_input_names, TF_Tensor** c_inputs, int ninputs, const char** c_input_names, TF_Tensor** c_inputs, int ninputs,
// Output tensors // Output tensors
const char** c_output_names, TF_Tensor** c_outputs, int noutputs, const char** c_output_tensor_names, TF_Tensor** c_outputs,
int noutputs,
// Target nodes // Target nodes
const char** c_target_oper_names, int ntargets, const char** c_target_node_names, int ntargets,
TF_Buffer* run_metadata, TF_Status* status) { TF_Buffer* run_metadata, TF_Status* status) {
TF_Run_Setup(noutputs, c_outputs, status); TF_Run_Setup(noutputs, c_outputs, status);
std::vector<std::pair<tensorflow::string, Tensor>> input_pairs(ninputs); std::vector<std::pair<tensorflow::string, Tensor>> input_pairs(ninputs);
@ -522,44 +523,45 @@ void TF_Run(TF_Session* s, const TF_Buffer* run_options,
for (int i = 0; i < ninputs; ++i) { for (int i = 0; i < ninputs; ++i) {
input_pairs[i].first = c_input_names[i]; input_pairs[i].first = c_input_names[i];
} }
std::vector<tensorflow::string> output_names(noutputs); std::vector<tensorflow::string> output_tensor_names(noutputs);
for (int i = 0; i < noutputs; ++i) { for (int i = 0; i < noutputs; ++i) {
output_names[i] = c_output_names[i]; output_tensor_names[i] = c_output_tensor_names[i];
} }
std::vector<tensorflow::string> target_oper_names(ntargets); std::vector<tensorflow::string> target_node_names(ntargets);
for (int i = 0; i < ntargets; ++i) { for (int i = 0; i < ntargets; ++i) {
target_oper_names[i] = c_target_oper_names[i]; target_node_names[i] = c_target_node_names[i];
} }
TF_Run_Helper(s->session, nullptr, run_options, input_pairs, output_names, TF_Run_Helper(s->session, nullptr, run_options, input_pairs,
c_outputs, target_oper_names, run_metadata, status); output_tensor_names, c_outputs, target_node_names, run_metadata,
status);
} }
void TF_PRunSetup(TF_Session* s, void TF_PRunSetup(TF_Session* s,
// Input names // Input names
const char** c_input_names, int ninputs, const char** c_input_names, int ninputs,
// Output names // Output names
const char** c_output_names, int noutputs, const char** c_output_tensor_names, int noutputs,
// Target nodes // Target nodes
const char** c_target_oper_names, int ntargets, const char** c_target_node_names, int ntargets,
const char** handle, TF_Status* status) { const char** handle, TF_Status* status) {
status->status = Status::OK(); status->status = Status::OK();
std::vector<tensorflow::string> input_names(ninputs); std::vector<tensorflow::string> input_names(ninputs);
std::vector<tensorflow::string> output_names(noutputs); std::vector<tensorflow::string> output_tensor_names(noutputs);
std::vector<tensorflow::string> target_oper_names(ntargets); std::vector<tensorflow::string> target_node_names(ntargets);
for (int i = 0; i < ninputs; ++i) { for (int i = 0; i < ninputs; ++i) {
input_names[i] = c_input_names[i]; input_names[i] = c_input_names[i];
} }
for (int i = 0; i < noutputs; ++i) { for (int i = 0; i < noutputs; ++i) {
output_names[i] = c_output_names[i]; output_tensor_names[i] = c_output_tensor_names[i];
} }
for (int i = 0; i < ntargets; ++i) { for (int i = 0; i < ntargets; ++i) {
target_oper_names[i] = c_target_oper_names[i]; target_node_names[i] = c_target_node_names[i];
} }
tensorflow::string new_handle; tensorflow::string new_handle;
Status result; Status result;
result = s->session->PRunSetup(input_names, output_names, target_oper_names, result = s->session->PRunSetup(input_names, output_tensor_names,
&new_handle); target_node_names, &new_handle);
if (result.ok()) { if (result.ok()) {
char* buf = new char[new_handle.size() + 1]; char* buf = new char[new_handle.size() + 1];
memcpy(buf, new_handle.c_str(), new_handle.size() + 1); memcpy(buf, new_handle.c_str(), new_handle.size() + 1);
@ -573,9 +575,10 @@ void TF_PRun(TF_Session* s, const char* handle,
// Input tensors // Input tensors
const char** c_input_names, TF_Tensor** c_inputs, int ninputs, const char** c_input_names, TF_Tensor** c_inputs, int ninputs,
// Output tensors // Output tensors
const char** c_output_names, TF_Tensor** c_outputs, int noutputs, const char** c_output_tensor_names, TF_Tensor** c_outputs,
int noutputs,
// Target nodes // Target nodes
const char** c_target_oper_names, int ntargets, const char** c_target_node_names, int ntargets,
TF_Status* status) { TF_Status* status) {
TF_Run_Setup(noutputs, c_outputs, status); TF_Run_Setup(noutputs, c_outputs, status);
std::vector<std::pair<tensorflow::string, Tensor>> input_pairs(ninputs); std::vector<std::pair<tensorflow::string, Tensor>> input_pairs(ninputs);
@ -584,16 +587,16 @@ void TF_PRun(TF_Session* s, const char* handle,
input_pairs[i].first = c_input_names[i]; input_pairs[i].first = c_input_names[i];
} }
std::vector<tensorflow::string> output_names(noutputs); std::vector<tensorflow::string> output_tensor_names(noutputs);
for (int i = 0; i < noutputs; ++i) { for (int i = 0; i < noutputs; ++i) {
output_names[i] = c_output_names[i]; output_tensor_names[i] = c_output_tensor_names[i];
} }
std::vector<tensorflow::string> target_oper_names(ntargets); std::vector<tensorflow::string> target_node_names(ntargets);
for (int i = 0; i < ntargets; ++i) { for (int i = 0; i < ntargets; ++i) {
target_oper_names[i] = c_target_oper_names[i]; target_node_names[i] = c_target_node_names[i];
} }
TF_Run_Helper(s->session, handle, nullptr, input_pairs, output_names, TF_Run_Helper(s->session, handle, nullptr, input_pairs, output_tensor_names,
c_outputs, target_oper_names, nullptr, status); c_outputs, target_node_names, nullptr, status);
} }
struct TF_Library { struct TF_Library {
@ -640,16 +643,15 @@ struct TF_Graph {
bool delete_requested; // set true by TF_DeleteGraph bool delete_requested; // set true by TF_DeleteGraph
}; };
struct TF_OperationDescription { struct TF_NodeDescription {
TF_OperationDescription(TF_Graph* g, const char* op_type, TF_NodeDescription(TF_Graph* g, const char* op_type, const char* node_name)
const char* node_name)
: node_builder(node_name, op_type, g->graph.op_registry()), graph(g) {} : node_builder(node_name, op_type, g->graph.op_registry()), graph(g) {}
NodeBuilder node_builder; NodeBuilder node_builder;
TF_Graph* graph; TF_Graph* graph;
}; };
struct TF_Operation { struct TF_Node {
Node node; Node node;
}; };
@ -668,56 +670,55 @@ struct TF_SessionWithGraph {
namespace { namespace {
TF_Operation* ToOperation(Node* node) { TF_Node* ToNode(Node* node) {
return static_cast<TF_Operation*>(static_cast<void*>(node)); return static_cast<TF_Node*>(static_cast<void*>(node));
} }
tensorflow::string PortName(const TF_Port& port) { tensorflow::string PortName(const TF_Port& port) {
return tensorflow::strings::StrCat(port.oper->node.name(), ":", port.index); return tensorflow::strings::StrCat(port.node->node.name(), ":", port.index);
} }
} // namespace } // namespace
// TF_OperationDescription functions // TF_NodeDescription functions -----------------------------------------------
// -----------------------------------------------
extern "C" { extern "C" {
TF_OperationDescription* TF_NewOperation(TF_Graph* graph, const char* op_type, TF_NodeDescription* TF_NewNode(TF_Graph* graph, const char* op_type,
const char* oper_name) { const char* node_name) {
mutex_lock l(graph->mu); mutex_lock l(graph->mu);
return new TF_OperationDescription(graph, op_type, oper_name); return new TF_NodeDescription(graph, op_type, node_name);
} }
void TF_SetDevice(TF_OperationDescription* desc, const char* device) { void TF_SetDevice(TF_NodeDescription* desc, const char* device) {
desc->node_builder.Device(device); desc->node_builder.Device(device);
} }
void TF_AddInput(TF_OperationDescription* desc, TF_Port input) { void TF_AddInput(TF_NodeDescription* desc, TF_Port input) {
desc->node_builder.Input(&input.oper->node, input.index); desc->node_builder.Input(&input.node->node, input.index);
} }
void TF_AddInputList(TF_OperationDescription* desc, const TF_Port* inputs, void TF_AddInputList(TF_NodeDescription* desc, const TF_Port* inputs,
int num_inputs) { int num_inputs) {
std::vector<NodeBuilder::NodeOut> input_list; std::vector<NodeBuilder::NodeOut> input_list;
input_list.reserve(num_inputs); input_list.reserve(num_inputs);
for (int i = 0; i < num_inputs; ++i) { for (int i = 0; i < num_inputs; ++i) {
input_list.emplace_back(&inputs[i].oper->node, inputs[i].index); input_list.emplace_back(&inputs[i].node->node, inputs[i].index);
} }
desc->node_builder.Input(input_list); desc->node_builder.Input(input_list);
} }
void TF_AddControlInput(TF_OperationDescription* desc, TF_Operation* input) { void TF_AddControlInput(TF_NodeDescription* desc, TF_Node* input) {
desc->node_builder.ControlInput(&input->node); desc->node_builder.ControlInput(&input->node);
} }
void TF_SetAttrString(TF_OperationDescription* desc, const char* attr_name, void TF_SetAttrString(TF_NodeDescription* desc, const char* attr_name,
const void* value, int length) { const void* value, int length) {
tensorflow::StringPiece s(static_cast<const char*>(value), length); tensorflow::StringPiece s(static_cast<const char*>(value), length);
desc->node_builder.Attr(attr_name, s); desc->node_builder.Attr(attr_name, s);
