diff --git a/tensorflow/core/framework/op_compatibility_test.cc b/tensorflow/core/framework/op_compatibility_test.cc index 7716b34ca19..0f5e27de797 100644 --- a/tensorflow/core/framework/op_compatibility_test.cc +++ b/tensorflow/core/framework/op_compatibility_test.cc @@ -49,6 +49,7 @@ class OpCompatibilityTest : public OpsTestBase { &new_out_types)); ASSERT_EQ(new_in_types, old_in_types); ASSERT_EQ(new_out_types, old_out_types); + ASSERT_OK(OpDefCompatible(old_op_def, *new_op_def)); // Verify the Op actually runs. Result() will return the output. ASSERT_OK(InitOp()); @@ -57,7 +58,21 @@ class OpCompatibilityTest : public OpsTestBase { string Result() { return GetOutput(0)->scalar()(); } - void ExpectInvalid(const OpDef& old_op_def, string error) { + void ExpectIncompatible(const OpDef& old_op_def, const OpDef& new_op_def, + const string& error) { + // Test OpDefCompatible gives the same answer without the node_def. + Status status = OpDefCompatible(old_op_def, new_op_def); + if (status.ok()) { + ADD_FAILURE() << SummarizeOpDef(old_op_def) << " vs. " + << SummarizeOpDef(new_op_def); + } else { + EXPECT_TRUE(StringPiece(status.error_message()).contains(error)) + << status << " does not contain " << error; + } + } + + void ExpectInvalid(const OpDef& old_op_def, const string& validation_error, + const string& compatibility_error) { // Record the original signature before we change *node_def(). DataTypeVector old_in_types, old_out_types; ASSERT_OK(InOutTypesForNode(*node_def(), old_op_def, &old_in_types, @@ -72,12 +87,16 @@ class OpCompatibilityTest : public OpsTestBase { if (status.ok()) { ADD_FAILURE() << SummarizeNodeDef(*node_def()); } else { - EXPECT_TRUE(StringPiece(status.error_message()).contains(error)) - << status << " does not contain " << error; + EXPECT_TRUE( + StringPiece(status.error_message()).contains(validation_error)) + << status << " does not contain " << validation_error; } + + ExpectIncompatible(old_op_def, *new_op_def, compatibility_error); } - void ExpectTypeMismatch(const OpDef& old_op_def) { + void ExpectTypeMismatch(const OpDef& old_op_def, + const string& compatibility_error) { // Record the original signature before we change *node_def(). DataTypeVector old_in_types, old_out_types; ASSERT_OK(InOutTypesForNode(*node_def(), old_op_def, &old_in_types, @@ -98,6 +117,8 @@ class OpCompatibilityTest : public OpsTestBase { << DataTypeVectorString(new_in_types) << " -> " << DataTypeVectorString(new_out_types); } + + ExpectIncompatible(old_op_def, *new_op_def, compatibility_error); } }; @@ -338,6 +359,57 @@ TEST_F(OpCompatibilityTest, PolyIntoList) { EXPECT_EQ("poly_into_list = PolyIntoList[N=1, T=DT_INT32](a)", Result()); } +// Should be able to make a multiple inputs/outputs into a list with +// the default types matching the inputs/outputs being replaced. + +// Changing from int32, int32 -> N * int32 (where N: int = 2 by default). +REGISTER_OP("MakeMultipleSameList") + .Input("a: N * int32") + .Output("ndef: string") + .Attr("N: int = 2"); +REGISTER_KERNEL_BUILDER(Name("MakeMultipleSameList").Device(DEVICE_CPU), + TestKernel); + +TEST_F(OpCompatibilityTest, MakeMultipleSameList) { + OpDef old_op_def; + ASSERT_OK(OpDefBuilder("MakeMultipleSameList") + .Input("a: int32") + .Input("b: int32") + .Output("ndef: string") + .Finalize(&old_op_def)); + ASSERT_OK(NodeDefBuilder("make_list", &old_op_def) + .Input(FakeInput()) + .Input(FakeInput()) + .Finalize(node_def())); + ExpectSuccess(old_op_def); + EXPECT_EQ("make_list = MakeMultipleSameList[N=2](a, b)", Result()); +} + +// Changing from int32, float -> T +// (where T: list(type) = [int32, float] by default). +REGISTER_OP("MakeMultipleAnyList") + .Input("a: T") + .Output("ndef: string") + .Attr("T: list(type) = [DT_INT32, DT_FLOAT]"); +REGISTER_KERNEL_BUILDER(Name("MakeMultipleAnyList").Device(DEVICE_CPU), + TestKernel); + +TEST_F(OpCompatibilityTest, MakeMultipleAnyList) { + OpDef old_op_def; + ASSERT_OK(OpDefBuilder("MakeMultipleAnyList") + .Input("a: int32") + .Input("b: float") + .Output("ndef: string") + .Finalize(&old_op_def)); + ASSERT_OK(NodeDefBuilder("make_list", &old_op_def) + .Input(FakeInput()) + .Input(FakeInput()) + .Finalize(node_def())); + ExpectSuccess(old_op_def); + EXPECT_EQ("make_list = MakeMultipleAnyList[T=[DT_INT32, DT_FLOAT]](a, b)", + Result()); +} + // Should be able to change the name of an input/output. REGISTER_OP("ChangeName").Input("y: int32").Output("ndef: string"); REGISTER_KERNEL_BUILDER(Name("ChangeName").Device(DEVICE_CPU), TestKernel); @@ -477,6 +549,18 @@ TEST_F(OpCompatibilityTest, ShorterSameList) { // Negative tests ------------------------------------------------------------- +// Can't remove an attr. +REGISTER_OP("RemoveAttr"); + +TEST_F(OpCompatibilityTest, RemoveAttrFails) { + OpDef old_op_def; + ASSERT_OK(OpDefBuilder("RemoveAttr").Attr("a: int").Finalize(&old_op_def)); + ASSERT_OK( + NodeDefBuilder("fails", &old_op_def).Attr("a", 3).Finalize(node_def())); + ExpectInvalid(old_op_def, "NodeDef mentions attr 'a' not in", + "Attr 'a' removed"); +} + // Can't add an attr without a default. REGISTER_OP("AddAttrNoDefault").Attr("a: int"); @@ -484,7 +568,8 @@ TEST_F(OpCompatibilityTest, AddAttrNoDefaultFails) { OpDef old_op_def; ASSERT_OK(OpDefBuilder("AddAttrNoDefault").Finalize(&old_op_def)); ASSERT_OK(NodeDefBuilder("fails", &old_op_def).Finalize(node_def())); - ExpectInvalid(old_op_def, "NodeDef missing attr 'a'"); + ExpectInvalid(old_op_def, "NodeDef missing attr 'a'", + "Attr 'a' added without default"); } // Can't add a non-list input/output. @@ -495,7 +580,8 @@ TEST_F(OpCompatibilityTest, AddSingleInputFails) { ASSERT_OK(OpDefBuilder("AddSingleInput").Finalize(&old_op_def)); ASSERT_OK(NodeDefBuilder("fails", &old_op_def).Finalize(node_def())); ExpectInvalid(old_op_def, - "expected inputs 'int32' do not match 0 inputs specified"); + "expected inputs 'int32' do not match 0 inputs specified", + "Input signature mismatch '' vs. 'int32'"); } // Can't add a list input/output without an empty default. @@ -514,7 +600,8 @@ TEST_F(OpCompatibilityTest, AddNIntsBigDefaultFails) { ASSERT_OK(OpDefBuilder("AddNIntsBigDefault").Finalize(&old_op_def)); ASSERT_OK(NodeDefBuilder("fails", &old_op_def).Finalize(node_def())); ExpectInvalid(old_op_def, - "expected inputs 'int32' do not match 0 inputs specified"); + "expected inputs 'int32' do not match 0 inputs specified", + "Input signature mismatch '' vs. 'int32'"); } TEST_F(OpCompatibilityTest, AddNSameBigDefaultFails) { @@ -522,7 +609,8 @@ TEST_F(OpCompatibilityTest, AddNSameBigDefaultFails) { ASSERT_OK(OpDefBuilder("AddNSameBigDefault").Finalize(&old_op_def)); ASSERT_OK(NodeDefBuilder("fails", &old_op_def).Finalize(node_def())); ExpectInvalid(old_op_def, - "expected inputs 'int32' do not match 0 inputs specified"); + "expected inputs 'int32' do not match 0 inputs specified", + "Input signature mismatch '' vs. 