Merge pull request #13503 from dantkz/unstack_int64
Unstack int64 tensors on GPU
This commit is contained in:
commit
ccb687421b
@ -154,6 +154,12 @@ REGISTER_KERNEL_BUILDER(Name("Unpack")
|
||||
.HostMemory("output")
|
||||
.TypeConstraint<int32>("T"),
|
||||
UnpackOp<CPUDevice, int32>);
|
||||
REGISTER_KERNEL_BUILDER(Name("Unpack")
|
||||
.Device(DEVICE_GPU)
|
||||
.HostMemory("value")
|
||||
.HostMemory("output")
|
||||
.TypeConstraint<int64>("T"),
|
||||
UnpackOp<CPUDevice, int64>);
|
||||
|
||||
#endif // GOOGLE_CUDA
|
||||
|
||||
@ -171,6 +177,13 @@ REGISTER_KERNEL_BUILDER(Name("Unpack")
|
||||
.HostMemory("output")
|
||||
.TypeConstraint<int32>("T"),
|
||||
UnpackOp<CPUDevice, int32>);
|
||||
|
||||
REGISTER_KERNEL_BUILDER(Name("Unpack")
|
||||
.Device(DEVICE_SYCL)
|
||||
.HostMemory("value")
|
||||
.HostMemory("output")
|
||||
.TypeConstraint<int64>("T"),
|
||||
UnpackOp<CPUDevice, int64>);
|
||||
#undef REGISTER_SYCL
|
||||
#endif // TENSORFLOW_USE_SYCL
|
||||
|
||||
|
@ -22,6 +22,7 @@ import numpy as np
|
||||
from six.moves import xrange # pylint: disable=redefined-builtin
|
||||
|
||||
from tensorflow.python.framework import constant_op
|
||||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import gradient_checker
|
||||
from tensorflow.python.platform import test
|
||||
@ -42,15 +43,33 @@ class UnstackOpTest(test.TestCase):
|
||||
np.random.seed(7)
|
||||
with self.test_session(use_gpu=True):
|
||||
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
|
||||
data = np.random.randn(*shape)
|
||||
# Convert data to a single tensorflow tensor
|
||||
x = constant_op.constant(data)
|
||||
# Unpack into a list of tensors
|
||||
cs = array_ops.unstack(x, num=shape[0])
|
||||
self.assertEqual(type(cs), list)
|
||||
self.assertEqual(len(cs), shape[0])
|
||||
cs = [c.eval() for c in cs]
|
||||
self.assertAllEqual(cs, data)
|
||||
for dtype in [np.bool, np.float16, np.float32, np.float64, np.int32, np.int64]:
|
||||
data = np.random.randn(*shape).astype(dtype)
|
||||
# Convert data to a single tensorflow tensor
|
||||
x = constant_op.constant(data)
|
||||
# Unpack into a list of tensors
|
||||
cs = array_ops.unstack(x, num=shape[0])
|
||||
self.assertEqual(type(cs), list)
|
||||
self.assertEqual(len(cs), shape[0])
|
||||
cs = [c.eval() for c in cs]
|
||||
self.assertAllEqual(cs, data)
|
||||
|
||||
def testSimpleGpu(self):
|
||||
if not test_util.is_gpu_available():
|
||||
self.skipTest("No GPU available")
|
||||
np.random.seed(7)
|
||||
with self.test_session(use_gpu=True, force_gpu=True):
|
||||
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
|
||||
for dtype in [np.float16, np.float32, np.float64, np.int32, np.int64]:
|
||||
data = np.random.randn(*shape).astype(dtype)
|
||||
# Convert data to a single tensorflow tensor
|
||||
x = constant_op.constant(data)
|
||||
# Unpack into a list of tensors
|
||||
cs = array_ops.unstack(x, num=shape[0])
|
||||
self.assertEqual(type(cs), list)
|
||||
self.assertEqual(len(cs), shape[0])
|
||||
cs = [c.eval() for c in cs]
|
||||
self.assertAllEqual(cs, data)
|
||||
|
||||
def testGradientsAxis0(self):
|
||||
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
|
||||
|
Loading…
Reference in New Issue
Block a user