} }
void TF_SetAttrStringList(TF_OperationDescription* desc, const char* attr_name, void TF_SetAttrStringList(TF_NodeDescription* desc, const char* attr_name,
const void* const* values, const int* lengths, const void* const* values, const int* lengths,
int num_values) { int num_values) {
std::vector<tensorflow::StringPiece> v; std::vector<tensorflow::StringPiece> v;
@ -728,14 +729,14 @@ void TF_SetAttrStringList(TF_OperationDescription* desc, const char* attr_name,
desc->node_builder.Attr(attr_name, v); desc->node_builder.Attr(attr_name, v);
} }
void TF_SetAttrInt(TF_OperationDescription* desc, const char* attr_name, void TF_SetAttrInt(TF_NodeDescription* desc, const char* attr_name,
int64_t value) { int64_t value) {
static_assert(sizeof(int64_t) == sizeof(tensorflow::int64), static_assert(sizeof(int64_t) == sizeof(tensorflow::int64),
"64-bit int types should match in size"); "64-bit int types should match in size");
desc->node_builder.Attr(attr_name, static_cast<tensorflow::int64>(value)); desc->node_builder.Attr(attr_name, static_cast<tensorflow::int64>(value));
} }
void TF_SetAttrIntList(TF_OperationDescription* desc, const char* attr_name, void TF_SetAttrIntList(TF_NodeDescription* desc, const char* attr_name,
const int64_t* values, int num_values) { const int64_t* values, int num_values) {
static_assert(sizeof(int64_t) == sizeof(tensorflow::int64), static_assert(sizeof(int64_t) == sizeof(tensorflow::int64),
"64-bit int types should match in size"); "64-bit int types should match in size");
@ -745,23 +746,23 @@ void TF_SetAttrIntList(TF_OperationDescription* desc, const char* attr_name,
reinterpret_cast<const tensorflow::int64*>(values), num_values)); reinterpret_cast<const tensorflow::int64*>(values), num_values));
} }
void TF_SetAttrFloat(TF_OperationDescription* desc, const char* attr_name, void TF_SetAttrFloat(TF_NodeDescription* desc, const char* attr_name,
float value) { float value) {
desc->node_builder.Attr(attr_name, value); desc->node_builder.Attr(attr_name, value);
} }
void TF_SetAttrFloatList(TF_OperationDescription* desc, const char* attr_name, void TF_SetAttrFloatList(TF_NodeDescription* desc, const char* attr_name,
const float* values, int num_values) { const float* values, int num_values) {
desc->node_builder.Attr(attr_name, desc->node_builder.Attr(attr_name,
ArraySlice<const float>(values, num_values)); ArraySlice<const float>(values, num_values));
} }
void TF_SetAttrBool(TF_OperationDescription* desc, const char* attr_name, void TF_SetAttrBool(TF_NodeDescription* desc, const char* attr_name,
unsigned char value) { unsigned char value) {
desc->node_builder.Attr(attr_name, static_cast<bool>(value)); desc->node_builder.Attr(attr_name, static_cast<bool>(value));
} }
void TF_SetAttrBoolList(TF_OperationDescription* desc, const char* attr_name, void TF_SetAttrBoolList(TF_NodeDescription* desc, const char* attr_name,
const unsigned char* values, int num_values) { const unsigned char* values, int num_values) {
bool* b = new bool[num_values]; bool* b = new bool[num_values];
for (int i = 0; i < num_values; ++i) { for (int i = 0; i < num_values; ++i) {
@ -770,19 +771,19 @@ void TF_SetAttrBoolList(TF_OperationDescription* desc, const char* attr_name,
desc->node_builder.Attr(attr_name, ArraySlice<const bool>(b, num_values)); desc->node_builder.Attr(attr_name, ArraySlice<const bool>(b, num_values));
} }
void TF_SetAttrType(TF_OperationDescription* desc, const char* attr_name, void TF_SetAttrType(TF_NodeDescription* desc, const char* attr_name,
TF_DataType value) { TF_DataType value) {
desc->node_builder.Attr(attr_name, static_cast<DataType>(value)); desc->node_builder.Attr(attr_name, static_cast<DataType>(value));
} }
void TF_SetAttrTypeList(TF_OperationDescription* desc, const char* attr_name, void TF_SetAttrTypeList(TF_NodeDescription* desc, const char* attr_name,
const TF_DataType* values, int num_values) { const TF_DataType* values, int num_values) {
desc->node_builder.Attr( desc->node_builder.Attr(
attr_name, ArraySlice<const DataType>( attr_name, ArraySlice<const DataType>(
reinterpret_cast<const DataType*>(values), num_values)); reinterpret_cast<const DataType*>(values), num_values));
} }
void TF_SetAttrShape(TF_OperationDescription* desc, const char* attr_name, void TF_SetAttrShape(TF_NodeDescription* desc, const char* attr_name,
const int64_t* dims, int num_dims) { const int64_t* dims, int num_dims) {
PartialTensorShape shape; PartialTensorShape shape;
if (num_dims >= 0) { if (num_dims >= 0) {
@ -794,7 +795,7 @@ void TF_SetAttrShape(TF_OperationDescription* desc, const char* attr_name,
desc->node_builder.Attr(attr_name, shape); desc->node_builder.Attr(attr_name, shape);
} }
void TF_SetAttrShapeList(TF_OperationDescription* desc, const char* attr_name, void TF_SetAttrShapeList(TF_NodeDescription* desc, const char* attr_name,
const int64_t* const* dims, const int* num_dims, const int64_t* const* dims, const int* num_dims,
int num_shapes) { int num_shapes) {
std::vector<PartialTensorShape> shapes; std::vector<PartialTensorShape> shapes;
@ -812,9 +813,8 @@ void TF_SetAttrShapeList(TF_OperationDescription* desc, const char* attr_name,
desc->node_builder.Attr(attr_name, shapes); desc->node_builder.Attr(attr_name, shapes);
} }
void TF_SetAttrTensorShapeProto(TF_OperationDescription* desc, void TF_SetAttrTensorShapeProto(TF_NodeDescription* desc, const char* attr_name,
const char* attr_name, void* proto, void* proto, int proto_len, TF_Status* status) {
int proto_len, TF_Status* status) {
TensorShapeProto shape; TensorShapeProto shape;
if (shape.ParseFromArray(proto, proto_len)) { if (shape.ParseFromArray(proto, proto_len)) {
desc->node_builder.Attr(attr_name, shape); desc->node_builder.Attr(attr_name, shape);
@ -825,7 +825,7 @@ void TF_SetAttrTensorShapeProto(TF_OperationDescription* desc,
} }
} }
void TF_SetAttrTensorShapeProtoList(TF_OperationDescription* desc, void TF_SetAttrTensorShapeProtoList(TF_NodeDescription* desc,
const char* attr_name, const char* attr_name,
const void* const* protos, const void* const* protos,
const int* proto_lens, int num_shapes, const int* proto_lens, int num_shapes,
@ -843,7 +843,7 @@ void TF_SetAttrTensorShapeProtoList(TF_OperationDescription* desc,
status->status = Status::OK(); status->status = Status::OK();
} }
void TF_SetAttrTensor(TF_OperationDescription* desc, const char* attr_name, void TF_SetAttrTensor(TF_NodeDescription* desc, const char* attr_name,
TF_Tensor* value, TF_Status* status) { TF_Tensor* value, TF_Status* status) {
status->status = Status::OK(); status->status = Status::OK();
Tensor t; Tensor t;
@ -862,7 +862,7 @@ void TF_SetAttrTensor(TF_OperationDescription* desc, const char* attr_name,
if (ok) desc->node_builder.Attr(attr_name, t); if (ok) desc->node_builder.Attr(attr_name, t);
} }
void TF_SetAttrTensorList(TF_OperationDescription* desc, const char* attr_name, void TF_SetAttrTensorList(TF_NodeDescription* desc, const char* attr_name,
TF_Tensor* const* values, int num_values, TF_Tensor* const* values, int num_values,
TF_Status* status) { TF_Status* status) {
status->status = Status::OK(); status->status = Status::OK();
@ -890,9 +890,9 @@ void TF_SetAttrTensorList(TF_OperationDescription* desc, const char* attr_name,
if (ok) desc->node_builder.Attr(attr_name, t); if (ok) desc->node_builder.Attr(attr_name, t);
} }
void TF_SetAttrToAttrValueProto(TF_OperationDescription* desc, void TF_SetAttrToAttrValueProto(TF_NodeDescription* desc, const char* attr_name,
const char* attr_name, const void* proto, const void* proto, size_t proto_len,
size_t proto_len, TF_Status* status) { TF_Status* status) {
tensorflow::AttrValue attr_value; tensorflow::AttrValue attr_value;
if (attr_value.ParseFromArray(proto, proto_len)) { if (attr_value.ParseFromArray(proto, proto_len)) {
desc->node_builder.Attr(attr_name, attr_value); desc->node_builder.Attr(attr_name, attr_value);
@ -903,8 +903,7 @@ void TF_SetAttrToAttrValueProto(TF_OperationDescription* desc,
} }
} }
TF_Operation* TF_FinishOperation(TF_OperationDescription* desc, TF_Node* TF_FinishNode(TF_NodeDescription* desc, TF_Status* status) {
TF_Status* status) {
Node* ret = nullptr; Node* ret = nullptr;
mutex_lock l(desc->graph->mu); mutex_lock l(desc->graph->mu);
@ -920,37 +919,32 @@ TF_Operation* TF_FinishOperation(TF_OperationDescription* desc,
delete desc; delete desc;
return ToOperation(ret); return ToNode(ret);
} }
// TF_Operation functions // TF_Node functions ----------------------------------------------------------
// ----------------------------------------------------------
const char* TF_OperationName(TF_Operation* oper) { const char* TF_NodeName(TF_Node* node) { return node->node.name().c_str(); }
return oper->node.name().c_str();
const char* TF_NodeOpType(TF_Node* node) {
return node->node.type_string().c_str();
} }
const char* TF_OperationOpType(TF_Operation* oper) { const char* TF_NodeDevice(TF_Node* node) {
return oper->node.type_string().c_str(); return node->node.def().device().c_str();
} }
const char* TF_OperationDevice(TF_Operation* oper) { int TF_NodeNumOutputs(TF_Node* node) { return node->node.num_outputs(); }
