Add backticks (where they were missing) to modules referenced in deprecation instructions. This will ensure generated API docs contain hyperlinks from deprecation instructions to suggested modules.

PiperOrigin-RevId: 236299530
This commit is contained in:
Rishabh Kabra 2019-03-01 05:14:52 -08:00 committed by TensorFlower Gardener
parent a9b3864070
commit d00fa72a0f
8 changed files with 27 additions and 25 deletions

View File

@ -53,7 +53,7 @@ def _is_variable_op(op):
@deprecation.deprecated(
date=None,
instructions="Use tf.compat.v1.graph_util.must_run_on_cpu")
instructions="Use `tf.compat.v1.graph_util.must_run_on_cpu`")
@tf_export(v1=["graph_util.must_run_on_cpu"])
def must_run_on_cpu(node, pin_variables_on_cpu=False):
"""Returns True if the given node_def must run on CPU, otherwise False.
@ -156,7 +156,7 @@ def _bfs_for_reachable_nodes(target_nodes, name_to_input_name):
@deprecation.deprecated(
date=None,
instructions="Use tf.compat.v1.graph_util.extract_sub_graph")
instructions="Use `tf.compat.v1.graph_util.extract_sub_graph`")
@tf_export(v1=["graph_util.extract_sub_graph"])
def extract_sub_graph(graph_def, dest_nodes):
"""Extract the subgraph that can reach any of the nodes in 'dest_nodes'.
@ -197,7 +197,8 @@ def extract_sub_graph(graph_def, dest_nodes):
@deprecation.deprecated(
date=None,
instructions="Use tf.compat.v1.graph_util.tensor_shape_from_node_def_name")
instructions="Use `tf.compat.v1.graph_util.tensor_shape_from_node_def_name`"
)
@tf_export(v1=["graph_util.tensor_shape_from_node_def_name"])
def tensor_shape_from_node_def_name(graph, input_name):
"""Convenience function to get a shape from a NodeDef's input string."""
@ -215,7 +216,7 @@ def tensor_shape_from_node_def_name(graph, input_name):
@deprecation.deprecated(
date=None,
instructions="Use tf.compat.v1.graph_util.convert_variables_to_constants")
instructions="Use `tf.compat.v1.graph_util.convert_variables_to_constants`")
@tf_export(v1=["graph_util.convert_variables_to_constants"])
def convert_variables_to_constants(sess,
input_graph_def,
@ -305,7 +306,7 @@ def convert_variables_to_constants(sess,
@deprecation.deprecated(
date=None,
instructions="Use tf.compat.v1.graph_util.remove_training_nodes")
instructions="Use `tf.compat.v1.graph_util.remove_training_nodes`")
@tf_export(v1=["graph_util.remove_training_nodes"])
def remove_training_nodes(input_graph, protected_nodes=None):
"""Prunes out nodes that aren't needed for inference.

View File

@ -84,7 +84,8 @@ def load_op_library(library_filename):
return module
@deprecation.deprecated(date=None, instructions='Use tf.load_library instead.')
@deprecation.deprecated(date=None,
instructions='Use `tf.load_library` instead.')
@tf_export(v1=['load_file_system_library'])
def load_file_system_library(library_filename):
"""Loads a TensorFlow plugin, containing file system implementation.

View File

@ -117,7 +117,7 @@ class Conv1D(keras_layers.Conv1D, base.Layer):
@deprecation.deprecated(
date=None,
instructions='Use tf.keras.layers.Conv1D instead.')
instructions='Use `tf.keras.layers.Conv1D` instead.')
@tf_export(v1=['layers.conv1d'])
def conv1d(inputs,
filters,
@ -316,7 +316,7 @@ class Conv2D(keras_layers.Conv2D, base.Layer):
@deprecation.deprecated(
date=None,
instructions='Use tf.keras.layers.Conv2D instead.')
instructions='Use `tf.keras.layers.Conv2D` instead.')
@tf_export(v1=['layers.conv2d'])
def conv2d(inputs,
filters,
@ -523,7 +523,7 @@ class Conv3D(keras_layers.Conv3D, base.Layer):
@deprecation.deprecated(
date=None,
instructions='Use tf.keras.layers.Conv3D instead.')
instructions='Use `tf.keras.layers.Conv3D` instead.')
@tf_export(v1=['layers.conv3d'])
def conv3d(inputs,
filters,
@ -853,7 +853,7 @@ class SeparableConv2D(keras_layers.SeparableConv2D, base.Layer):
@deprecation.deprecated(
date=None,
instructions='Use tf.keras.layers.SeparableConv1D instead.')
instructions='Use `tf.keras.layers.SeparableConv1D` instead.')
@tf_export(v1=['layers.separable_conv1d'])
def separable_conv1d(inputs,
filters,
@ -973,7 +973,7 @@ def separable_conv1d(inputs,
@deprecation.deprecated(
date=None,
instructions='Use tf.keras.layers.SeparableConv2D instead.')
instructions='Use `tf.keras.layers.SeparableConv2D` instead.')
@tf_export(v1=['layers.separable_conv2d'])
def separable_conv2d(inputs,
filters,
@ -1183,7 +1183,7 @@ class Conv2DTranspose(keras_layers.Conv2DTranspose, base.Layer):
@deprecation.deprecated(
date=None,
instructions='Use tf.keras.layers.Conv2DTranspose instead.')
instructions='Use `tf.keras.layers.Conv2DTranspose` instead.')
@tf_export(v1=['layers.conv2d_transpose'])
def conv2d_transpose(inputs,
filters,
@ -1363,7 +1363,7 @@ class Conv3DTranspose(keras_layers.Conv3DTranspose, base.Layer):
@deprecation.deprecated(
date=None,
instructions='Use tf.keras.layers.Conv3DTranspose instead.')
instructions='Use `tf.keras.layers.Conv3DTranspose` instead.')
@tf_export(v1=['layers.conv3d_transpose'])
def conv3d_transpose(inputs,
filters,