return oper->node.def().device().c_str();
}
int TF_OperationNumOutputs(TF_Operation* oper) { TF_DataType TF_NodeOutputType(TF_Port node_out) {
return oper->node.num_outputs();
}
TF_DataType TF_OperationOutputType(TF_Port oper_out) {
return static_cast<TF_DataType>( return static_cast<TF_DataType>(
oper_out.oper->node.output_type(oper_out.index)); node_out.node->node.output_type(node_out.index));
} }
int TF_OperationOutputListLength(TF_Operation* oper, const char* arg_name, int TF_NodeOutputListLength(TF_Node* node, const char* arg_name,
TF_Status* status) { TF_Status* status) {
NameRangeMap name_ranges; NameRangeMap name_ranges;
status->status = NameRangesForNode(oper->node.def(), oper->node.op_def(), status->status = NameRangesForNode(node->node.def(), node->node.op_def(),
nullptr, &name_ranges); nullptr, &name_ranges);
if (!status->status.ok()) return -1; if (!status->status.ok()) return -1;
auto iter = name_ranges.find(arg_name); auto iter = name_ranges.find(arg_name);
@ -962,18 +956,16 @@ int TF_OperationOutputListLength(TF_Operation* oper, const char* arg_name,
return iter->second.second - iter->second.first; return iter->second.second - iter->second.first;
} }
int TF_OperationNumInputs(TF_Operation* oper) { int TF_NodeNumInputs(TF_Node* node) { return node->node.num_inputs(); }
return oper->node.num_inputs();
TF_DataType TF_NodeInputType(TF_Port node_in) {
return static_cast<TF_DataType>(node_in.node->node.input_type(node_in.index));
} }
TF_DataType TF_OperationInputType(TF_Port oper_in) { int TF_NodeInputListLength(TF_Node* node, const char* arg_name,
return static_cast<TF_DataType>(oper_in.oper->node.input_type(oper_in.index)); TF_Status* status) {
}
int TF_OperationInputListLength(TF_Operation* oper, const char* arg_name,
TF_Status* status) {
NameRangeMap name_ranges; NameRangeMap name_ranges;
status->status = NameRangesForNode(oper->node.def(), oper->node.op_def(), status->status = NameRangesForNode(node->node.def(), node->node.op_def(),
&name_ranges, nullptr); &name_ranges, nullptr);
if (!status->status.ok()) return -1; if (!status->status.ok()) return -1;
auto iter = name_ranges.find(arg_name); auto iter = name_ranges.find(arg_name);
@ -985,32 +977,32 @@ int TF_OperationInputListLength(TF_Operation* oper, const char* arg_name,
return iter->second.second - iter->second.first; return iter->second.second - iter->second.first;
} }
TF_Port TF_OperationInput(TF_Port oper_in) { TF_Port TF_NodeInput(TF_Port node_in) {
for (const auto* edge : oper_in.oper->node.in_edges()) { for (const auto* edge : node_in.node->node.in_edges()) {
if (edge->dst_input() == oper_in.index) { if (edge->dst_input() == node_in.index) {
return {ToOperation(edge->src()), edge->src_output()}; return {ToNode(edge->src()), edge->src_output()};
} }
} }
return {nullptr, -1}; return {nullptr, -1};
} }
int TF_OperationOutputNumConsumers(TF_Port oper_out) { int TF_NodeOutputNumConsumers(TF_Port node_out) {
int count = 0; int count = 0;
for (const auto* edge : oper_out.oper->node.out_edges()) { for (const auto* edge : node_out.node->node.out_edges()) {
if (edge->src_output() == oper_out.index) { if (edge->src_output() == node_out.index) {
++count; ++count;
} }
} }
return count; return count;
} }
int TF_OperationOutputConsumers(TF_Port oper_out, TF_Port* consumers, int TF_NodeOutputConsumers(TF_Port node_out, TF_Port* consumers,
int max_consumers) { int max_consumers) {
int count = 0; int count = 0;
for (const auto* edge : oper_out.oper->node.out_edges()) { for (const auto* edge : node_out.node->node.out_edges()) {
if (edge->src_output() == oper_out.index) { if (edge->src_output() == node_out.index) {
if (count < max_consumers) { if (count < max_consumers) {
consumers[count] = {ToOperation(edge->dst()), edge->dst_input()}; consumers[count] = {ToNode(edge->dst()), edge->dst_input()};
} }
++count; ++count;
} }
@ -1018,9 +1010,9 @@ int TF_OperationOutputConsumers(TF_Port oper_out, TF_Port* consumers,
return count; return count;
} }
int TF_OperationNumControlInputs(TF_Operation* oper) { int TF_NodeNumControlInputs(TF_Node* node) {
int count = 0; int count = 0;
for (const auto* edge : oper->node.in_edges()) { for (const auto* edge : node->node.in_edges()) {
if (edge->IsControlEdge()) { if (edge->IsControlEdge()) {
++count; ++count;
} }
@ -1028,14 +1020,13 @@ int TF_OperationNumControlInputs(TF_Operation* oper) {
return count; return count;
} }
int TF_OperationGetControlInputs(TF_Operation* oper, int TF_NodeGetControlInputs(TF_Node* node, TF_Node** control_inputs,
TF_Operation** control_inputs, int max_control_inputs) {
int max_control_inputs) {
int count = 0; int count = 0;
for (const auto* edge : oper->node.in_edges()) { for (const auto* edge : node->node.in_edges()) {
if (edge->IsControlEdge()) { if (edge->IsControlEdge()) {
if (count < max_control_inputs) { if (count < max_control_inputs) {
control_inputs[count] = ToOperation(edge->src()); control_inputs[count] = ToNode(edge->src());
} }
++count; ++count;
} }
@ -1043,9 +1034,9 @@ int TF_OperationGetControlInputs(TF_Operation* oper,
return count; return count;
} }
int TF_OperationNumControlOutputs(TF_Operation* oper) { int TF_NodeNumControlOutputs(TF_Node* node) {
int count = 0; int count = 0;
for (const auto* edge : oper->node.out_edges()) { for (const auto* edge : node->node.out_edges()) {
if (edge->IsControlEdge()) { if (edge->IsControlEdge()) {
++count; ++count;
} }
@ -1053,14 +1044,13 @@ int TF_OperationNumControlOutputs(TF_Operation* oper) {
return count; return count;
} }
int TF_OperationGetControlOutputs(TF_Operation* oper, int TF_NodeGetControlOutputs(TF_Node* node, TF_Node** control_outputs,
TF_Operation** control_outputs, int max_control_outputs) {
int max_control_outputs) {
int count = 0; int count = 0;
for (const auto* edge : oper->node.out_edges()) { for (const auto* edge : node->node.out_edges()) {
if (edge->IsControlEdge()) { if (edge->IsControlEdge()) {
if (count < max_control_outputs) { if (count < max_control_outputs) {
control_outputs[count] = ToOperation(edge->dst()); control_outputs[count] = ToNode(edge->dst());
} }
++count; ++count;
} }
@ -1068,20 +1058,19 @@ int TF_OperationGetControlOutputs(TF_Operation* oper,
return count; return count;
} }
void TF_OperationGetAttrValueProto(TF_Operation* oper, const char* attr_name, void TF_NodeGetAttrValueProto(TF_Node* node, const char* attr_name,
TF_Buffer* output_attr_value, TF_Buffer* output_attr_value, TF_Status* status) {
TF_Status* status) {
if (output_attr_value->data != nullptr) { if (output_attr_value->data != nullptr) {
status->status = tensorflow::errors::InvalidArgument( status->status = tensorflow::errors::InvalidArgument(
"Passing non-empty output_attr_value is invalid."); "Passing non-empty output_attr_value is invalid.");
return; return;
} }
const auto& attr_map = oper->node.def().attr(); const auto& attr_map = node->node.def().attr();
auto iter = attr_map.find(attr_name); auto iter = attr_map.find(attr_name);
if (iter == attr_map.end()) { if (iter == attr_map.end()) {
status->status = tensorflow::errors::InvalidArgument( status->status = tensorflow::errors::InvalidArgument(
"Operation has no attr named '", attr_name, "'."); "Node has no attr named '", attr_name, "'.");
return; return;
} }
@ -1097,15 +1086,15 @@ void TF_OperationGetAttrValueProto(TF_Operation* oper, const char* attr_name,
status->status = Status::OK(); status->status = Status::OK();
} }
void TF_OperationToNodeDef(TF_Operation* oper, TF_Buffer* output_node_def, void TF_NodeToNodeDef(TF_Node* node, TF_Buffer* output_node_def,
TF_Status* status) { TF_Status* status) {
if (output_node_def->data != nullptr) { if (output_node_def->data != nullptr) {
status->status = tensorflow::errors::InvalidArgument( status->status = tensorflow::errors::InvalidArgument(
"Passing non-empty output_node_def is invalid."); "Passing non-empty output_node_def is invalid.");
return; return;
} }
const NodeDef& def = oper->node.def(); const NodeDef& def = node->node.def();
const auto proto_size = def.ByteSize(); const auto proto_size = def.ByteSize();
void* str_buf = malloc(proto_size); void* str_buf = malloc(proto_size);
def.SerializeToArray(str_buf, proto_size); def.SerializeToArray(str_buf, proto_size);
@ -1129,17 +1118,17 @@ void TF_DeleteGraph(TF_Graph* g) {
if (del) delete g; if (del) delete g;
} }
TF_Operation* TF_GraphOperationByName(TF_Graph* graph, const char* oper_name) { TF_Node* TF_GraphNodeByName(TF_Graph* graph, const char* node_name) {
mutex_lock l(graph->mu); mutex_lock l(graph->mu);
auto iter = graph->name_map.find(oper_name); auto iter = graph->name_map.find(node_name);
if (iter == graph->name_map.end()) { if (iter == graph->name_map.end()) {
return nullptr; return nullptr;
} else { } else {
return ToOperation(iter->second); return ToNode(iter->second);
} }
} }
TF_Operation* TF_GraphNextOperation(TF_Graph* graph, size_t* pos) { TF_Node* TF_GraphNextNode(TF_Graph* graph, size_t* pos) {
if (*pos == 0) { if (*pos == 0) {
// Advance past the first sentinal nodes in every graph (the source & sink). // Advance past the first sentinal nodes in every graph (the source & sink).
*pos += 2; *pos += 2;
@ -1154,7 +1143,7 @@ TF_Operation* TF_GraphNextOperation(TF_Graph* graph, size_t* pos) {
// FindNodeId() returns nullptr for nodes that have been deleted. // FindNodeId() returns nullptr for nodes that have been deleted.
// We aren't currently allowing nodes to be deleted, but it is safer // We aren't currently allowing nodes to be deleted, but it is safer
// to still check. // to still check.
if (node != nullptr) return ToOperation(node); if (node != nullptr) return reinterpret_cast<TF_Node*>(node);
*pos += 1; *pos += 1;
} }
@ -1268,7 +1257,7 @@ void TF_SessionRun(TF_SessionWithGraph* session, const TF_Buffer* run_options,
const TF_Port* inputs, TF_Tensor* const* input_values, const TF_Port* inputs, TF_Tensor* const* input_values,
int ninputs, const TF_Port* outputs, int ninputs, const TF_Port* outputs,
TF_Tensor** output_values, int noutputs, TF_Tensor** output_values, int noutputs,
const TF_Operation* const* target_opers, int ntargets, const TF_Node* const* target_nodes, int ntargets,
TF_Buffer* run_metadata, TF_Status* status) { TF_Buffer* run_metadata, TF_Status* status) {
// TODO(josh11b,mrry): Change Session to be able to use a Graph* // TODO(josh11b,mrry): Change Session to be able to use a Graph*
// directly, instead of requiring us to serialize to a GraphDef and // directly, instead of requiring us to serialize to a GraphDef and
@ -1295,10 +1284,10 @@ void TF_SessionRun(TF_SessionWithGraph* session, const TF_Buffer* run_options,
output_names[i] = PortName(outputs[i]); output_names[i] = PortName(outputs[i]);
} }
// Convert from TF_Operation* to string names. // Convert from TF_Node* to string names.
std::vector<tensorflow::string> target_names(ntargets); std::vector<tensorflow::string> target_names(ntargets);
for (int i = 0; i < ntargets; ++i) { for (int i = 0; i < ntargets; ++i) {
target_names[i] = target_opers[i]->node.name(); target_names[i] = target_nodes[i]->node.name();
} }
// Actually run. // Actually run.
@ -1309,7 +1298,7 @@ void TF_SessionRun(TF_SessionWithGraph* session, const TF_Buffer* run_options,
void TF_SessionPRunSetup(TF_SessionWithGraph* session, const TF_Port* inputs, void TF_SessionPRunSetup(TF_SessionWithGraph* session, const TF_Port* inputs,
int ninputs, const TF_Port* outputs, int noutputs, int ninputs, const TF_Port* outputs, int noutputs,
const TF_Operation* const* target_opers, int ntargets, const TF_Node* const* target_nodes, int ntargets,
const char** handle, TF_Status* status) { const char** handle, TF_Status* status) {
if (!ExtendSessionGraphHelper(session, status)) { if (!ExtendSessionGraphHelper(session, status)) {
return; return;
@ -1327,7 +1316,7 @@ void TF_SessionPRunSetup(TF_SessionWithGraph* session, const TF_Port* inputs,
std::vector<tensorflow::string> target_names(ntargets); std::vector<tensorflow::string> target_names(ntargets);
for (int i = 0; i < ntargets; ++i) { for (int i = 0; i < ntargets; ++i) {
target_names[i] = target_opers[i]->node.name(); target_names[i] = target_nodes[i]->node.name();
} }
tensorflow::string new_handle; tensorflow::string new_handle;
@ -1344,7 +1333,7 @@ void TF_SessionPRun(TF_SessionWithGraph* session, const char* handle,
const TF_Port* inputs, TF_Tensor* const* input_values, const TF_Port* inputs, TF_Tensor* const* input_values,
int ninputs, const TF_Port* outputs, int ninputs, const TF_Port* outputs,
TF_Tensor** output_values, int noutputs, TF_Tensor** output_values, int noutputs,
const TF_Operation* const* target_opers, int ntargets, const TF_Node* const* target_nodes, int ntargets,
TF_Status* status) { TF_Status* status) {
// TODO(josh11b,mrry): Change Session to be able to use a Graph* // TODO(josh11b,mrry): Change Session to be able to use a Graph*
// directly, instead of requiring us to serialize to a GraphDef and // directly, instead of requiring us to serialize to a GraphDef and
@ -1371,10 +1360,10 @@ void TF_SessionPRun(TF_SessionWithGraph* session, const char* handle,
output_names[i] = PortName(outputs[i]); output_names[i] = PortName(outputs[i]);
} }
// Convert from TF_Operation* to string names. // Convert from TF_Node* to string names.
std::vector<tensorflow::string> target_names(ntargets); std::vector<tensorflow::string> target_names(ntargets);
for (int i = 0; i < ntargets; ++i) { for (int i = 0; i < ntargets; ++i) {
target_names[i] = target_opers[i]->node.name(); target_names[i] = target_nodes[i]->node.name();
} }
TF_Run_Helper(session->session, handle, nullptr, input_pairs, output_names, TF_Run_Helper(session->session, handle, nullptr, input_pairs, output_names,

View File

@ -247,31 +247,29 @@ extern TF_Graph* TF_NewGraph();
// TFSessionWithGraph's are referencing it. // TFSessionWithGraph's are referencing it.
extern void TF_DeleteGraph(TF_Graph*); extern void TF_DeleteGraph(TF_Graph*);
// Operation being built. The underlying graph must outlive this. // Node being built. The underlying graph must outlive this.
typedef struct TF_OperationDescription TF_OperationDescription; typedef struct TF_NodeDescription TF_NodeDescription;
// Operation that has been added to the graph. Valid until the graph is // Node that has been added to the graph. Valid until the graph is
// deleted -- in particular adding a new operation to the graph does not // deleted -- in particular adding a new node to the graph does not
// invalidate old TF_Operation* pointers. // invalidate old TF_Node* pointers.
typedef struct TF_Operation TF_Operation; typedef struct TF_Node TF_Node;
// Represents a specific input or output of an operation, e.g. to // Represents a specific input or output of a node, e.g. to specify the
// specify the specific output to pass as an input to a new op. // specific output to pass as an input to an op.
typedef struct TF_Port { typedef struct TF_Port {
TF_Operation* oper; TF_Node* node;
int index; // Specifies the index of the input or output within oper. int index; // Specifies the index of the input or output within node.
} TF_Port; } TF_Port;
// Operation will only be added to *graph when TF_FinishOperation() is // Node will only be added to *graph when TF_FinishNode() is called
// called (assuming TF_FinishOperation() does not return an error). // (assuming TF_FinishNode() does not return an error). *graph must
// *graph must not be deleted until after TF_FinishOperation() is // not be deleted until after TF_FinishNode() is called.
// called. extern TF_NodeDescription* TF_NewNode(TF_Graph* graph, const char* op_type,
extern TF_OperationDescription* TF_NewOperation(TF_Graph* graph, const char* node_name);
const char* op_type,
const char* oper_name);
// Specify the device for `desc`. Defaults to empty, meaning unconstrained. // Specify the device for `desc`. Defaults to empty, meaning unconstrained.
extern void TF_SetDevice(TF_OperationDescription* desc, const char* device); extern void TF_SetDevice(TF_NodeDescription* desc, const char* device);
// The calls to TF_AddInput and TF_AddInputList must match (in number, // The calls to TF_AddInput and TF_AddInputList must match (in number,
// order, and type) the op declaration. For example, the "Concat" op // order, and type) the op declaration. For example, the "Concat" op
@ -287,82 +285,74 @@ extern void TF_SetDevice(TF_OperationDescription* desc, const char* device);
// single tensor), and TF_AddInputList() for the second input (since // single tensor), and TF_AddInputList() for the second input (since
// it takes a list, even if you were to pass a list with a single // it takes a list, even if you were to pass a list with a single
// tensor), as in: // tensor), as in:
// TF_OperationDescription* desc = TF_NewOperation(graph, "Concat", "c"); // TF_NodeDescription* desc = TF_NewNode(graph, "Concat", "c");
// TF_Port concat_dim_input = {...}; // TF_Port concat_dim_input = {...};
// TF_AddInput(desc, concat_dim_input); // TF_AddInput(desc, concat_dim_input);
// TF_Port values_inputs[5] = {{...}, ..., {...}}; // TF_Port values_inputs[5] = {{...}, ..., {...}};
// TF_AddInputList(desc, 5, values_inputs); // TF_AddInputList(desc, 5, values_inputs);
// For inputs that take a single tensor. // For inputs that take a single tensor.
extern void TF_AddInput(TF_OperationDescription* desc, TF_Port input); extern void TF_AddInput(TF_NodeDescription* desc, TF_Port input);
// For inputs that take a list of tensors. // For inputs that take a list of tensors.
// inputs must point to TF_Port[num_inputs]. // inputs must point to TF_Port[num_inputs].
extern void TF_AddInputList(TF_OperationDescription* desc, extern void TF_AddInputList(TF_NodeDescription* desc, const TF_Port* inputs,
const TF_Port* inputs, int num_inputs); int num_inputs);
// Call once per control input to `desc`. // Call once per control input to `desc`.
extern void TF_AddControlInput(TF_OperationDescription* desc, extern void TF_AddControlInput(TF_NodeDescription* desc, TF_Node* input);
TF_Operation* input);
// Call some TF_SetAttr*() function for every attr that is not // Call some TF_SetAttr*() function for every attr that is not
// inferred from an input and doesn't have a default value you wish to // inferred from an input and doesn't have a default value you wish to
// keep. // keep.
// `value` must point to a string of length `length` bytes. // `value` must point to a string of length `length` bytes.
extern void TF_SetAttrString(TF_OperationDescription* desc, extern void TF_SetAttrString(TF_NodeDescription* desc, const char* attr_name,
const char* attr_name, const void* value, const void* value, int length);
int length);
// `values` and `lengths` both must have lengths `num_values`. // `values` and `lengths` both must have lengths `num_values`.