View File

@ -704,7 +704,7 @@ def saturate_cast(value, dtype, name=None):
name="max"))
return cast(value, dtype, name=name)
@deprecation.deprecated(date=None, instructions="Use tf.cast instead.")
@deprecation.deprecated(date=None, instructions="Use `tf.cast` instead.")
@tf_export(v1=["to_float"])
def to_float(x, name="ToFloat"):
"""Casts a tensor to type `float32`.
@ -723,7 +723,7 @@ def to_float(x, name="ToFloat"):
return cast(x, dtypes.float32, name=name)
@deprecation.deprecated(date=None, instructions="Use tf.cast instead.")
@deprecation.deprecated(date=None, instructions="Use `tf.cast` instead.")
@tf_export(v1=["to_double"])
def to_double(x, name="ToDouble"):
"""Casts a tensor to type `float64`.
@ -742,7 +742,7 @@ def to_double(x, name="ToDouble"):
return cast(x, dtypes.float64, name=name)
@deprecation.deprecated(date=None, instructions="Use tf.cast instead.")
@deprecation.deprecated(date=None, instructions="Use `tf.cast` instead.")
@tf_export(v1=["to_int32"])
def to_int32(x, name="ToInt32"):
"""Casts a tensor to type `int32`.
@ -761,7 +761,7 @@ def to_int32(x, name="ToInt32"):
return cast(x, dtypes.int32, name=name)
@deprecation.deprecated(date=None, instructions="Use tf.cast instead.")
@deprecation.deprecated(date=None, instructions="Use `tf.cast` instead.")
@tf_export(v1=["to_int64"])
def to_int64(x, name="ToInt64"):
"""Casts a tensor to type `int64`.
@ -780,7 +780,7 @@ def to_int64(x, name="ToInt64"):
return cast(x, dtypes.int64, name=name)
@deprecation.deprecated(date=None, instructions="Use tf.cast instead.")
@deprecation.deprecated(date=None, instructions="Use `tf.cast` instead.")
@tf_export(v1=["to_bfloat16"])
def to_bfloat16(x, name="ToBFloat16"):
"""Casts a tensor to type `bfloat16`.
@ -799,7 +799,7 @@ def to_bfloat16(x, name="ToBFloat16"):
return cast(x, dtypes.bfloat16, name=name)
@deprecation.deprecated(date=None, instructions="Use tf.cast instead.")
@deprecation.deprecated(date=None, instructions="Use `tf.cast` instead.")
@tf_export(v1=["to_complex64"])
def to_complex64(x, name="ToComplex64"):
"""Casts a tensor to type `complex64`.
@ -818,7 +818,7 @@ def to_complex64(x, name="ToComplex64"):
return cast(x, dtypes.complex64, name=name)
@deprecation.deprecated(date=None, instructions="Use tf.cast instead.")
@deprecation.deprecated(date=None, instructions="Use `tf.cast` instead.")
@tf_export(v1=["to_complex128"])
def to_complex128(x, name="ToComplex128"):
"""Casts a tensor to type `complex128`.

View File

@ -240,7 +240,7 @@ def fixed_size_partitioner(num_shards, axis=0):
@tf_export(v1=["create_partitioned_variables"])
@deprecation.deprecated(
date=None,
instructions="Use tf.get_variable with a partitioner set.")
instructions="Use `tf.get_variable` with a partitioner set.")
def create_partitioned_variables(
shape, slicing, initializer, dtype=dtypes.float32,
trainable=True, collections=None, name=None, reuse=None):

View File

@ -329,7 +329,7 @@ def random_crop(value, size, seed=None, name=None):
@tf_export(v1=["random.multinomial", "multinomial"])
@deprecation.deprecated(
date=None, instructions="Use tf.random.categorical instead.")
date=None, instructions="Use `tf.random.categorical` instead.")
def multinomial(logits, num_samples, seed=None, name=None, output_dtype=None):
"""Draws samples from a multinomial distribution.

View File

@ -182,7 +182,7 @@ def stateless_truncated_normal(shape,
@tf_export(v1=["random.stateless_multinomial"])
@deprecation.deprecated(
date=None, instructions="Use tf.random.stateless_categorical instead.")
date=None, instructions="Use `tf.random.stateless_categorical` instead.")
def stateless_multinomial(logits,
num_samples,
seed,

View File

@ -124,8 +124,8 @@ def generate_checkpoint_state_proto(save_dir,
@deprecation.deprecated(
date=None,
instructions=("Use tf.train.CheckpointManager to manage checkpoints rather "
"than manually editing the Checkpoint proto."))
instructions=("Use `tf.train.CheckpointManager` to manage checkpoints "
"rather than manually editing the Checkpoint proto."))
@tf_export(v1=["train.update_checkpoint_state"])
def update_checkpoint_state(save_dir,
model_checkpoint_path,