// `values[i]` must point to a string of length `lengths[i]` bytes. // `values[i]` must point to a string of length `lengths[i]` bytes.
extern void TF_SetAttrStringList(TF_OperationDescription* desc, extern void TF_SetAttrStringList(TF_NodeDescription* desc,
const char* attr_name, const char* attr_name,
const void* const* values, const int* lengths, const void* const* values, const int* lengths,
int num_values); int num_values);
extern void TF_SetAttrInt(TF_OperationDescription* desc, const char* attr_name, extern void TF_SetAttrInt(TF_NodeDescription* desc, const char* attr_name,
int64_t value); int64_t value);
extern void TF_SetAttrIntList(TF_OperationDescription* desc, extern void TF_SetAttrIntList(TF_NodeDescription* desc, const char* attr_name,
const char* attr_name, const int64_t* values, const int64_t* values, int num_values);
int num_values); extern void TF_SetAttrFloat(TF_NodeDescription* desc, const char* attr_name,
extern void TF_SetAttrFloat(TF_OperationDescription* desc, float value);
const char* attr_name, float value); extern void TF_SetAttrFloatList(TF_NodeDescription* desc, const char* attr_name,
extern void TF_SetAttrFloatList(TF_OperationDescription* desc, const float* values, int num_values);
const char* attr_name, const float* values, extern void TF_SetAttrBool(TF_NodeDescription* desc, const char* attr_name,
int num_values);
extern void TF_SetAttrBool(TF_OperationDescription* desc, const char* attr_name,
unsigned char value); unsigned char value);
extern void TF_SetAttrBoolList(TF_OperationDescription* desc, extern void TF_SetAttrBoolList(TF_NodeDescription* desc, const char* attr_name,
const char* attr_name,
const unsigned char* values, int num_values); const unsigned char* values, int num_values);
extern void TF_SetAttrType(TF_OperationDescription* desc, const char* attr_name, extern void TF_SetAttrType(TF_NodeDescription* desc, const char* attr_name,
TF_DataType value); TF_DataType value);
extern void TF_SetAttrTypeList(TF_OperationDescription* desc, extern void TF_SetAttrTypeList(TF_NodeDescription* desc, const char* attr_name,
const char* attr_name, const TF_DataType* values, const TF_DataType* values, int num_values);
int num_values);
// Set `num_dims` to -1 to represent "unknown rank". Otherwise, // Set `num_dims` to -1 to represent "unknown rank". Otherwise,
// `dims` points to an array of length `num_dims`. `dims[i]` must be // `dims` points to an array of length `num_dims`. `dims[i]` must be
// >= -1, with -1 meaning "unknown dimension". // >= -1, with -1 meaning "unknown dimension".
extern void TF_SetAttrShape(TF_OperationDescription* desc, extern void TF_SetAttrShape(TF_NodeDescription* desc, const char* attr_name,
const char* attr_name, const int64_t* dims, const int64_t* dims, int num_dims);
int num_dims);
// `dims` and `num_dims` must point to arrays of length `num_shapes`. // `dims` and `num_dims` must point to arrays of length `num_shapes`.
// Set `num_dims[i]` to -1 to represent "unknown rank". Otherwise, // Set `num_dims[i]` to -1 to represent "unknown rank". Otherwise,
// `dims[i]` points to an array of length `num_dims[i]`. `dims[i][j]` // `dims[i]` points to an array of length `num_dims[i]`. `dims[i][j]`
// must be >= -1, with -1 meaning "unknown dimension". // must be >= -1, with -1 meaning "unknown dimension".
extern void TF_SetAttrShapeList(TF_OperationDescription* desc, extern void TF_SetAttrShapeList(TF_NodeDescription* desc, const char* attr_name,
const char* attr_name,
const int64_t* const* dims, const int* num_dims, const int64_t* const* dims, const int* num_dims,
int num_shapes); int num_shapes);
// `proto` must point to an array of `proto_len` bytes representing a // `proto` must point to an array of `proto_len` bytes representing a
// binary-serialized TensorShapeProto. // binary-serialized TensorShapeProto.
extern void TF_SetAttrTensorShapeProto(TF_OperationDescription* desc, extern void TF_SetAttrTensorShapeProto(TF_NodeDescription* desc,
const char* attr_name, void* proto, const char* attr_name, void* proto,
int proto_len, TF_Status* status); int proto_len, TF_Status* status);
// `protos` and `proto_lens` must point to arrays of length `num_shapes`. // `protos` and `proto_lens` must point to arrays of length `num_shapes`.
// `protos[i]` must point to an array of `proto_lens[i]` bytes // `protos[i]` must point to an array of `proto_lens[i]` bytes
// representing a binary-serialized TensorShapeProto. // representing a binary-serialized TensorShapeProto.
extern void TF_SetAttrTensorShapeProtoList(TF_OperationDescription* desc, extern void TF_SetAttrTensorShapeProtoList(TF_NodeDescription* desc,
const char* attr_name, const char* attr_name,
const void* const* protos, const void* const* protos,
const int* proto_lens, const int* proto_lens,
@ -370,12 +360,11 @@ extern void TF_SetAttrTensorShapeProtoList(TF_OperationDescription* desc,
// This functions takes ownership of *value (the // This functions takes ownership of *value (the
// implementation will eventually call TF_DeleteTensor). // implementation will eventually call TF_DeleteTensor).
extern void TF_SetAttrTensor(TF_OperationDescription* desc, extern void TF_SetAttrTensor(TF_NodeDescription* desc, const char* attr_name,
const char* attr_name, TF_Tensor* value, TF_Tensor* value, TF_Status* status);
TF_Status* status);
// This functions takes ownership of values[0]..values[num_values-1] (the // This functions takes ownership of values[0]..values[num_values-1] (the
// implementation will eventually call TF_DeleteTensor on each). // implementation will eventually call TF_DeleteTensor on each).
extern void TF_SetAttrTensorList(TF_OperationDescription* desc, extern void TF_SetAttrTensorList(TF_NodeDescription* desc,
const char* attr_name, const char* attr_name,
TF_Tensor* const* values, int num_values, TF_Tensor* const* values, int num_values,
TF_Status* status); TF_Status* status);
@ -383,108 +372,100 @@ extern void TF_SetAttrTensorList(TF_OperationDescription* desc,
// `proto` should point to a sequence of bytes of length `proto_len` // `proto` should point to a sequence of bytes of length `proto_len`
// representing a binary serialization of an AttrValue protocol // representing a binary serialization of an AttrValue protocol
// buffer. // buffer.
extern void TF_SetAttrToAttrValueProto(TF_OperationDescription* desc, extern void TF_SetAttrToAttrValueProto(TF_NodeDescription* desc,
const char* attr_name, const void* proto, const char* attr_name, const void* proto,
size_t proto_len, TF_Status* status); size_t proto_len, TF_Status* status);
// If this function succeeds: // If this function succeeds:
// * *status is set to an OK value, // * *status is set to an OK value,
// * a TF_Operation is added to the graph, // * a TF_Node is added to the graph,
// * a non-null value pointing to the added operation is returned -- // * a non-null value pointing to the added node is returned --
// this value is valid until the underlying graph is deleted. // this value is valid until the underlying graph is deleted.
// Otherwise: // Otherwise:
// * *status is set to a non-OK value, // * *status is set to a non-OK value,
// * the graph is not modified, // * the graph is not modified,
// * a null value is returned. // * a null value is returned.
// In either case, it deletes `desc`. // In either case, it deletes `desc`.
extern TF_Operation* TF_FinishOperation(TF_OperationDescription* desc, extern TF_Node* TF_FinishNode(TF_NodeDescription* desc, TF_Status* status);
TF_Status* status);
// TF_Operation functions. Operations are immutable once created, so // TF_Node functions. Nodes are immutable once created, so these are all
// these are all query functions. // query functions.
extern const char* TF_OperationName(TF_Operation* oper); extern const char* TF_NodeName(TF_Node* node);
extern const char* TF_OperationOpType(TF_Operation* oper); extern const char* TF_NodeOpType(TF_Node* node);
extern const char* TF_OperationDevice(TF_Operation* oper); extern const char* TF_NodeDevice(TF_Node* node);
extern int TF_OperationNumOutputs(TF_Operation* oper); extern int TF_NodeNumOutputs(TF_Node* node);
extern TF_DataType TF_OperationOutputType(TF_Port oper_out); extern TF_DataType TF_NodeOutputType(TF_Port node_out);
extern int TF_OperationOutputListLength(TF_Operation* oper, extern int TF_NodeOutputListLength(TF_Node* node, const char* arg_name,
const char* arg_name, TF_Status* status);
TF_Status* status);
extern int TF_OperationNumInputs(TF_Operation* oper); extern int TF_NodeNumInputs(TF_Node* node);
extern TF_DataType TF_OperationInputType(TF_Port oper_in); extern TF_DataType TF_NodeInputType(TF_Port node_in);
extern int TF_OperationInputListLength(TF_Operation* oper, const char* arg_name, extern int TF_NodeInputListLength(TF_Node* node, const char* arg_name,
TF_Status* status); TF_Status* status);
// In this code: // In this code:
// TF_Port producer = TF_OperationInput(consumer); // TF_Port producer = TF_NodeInput(consumer);
// There is an edge from producer.oper's output (given by // There is an edge from producer.node's output (given by
// producer.index) to consumer.oper's input (given by consumer.index). // producer.index) to consumer.node's input (given by consumer.index).
extern TF_Port TF_OperationInput(TF_Port oper_in); extern TF_Port TF_NodeInput(TF_Port node_in);
// Get the number of current consumers of a specific output of an // Get the number of current consumers of a node's output. Note that
// operation. Note that this number can change when new operations // this number can change when new nodes are added to the graph.
// are added to the graph. extern int TF_NodeOutputNumConsumers(TF_Port node_out);
extern int TF_OperationOutputNumConsumers(TF_Port oper_out);
// Get list of all current consumers of a specific output of an // Get list of all current consumers of a node's output. consumers
// operation. `consumers` must point to an array of length at least // must point to an array of length at least max_consumers (ideally
// `max_consumers` (ideally set to // set to TF_NodeOutputNumConsumer(node_out)). Beware that a
// TF_OperationOutputNumConsumers(oper_out)). Beware that a concurrent // concurrent modification of the graph can increase the number of
// modification of the graph can increase the number of consumers of // consumers of a node. Returns the number of output consumers
// an operation. Returns the number of output consumers (should match // (should match TF_NodeOutputNumConsumers(node_out)).
// TF_OperationOutputNumConsumers(oper_out)). extern int TF_NodeOutputConsumers(TF_Port node_out, TF_Port* consumers,
extern int TF_OperationOutputConsumers(TF_Port oper_out, TF_Port* consumers, int max_consumers);
int max_consumers);
// Get the number of control inputs to an operation. // Get the number of control inputs to a node.
extern int TF_OperationNumControlInputs(TF_Operation* oper); extern int TF_NodeNumControlInputs(TF_Node* node);
// Get list of all control inputs to an operation. `control_inputs` must // Get list of all control inputs to a node. control_inputs must
// point to an array of length `max_control_inputs` (ideally set to // point to an array of length max_control_inputs (ideally set to
// TF_OperationNumControlInputs(oper)). Returns the number of control // TF_NodeNumControlInputs(node)). Returns the number of control
// inputs (should match TF_OperationNumControlInputs(oper)). // inputs (should match TF_NodeNumControlInputs(node)).
extern int TF_OperationGetControlInputs(TF_Operation* oper, extern int TF_NodeGetControlInputs(TF_Node* node, TF_Node** control_inputs,
TF_Operation** control_inputs, int max_control_inputs);
int max_control_inputs);
// Get the number of operations that have `*oper` as a control input. // Get the number of nodes that have *node as a control inputs.
// Note that this number can change when new operations are added to // Note that this number can change when new nodes are added to the
// the graph. // graph.
extern int TF_OperationNumControlOutputs(TF_Operation* oper); extern int TF_NodeNumControlOutputs(TF_Node* node);
// Get the list of operations that have `*oper` as a control input. // Get the list of nodes that have *node as a control input.
// `control_outputs` must point to an array of length at least // control_outputs must point to an array of length at least
// `max_control_outputs` (ideally set to // max_control_outputs (ideally set to
// TF_OperationNumControlOutputs(oper)). Beware that a concurrent // TF_NodeNumControlOutputs(node)). Beware that a concurrent
// modification of the graph can increase the number of control // modification of the graph can increase the number of control
// outputs. Returns the number of control outputs (should match // outputs. Returns the number of control outputs (should match
// TF_OperationNumControlOutputs(oper)). // TF_NodeNumControlOutputs(node)).
extern int TF_OperationGetControlOutputs(TF_Operation* oper, extern int TF_NodeGetControlOutputs(TF_Node* node, TF_Node** control_outputs,
TF_Operation** control_outputs, int max_control_outputs);
int max_control_outputs);
// Sets `output_attr_value` to the binary-serialized AttrValue proto // Sets `output_attr_value` to the binary-serialized AttrValue proto
// representation of the value of the `attr_name` attr of `oper`. // representation of the value of the `attr_name` attr of `node`.
extern void TF_OperationGetAttrValueProto(TF_Operation* oper, extern void TF_NodeGetAttrValueProto(TF_Node* node, const char* attr_name,
const char* attr_name, TF_Buffer* output_attr_value,
TF_Buffer* output_attr_value, TF_Status* status);
TF_Status* status);
// Returns the operation in the graph with `oper_name`. Returns nullptr if // Returns the node in the graph with `node_name`. Returns nullptr if
// no operation found. // no node found.
extern TF_Operation* TF_GraphOperationByName(TF_Graph* graph, extern TF_Node* TF_GraphNodeByName(TF_Graph* graph, const char* node_name);
const char* oper_name);
// Iterate through the operations of a graph. To use: // Iterate through the nodes of a graph. To use:
// size_t pos = 0; // size_t pos = 0;
// TF_Operation* oper; // TF_Node* node;
// while ((oper = TF_GraphNextOperation(graph, &pos)) != nullptr) { // while ((node = TF_GraphNextNode(graph, &pos)) != nullptr) {
// DoSomethingWithOperation(oper); // DoSomethingWithNode(node);
// } // }
extern TF_Operation* TF_GraphNextOperation(TF_Graph* graph, size_t* pos); extern TF_Node* TF_GraphNextNode(TF_Graph* graph, size_t* pos);
// Note: The following two functions may fail on very large protos in the // Note: The following two functions may fail on very large protos in the
// future. // future.
@ -492,19 +473,18 @@ extern TF_Operation* TF_GraphNextOperation(TF_Graph* graph, size_t* pos);
extern void TF_GraphToGraphDef(TF_Graph* graph, TF_Buffer* output_graph_def, extern void TF_GraphToGraphDef(TF_Graph* graph, TF_Buffer* output_graph_def,
TF_Status* status); TF_Status* status);
extern void TF_OperationToNodeDef(TF_Operation* oper, extern void TF_NodeToNodeDef(TF_Node* node, TF_Buffer* output_node_def,
TF_Buffer* output_node_def, TF_Status* status);
TF_Status* status);
// TODO(josh11b): Query attrs for an operation. // TODO(josh11b): Query attrs for a Node.
// TODO(cwhipkey): Query shape for operation outputs. // TODO(cwhipkey): Query shape for node outputs.
// TODO(josh11b,mrry): Import GraphDef into TF_Graph. // TODO(josh11b,mrry): Import GraphDef into TF_Graph.
// TODO(andydavis): Function to add gradients to a graph. // TODO(andydavis): Function to add gradients to a graph.
// TODO(josh11b): Register OpDef, available to all operations added // TODO(josh11b): Register OpDef, available to all nodes added
// to this graph. // to this graph.
// The following two may both benefit from a subgraph-definition API // The following two may both benefit from a subgraph-definition API
@ -550,8 +530,8 @@ extern void TF_SessionRun(TF_SessionWithGraph* session,
// Output tensors // Output tensors
const TF_Port* outputs, TF_Tensor** output_values, const TF_Port* outputs, TF_Tensor** output_values,
int noutputs, int noutputs,
// Target operations // Target nodes
const TF_Operation* const* target_opers, int ntargets, const TF_Node* const* target_nodes, int ntargets,
// RunMetadata // RunMetadata
TF_Buffer* run_metadata, TF_Buffer* run_metadata,
// Output status // Output status
@ -563,8 +543,8 @@ extern void TF_SessionPRunSetup(TF_SessionWithGraph*,
const TF_Port* inputs, int ninputs, const TF_Port* inputs, int ninputs,
// Output names // Output names
const TF_Port* outputs, int noutputs, const TF_Port* outputs, int noutputs,
// Target operations // Target nodes
const TF_Operation* const* target_opers, const TF_Node* const* target_nodes,
int ntargets, int ntargets,
// Output handle // Output handle
const char** handle, const char** handle,
@ -579,9 +559,8 @@ extern void TF_SessionPRun(TF_SessionWithGraph*, const char* handle,
// Output tensors // Output tensors
const TF_Port* outputs, TF_Tensor** output_values, const TF_Port* outputs, TF_Tensor** output_values,
int noutputs, int noutputs,
// Target operations // Target nodes
const TF_Operation* const* target_opers, const TF_Node* const* target_nodes, int ntargets,
int ntargets,
// Output status // Output status
TF_Status*); TF_Status*);
@ -643,9 +622,10 @@ extern void TF_Run(TF_Session*,
// Input tensors // Input tensors
const char** input_names, TF_Tensor** inputs, int ninputs, const char** input_names, TF_Tensor** inputs, int ninputs,
// Output tensors // Output tensors
const char** output_names, TF_Tensor** outputs, int noutputs, const char** output_tensor_names, TF_Tensor** outputs,
// Target operations int noutputs,
const char** target_oper_names, int ntargets, // Target nodes
const char** target_node_names, int ntargets,
// RunMetadata // RunMetadata
TF_Buffer* run_metadata, TF_Buffer* run_metadata,
// Output status // Output status
@ -663,9 +643,9 @@ extern void TF_PRunSetup(TF_Session*,
// Input names // Input names
const char** input_names, int ninputs, const char** input_names, int ninputs,
// Output names // Output names
const char** output_names, int noutputs, const char** output_tensor_names, int noutputs,
// Target operations // Target nodes
const char** target_oper_names, int ntargets, const char** target_node_names, int ntargets,
// Output handle // Output handle
const char** handle, const char** handle,
// Output status // Output status
@ -678,10 +658,10 @@ extern void TF_PRun(TF_Session*, const char* handle,
// Input tensors // Input tensors
const char** input_names, TF_Tensor** inputs, int ninputs, const char** input_names, TF_Tensor** inputs, int ninputs,
// Output tensors // Output tensors
const char** output_names, TF_Tensor** outputs, const char** output_tensor_names, TF_Tensor** outputs,
int noutputs, int noutputs,
// Target operations // Target nodes
const char** target_oper_names, int ntargets, const char** target_node_names, int ntargets,
// Output status // Output status
TF_Status*); TF_Status*);

View File

@ -202,33 +202,32 @@ static TF_Tensor* Int32Tensor(int32 v) {
&Int32Deallocator, nullptr); &Int32Deallocator, nullptr);
} }
TF_Operation* Placeholder(TF_Graph* graph, TF_Status* s) { TF_Node* Placeholder(TF_Graph* graph, TF_Status* s) {
TF_OperationDescription* desc = TF_NewOperation(graph, "Placeholder", "feed"); TF_NodeDescription* desc = TF_NewNode(graph, "Placeholder", "feed");
TF_SetAttrType(desc, "dtype", TF_INT32); TF_SetAttrType(desc, "dtype", TF_INT32);
return TF_FinishOperation(desc, s); return TF_FinishNode(desc, s);
} }
TF_Operation* ScalarConst(int32 v, TF_Graph* graph, TF_Status* s) { TF_Node* ScalarConst(int32 v, TF_Graph* graph, TF_Status* s) {
TF_OperationDescription* desc = TF_NewOperation(graph, "Const", "scalar"); TF_NodeDescription* desc = TF_NewNode(graph, "Const", "scalar");
TF_SetAttrTensor(desc, "value", Int32Tensor(v), s); TF_SetAttrTensor(desc, "value", Int32Tensor(v), s);
if (TF_GetCode(s) != TF_OK) return nullptr; if (TF_GetCode(s) != TF_OK) return nullptr;
TF_SetAttrType(desc, "dtype", TF_INT32); TF_SetAttrType(desc, "dtype", TF_INT32);
return TF_FinishOperation(desc, s); return TF_FinishNode(desc, s);
} }
TF_Operation* Add(TF_Operation* l, TF_Operation* r, TF_Graph* graph, TF_Node* Add(TF_Node* l, TF_Node* r, TF_Graph* graph, TF_Status* s) {
TF_Status* s) { TF_NodeDescription* desc = TF_NewNode(graph, "AddN", "add");
TF_OperationDescription* desc = TF_NewOperation(graph, "AddN", "add");
TF_Port add_inputs[2] = {{l, 0}, {r, 0}}; TF_Port add_inputs[2] = {{l, 0}, {r, 0}};
TF_AddInputList(desc, add_inputs, 2); TF_AddInputList(desc, add_inputs, 2);
return TF_FinishOperation(desc, s); return TF_FinishNode(desc, s);
} }
TF_Operation* Neg(TF_Operation* n, TF_Graph* graph, TF_Status* s) { TF_Node* Neg(TF_Node* n, TF_Graph* graph, TF_Status* s) {
TF_OperationDescription* desc = TF_NewOperation(graph, "Neg", "neg"); TF_NodeDescription* desc = TF_NewNode(graph, "Neg", "neg");
TF_Port neg_input = {n, 0}; TF_Port neg_input = {n, 0};
TF_AddInput(desc, neg_input); TF_AddInput(desc, neg_input);
return TF_FinishOperation(desc, s); return TF_FinishNode(desc, s);
} }
bool IsPlaceholder(const NodeDef& node_def) { bool IsPlaceholder(const NodeDef& node_def) {
@ -319,10 +318,10 @@ bool GetGraphDef(TF_Graph* graph, GraphDef* graph_def) {
return ret; return ret;
} }
bool GetNodeDef(TF_Operation* oper, NodeDef* node_def) { bool GetNodeDef(TF_Node* node, NodeDef* node_def) {
TF_Status* s = TF_NewStatus(); TF_Status* s = TF_NewStatus();
TF_Buffer* buffer = TF_NewBuffer(); TF_Buffer* buffer = TF_NewBuffer();
TF_OperationToNodeDef(oper, buffer, s); TF_NodeToNodeDef(node, buffer, s);
bool ret = TF_GetCode(s) == TF_OK; bool ret = TF_GetCode(s) == TF_OK;
EXPECT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s); EXPECT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
if (ret) ret = node_def->ParseFromArray(buffer->data, buffer->length); if (ret) ret = node_def->ParseFromArray(buffer->data, buffer->length);
@ -331,10 +330,10 @@ bool GetNodeDef(TF_Operation* oper, NodeDef* node_def) {
return ret; return ret;
} }
bool GetAttrValue(TF_Operation* oper, const char* attr_name, bool GetAttrValue(TF_Node* node, const char* attr_name,
tensorflow::AttrValue* attr_value, TF_Status* s) { tensorflow::AttrValue* attr_value, TF_Status* s) {
TF_Buffer* buffer = TF_NewBuffer(); TF_Buffer* buffer = TF_NewBuffer();
TF_OperationGetAttrValueProto(oper, attr_name, buffer, s); TF_NodeGetAttrValueProto(node, attr_name, buffer, s);
bool ret = TF_GetCode(s) == TF_OK; bool ret = TF_GetCode(s) == TF_OK;
if (ret) ret = attr_value->ParseFromArray(buffer->data, buffer->length); if (ret) ret = attr_value->ParseFromArray(buffer->data, buffer->length);
TF_DeleteBuffer(buffer); TF_DeleteBuffer(buffer);
@ -345,83 +344,82 @@ TEST(CAPI, Graph) {
TF_Status* s = TF_NewStatus(); TF_Status* s = TF_NewStatus();
TF_Graph* graph = TF_NewGraph(); TF_Graph* graph = TF_NewGraph();
// Make a placeholder oper. // Make a placeholder node.
TF_Operation* feed = Placeholder(graph, s); TF_Node* feed = Placeholder(graph, s);
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s); ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
// Test TF_Operation*() query functions. // Test TF_Node*() query functions.
EXPECT_EQ(string("feed"), string(TF_OperationName(feed))); EXPECT_EQ(string("feed"), string(TF_NodeName(feed)));
EXPECT_EQ(string("Placeholder"), string(TF_OperationOpType(feed))); EXPECT_EQ(string("Placeholder"), string(TF_NodeOpType(feed)));
EXPECT_EQ(string(""), string(TF_OperationDevice(feed))); EXPECT_EQ(string(""), string(TF_NodeDevice(feed)));
EXPECT_EQ(1, TF_OperationNumOutputs(feed)); EXPECT_EQ(1, TF_NodeNumOutputs(feed));
EXPECT_EQ(TF_INT32, TF_OperationOutputType(TF_Port{feed, 0})); EXPECT_EQ(TF_INT32, TF_NodeOutputType(TF_Port{feed, 0}));
EXPECT_EQ(1, TF_OperationOutputListLength(feed, "output", s)); EXPECT_EQ(1, TF_NodeOutputListLength(feed, "output", s));
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s); ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
EXPECT_EQ(0, TF_OperationNumInputs(feed)); EXPECT_EQ(0, TF_NodeNumInputs(feed));
EXPECT_EQ(0, TF_OperationOutputNumConsumers(TF_Port{feed, 0})); EXPECT_EQ(0, TF_NodeOutputNumConsumers(TF_Port{feed, 0}));
EXPECT_EQ(0, TF_OperationNumControlInputs(feed)); EXPECT_EQ(0, TF_NodeNumControlInputs(feed));
EXPECT_EQ(0, TF_OperationNumControlOutputs(feed)); EXPECT_EQ(0, TF_NodeNumControlOutputs(feed));
tensorflow::AttrValue attr_value; tensorflow::AttrValue attr_value;
ASSERT_TRUE(GetAttrValue(feed, "dtype", &attr_value, s)) << TF_Message(s); ASSERT_TRUE(GetAttrValue(feed, "dtype", &attr_value, s)) << TF_Message(s);
EXPECT_EQ(attr_value.type(), tensorflow::DT_INT32); EXPECT_EQ(attr_value.type(), tensorflow::DT_INT32);
// Test not found errors in TF_Operation*() query functions. // Test not found errors in TF_Node*() query functions.
EXPECT_EQ(-1, TF_OperationOutputListLength(feed, "bogus", s)); EXPECT_EQ(-1, TF_NodeOutputListLength(feed, "bogus", s));
EXPECT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(s)); EXPECT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(s));
ASSERT_FALSE(GetAttrValue(feed, "missing", &attr_value, s)); ASSERT_FALSE(GetAttrValue(feed, "missing", &attr_value, s));
EXPECT_EQ(string("Operation has no attr named 'missing'."), EXPECT_EQ(string("Node has no attr named 'missing'."), string(TF_Message(s)));
string(TF_Message(s)));
// Make a constant oper with the scalar "3". // Make a constant node with the scalar "3".
TF_Operation* three = ScalarConst(3, graph, s); TF_Node* three = ScalarConst(3, graph, s);
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s); ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
// Add oper. // Add node.
TF_Operation* add = Add(feed, three, graph, s); TF_Node* add = Add(feed, three, graph, s);
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s); ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
// Test TF_Operation*() query functions. // Test TF_Node*() query functions.
EXPECT_EQ(string("add"), string(TF_OperationName(add))); EXPECT_EQ(string("add"), string(TF_NodeName(add)));
EXPECT_EQ(string("AddN"), string(TF_OperationOpType(add))); EXPECT_EQ(string("AddN"), string(TF_NodeOpType(add)));
EXPECT_EQ(string(""), string(TF_OperationDevice(add))); EXPECT_EQ(string(""), string(TF_NodeDevice(add)));
EXPECT_EQ(1, TF_OperationNumOutputs(add)); EXPECT_EQ(1, TF_NodeNumOutputs(add));
EXPECT_EQ(TF_INT32, TF_OperationOutputType(TF_Port{add, 0})); EXPECT_EQ(TF_INT32, TF_NodeOutputType(TF_Port{add, 0}));
EXPECT_EQ(1, TF_OperationOutputListLength(add, "sum", s)); EXPECT_EQ(1, TF_NodeOutputListLength(add, "sum", s));
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s); ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
EXPECT_EQ(2, TF_OperationNumInputs(add)); EXPECT_EQ(2, TF_NodeNumInputs(add));
EXPECT_EQ(2, TF_OperationInputListLength(add, "inputs", s)); EXPECT_EQ(2, TF_NodeInputListLength(add, "inputs", s));
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s); ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
EXPECT_EQ(TF_INT32, TF_OperationInputType(TF_Port{add, 0})); EXPECT_EQ(TF_INT32, TF_NodeInputType(TF_Port{add, 0}));
EXPECT_EQ(TF_INT32, TF_OperationInputType(TF_Port{add, 1})); EXPECT_EQ(TF_INT32, TF_NodeInputType(TF_Port{add, 1}));
TF_Port add_in_0 = TF_OperationInput(TF_Port{add, 0}); TF_Port add_in_0 = TF_NodeInput(TF_Port{add, 0});
EXPECT_EQ(feed, add_in_0.oper); EXPECT_EQ(feed, add_in_0.node);
EXPECT_EQ(0, add_in_0.index); EXPECT_EQ(0, add_in_0.index);
TF_Port add_in_1 = TF_OperationInput(TF_Port{add, 1}); TF_Port add_in_1 = TF_NodeInput(TF_Port{add, 1});
EXPECT_EQ(three, add_in_1.oper); EXPECT_EQ(three, add_in_1.node);
EXPECT_EQ(0, add_in_1.index); EXPECT_EQ(0, add_in_1.index);
EXPECT_EQ(0, TF_OperationOutputNumConsumers(TF_Port{add, 0})); EXPECT_EQ(0, TF_NodeOutputNumConsumers(TF_Port{add, 0}));
EXPECT_EQ(0, TF_OperationNumControlInputs(add)); EXPECT_EQ(0, TF_NodeNumControlInputs(add));
EXPECT_EQ(0, TF_OperationNumControlOutputs(add)); EXPECT_EQ(0, TF_NodeNumControlOutputs(add));
ASSERT_TRUE(GetAttrValue(add, "T", &attr_value, s)) << TF_Message(s); ASSERT_TRUE(GetAttrValue(add, "T", &attr_value, s)) << TF_Message(s);
EXPECT_EQ(attr_value.type(), tensorflow::DT_INT32); EXPECT_EQ(attr_value.type(), tensorflow::DT_INT32);
ASSERT_TRUE(GetAttrValue(add, "N", &attr_value, s)) << TF_Message(s); ASSERT_TRUE(GetAttrValue(add, "N", &attr_value, s)) << TF_Message(s);
EXPECT_EQ(attr_value.i(), 2); EXPECT_EQ(attr_value.i(), 2);
// Placeholder oper now has a consumer. // Placeholder node now has a consumer.
ASSERT_EQ(1, TF_OperationOutputNumConsumers(TF_Port{feed, 0})); ASSERT_EQ(1, TF_NodeOutputNumConsumers(TF_Port{feed, 0}));
TF_Port feed_port; TF_Port feed_port;
EXPECT_EQ(1, TF_OperationOutputConsumers(TF_Port{feed, 0}, &feed_port, 1)); EXPECT_EQ(1, TF_NodeOutputConsumers(TF_Port{feed, 0}, &feed_port, 1));
EXPECT_EQ(add, feed_port.oper); EXPECT_EQ(add, feed_port.node);
EXPECT_EQ(0, feed_port.index); EXPECT_EQ(0, feed_port.index);
// The scalar const oper also has a consumer. // The scalar const node also has a consumer.
ASSERT_EQ(1, TF_OperationOutputNumConsumers(TF_Port{three, 0})); ASSERT_EQ(1, TF_NodeOutputNumConsumers(TF_Port{three, 0}));
TF_Port three_port; TF_Port three_port;
EXPECT_EQ(1, TF_OperationOutputConsumers(TF_Port{three, 0}, &three_port, 1)); EXPECT_EQ(1, TF_NodeOutputConsumers(TF_Port{three, 0}, &three_port, 1));
EXPECT_EQ(add, three_port.oper); EXPECT_EQ(add, three_port.node);
EXPECT_EQ(1, three_port.index); EXPECT_EQ(1, three_port.index);
// Serialize to GraphDef. // Serialize to GraphDef.
@ -450,8 +448,8 @@ TEST(CAPI, Graph) {
EXPECT_TRUE(found_scalar_const); EXPECT_TRUE(found_scalar_const);
EXPECT_TRUE(found_add); EXPECT_TRUE(found_add);
// Add another oper to the graph. // Add another node to the graph.
TF_Operation* neg = Neg(add, graph, s); TF_Node* neg = Neg(add, graph, s);
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s); ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
// Serialize to NodeDef. // Serialize to NodeDef.
@ -471,13 +469,13 @@ TEST(CAPI, Graph) {
EXPECT_EQ(ProtoDebugString(graph_def), ProtoDebugString(graph_def2)); EXPECT_EQ(ProtoDebugString(graph_def), ProtoDebugString(graph_def2));
// Look up some nodes by name. // Look up some nodes by name.
TF_Operation* neg2 = TF_GraphOperationByName(graph, "neg"); TF_Node* neg2 = TF_GraphNodeByName(graph, "neg");
EXPECT_TRUE(neg == neg2); EXPECT_TRUE(neg == neg2);
NodeDef node_def2; NodeDef node_def2;
ASSERT_TRUE(GetNodeDef(neg2, &node_def2)); ASSERT_TRUE(GetNodeDef(neg2, &node_def2));
EXPECT_EQ(ProtoDebugString(node_def), ProtoDebugString(node_def2)); EXPECT_EQ(ProtoDebugString(node_def), ProtoDebugString(node_def2));
TF_Operation* feed2 = TF_GraphOperationByName(graph, "feed"); TF_Node* feed2 = TF_GraphNodeByName(graph, "feed");
EXPECT_TRUE(feed == feed2); EXPECT_TRUE(feed == feed2);
ASSERT_TRUE(GetNodeDef(feed, &node_def)); ASSERT_TRUE(GetNodeDef(feed, &node_def));
ASSERT_TRUE(GetNodeDef(feed2, &node_def2)); ASSERT_TRUE(GetNodeDef(feed2, &node_def2));
@ -489,22 +487,22 @@ TEST(CAPI, Graph) {
found_add = false; found_add = false;
bool found_neg = false; bool found_neg = false;
size_t pos = 0; size_t pos = 0;
TF_Operation* oper; TF_Node* node;
while ((oper = TF_GraphNextOperation(graph, &pos)) != nullptr) { while ((node = TF_GraphNextNode(graph, &pos)) != nullptr) {
if (oper == feed) { if (node == feed) {
EXPECT_FALSE(found_placeholder); EXPECT_FALSE(found_placeholder);
found_placeholder = true; found_placeholder = true;
} else if (oper == three) { } else if (node == three) {
EXPECT_FALSE(found_scalar_const); EXPECT_FALSE(found_scalar_const);
found_scalar_const = true; found_scalar_const = true;
} else if (oper == add) { } else if (node == add) {
EXPECT_FALSE(found_add); EXPECT_FALSE(found_add);
found_add = true; found_add = true;
} else if (oper == neg) { } else if (node == neg) {
EXPECT_FALSE(found_neg); EXPECT_FALSE(found_neg);
found_neg = true; found_neg = true;
} else { } else {
ASSERT_TRUE(GetNodeDef(oper, &node_def)); ASSERT_TRUE(GetNodeDef(node, &node_def));
ADD_FAILURE() << "Unexpected Node: " << ProtoDebugString(node_def); ADD_FAILURE() << "Unexpected Node: " << ProtoDebugString(node_def);
} }
} }
@ -534,7 +532,7 @@ class CSessionWithGraph {
} }
void SetInputs( void SetInputs(
std::initializer_list<std::pair<TF_Operation*, TF_Tensor*>> inputs) { std::initializer_list<std::pair<TF_Node*, TF_Tensor*>> inputs) {
DeleteInputValues(); DeleteInputValues();
inputs_.clear(); inputs_.clear();
for (const auto& p : inputs) { for (const auto& p : inputs) {
@ -543,17 +541,17 @@ class CSessionWithGraph {
} }
} }
void SetOutputs(std::initializer_list<TF_Operation*> outputs) { void SetOutputs(std::initializer_list<TF_Node*> outputs) {
ResetOutputValues(); ResetOutputValues();
outputs_.clear(); outputs_.clear();
for (TF_Operation* o : outputs) { for (TF_Node* o : outputs) {
outputs_.emplace_back(TF_Port{o, 0}); outputs_.emplace_back(TF_Port{o, 0});
} }
} }
void SetTargets(std::initializer_list<TF_Operation*> targets) { void SetTargets(std::initializer_list<TF_Node*> targets) {
targets_.clear(); targets_.clear();
for (TF_Operation* t : targets) { for (TF_Node* t : targets) {
targets_.emplace_back(t); targets_.emplace_back(t);
} }
} }
@ -574,8 +572,7 @@ class CSessionWithGraph {
TF_Tensor** output_values_ptr = TF_Tensor** output_values_ptr =
output_values_.empty() ? nullptr : &output_values_[0]; output_values_.empty() ? nullptr : &output_values_[0];
TF_Operation* const* targets_ptr = TF_Node* const* targets_ptr = targets_.empty() ? nullptr : &targets_[0];
targets_.empty() ? nullptr : &targets_[0];
TF_SessionRun(session_, nullptr, inputs_ptr, input_values_ptr, TF_SessionRun(session_, nullptr, inputs_ptr, input_values_ptr,
inputs_.size(), outputs_ptr, output_values_ptr, inputs_.size(), outputs_ptr, output_values_ptr,
@ -618,23 +615,23 @@ class CSessionWithGraph {
std::vector<TF_Tensor*> input_values_; std::vector<TF_Tensor*> input_values_;
std::vector<TF_Port> outputs_; std::vector<TF_Port> outputs_;
std::vector<TF_Tensor*> output_values_; std::vector<TF_Tensor*> output_values_;
std::vector<TF_Operation*> targets_; std::vector<TF_Node*> targets_;
}; };
TEST(CAPI, SessionWithGraph) { TEST(CAPI, SessionWithGraph) {
TF_Status* s = TF_NewStatus(); TF_Status* s = TF_NewStatus();
TF_Graph* graph = TF_NewGraph(); TF_Graph* graph = TF_NewGraph();
// Make a placeholder operation. // Make a placeholder node.
TF_Operation* feed = Placeholder(graph, s); TF_Node* feed = Placeholder(graph, s);
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s); ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
// Make a constant operation with the scalar "2". // Make a constant node with the scalar "2".
TF_Operation* two = ScalarConst(2, graph, s); TF_Node* two = ScalarConst(2, graph, s);
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s); ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
// Add operation. // Add node.
TF_Operation* add = Add(feed, two, graph, s); TF_Node* add = Add(feed, two, graph, s);
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s); ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
// Create a session for this graph. // Create a session for this graph.
@ -655,11 +652,11 @@ TEST(CAPI, SessionWithGraph) {
static_cast<tensorflow::int32*>(TF_TensorData(out)); static_cast<tensorflow::int32*>(TF_TensorData(out));
EXPECT_EQ(3 + 2, *output_contents); EXPECT_EQ(3 + 2, *output_contents);
// Add another operation to the graph. // Add another node to the graph.
TF_Operation* neg = Neg(add, graph, s); TF_Node* neg = Neg(add, graph, s);
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s); ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
// Run up to the new operation. // Run up to the new node.
csession.SetInputs({{feed, Int32Tensor(7)}}); csession.SetInputs({{feed, Int32Tensor(7)}});
csession.SetOutputs({neg}); csession.SetOutputs({neg});
csession.Run(s); csession.Run(s);