'int32'"); } TEST_F(OpCompatibilityTest, AddListBigDefaultFails) { @@ -530,7 +618,8 @@ TEST_F(OpCompatibilityTest, AddListBigDefaultFails) { ASSERT_OK(OpDefBuilder("AddListBigDefault").Finalize(&old_op_def)); ASSERT_OK(NodeDefBuilder("fails", &old_op_def).Finalize(node_def())); ExpectInvalid(old_op_def, - "expected inputs 'int32' do not match 0 inputs specified"); + "expected inputs 'int32' do not match 0 inputs specified", + "Input signature mismatch '' vs. 'int32'"); } // Can't change the type of an input/output. @@ -543,7 +632,8 @@ TEST_F(OpCompatibilityTest, ChangeTypeFails) { ASSERT_OK(NodeDefBuilder("fails", &old_op_def) .Input(FakeInput()) .Finalize(node_def())); - ExpectTypeMismatch(old_op_def); + ExpectTypeMismatch(old_op_def, + "Input signature mismatch 'int32' vs. 'float'"); } // Can't change the order of inputs/outputs. @@ -560,7 +650,24 @@ TEST_F(OpCompatibilityTest, ChangeOrderFails) { .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); - ExpectTypeMismatch(old_op_def); + ExpectTypeMismatch( + old_op_def, "Input signature mismatch 'int32, float' vs. 'float, int32'"); +} + +// Can't remove inputs/outputs. + +REGISTER_OP("RemoveInput"); + +TEST_F(OpCompatibilityTest, RemoveInputFails) { + OpDef old_op_def; + ASSERT_OK( + OpDefBuilder("RemoveInput").Input("a: float").Finalize(&old_op_def)); + ASSERT_OK(NodeDefBuilder("fails", &old_op_def) + .Input(FakeInput()) + .Finalize(node_def())); + ExpectInvalid(old_op_def, + "expected inputs '' do not match 1 inputs specified", + "Input signature mismatch 'float' vs. ''"); } // Can't change the type of an attr. @@ -574,7 +681,8 @@ TEST_F(OpCompatibilityTest, ChangeAttrTypeFails) { ASSERT_OK(NodeDefBuilder("fails", &old_op_def) .Attr("a", true) .Finalize(node_def())); - ExpectInvalid(old_op_def, "value with type 'bool' when 'int' expected"); + ExpectInvalid(old_op_def, "value with type 'bool' when 'int' expected", + "Attr 'a' changed type 'bool' -> 'int'"); } // Can't change an attr from a list. @@ -587,7 +695,8 @@ TEST_F(OpCompatibilityTest, AttrFromListFails) { OpDefBuilder("AttrFromList").Attr("a: list(int)").Finalize(&old_op_def)); ASSERT_OK( NodeDefBuilder("fails", &old_op_def).Attr("a", {5}).Finalize(node_def())); - ExpectInvalid(old_op_def, "value with type 'list(int)' when 'int' expected"); + ExpectInvalid(old_op_def, "value with type 'list(int)' when 'int' expected", + "Attr 'a' changed type 'list(int)' -> 'int'"); } // Can't change an attr to a list. @@ -599,7 +708,8 @@ TEST_F(OpCompatibilityTest, AttrToListFails) { ASSERT_OK(OpDefBuilder("AttrToList").Attr("a: int").Finalize(&old_op_def)); ASSERT_OK( NodeDefBuilder("fails", &old_op_def).Attr("a", 5).Finalize(node_def())); - ExpectInvalid(old_op_def, "value with type 'int' when 'list(int)' expected"); + ExpectInvalid(old_op_def, "value with type 'int' when 'list(int)' expected", + "Attr 'a' changed type 'int' -> 'list(int)'"); } // Can't change an input from polymorphic to a list of any type. @@ -615,8 +725,8 @@ TEST_F(OpCompatibilityTest, PolymorphicToAnyListFails) { ASSERT_OK(NodeDefBuilder("fails", &old_op_def) .Input(FakeInput(DT_INT32)) .Finalize(node_def())); - ExpectInvalid(old_op_def, - "value with type 'type' when 'list(type)' expected"); + ExpectInvalid(old_op_def, "value with type 'type' when 'list(type)' expected", + "Attr 'T' changed type 'type' -> 'list(type)'"); } // Can't change an input from a list of the same type to a list of any type. @@ -636,8 +746,8 @@ TEST_F(OpCompatibilityTest, SameToAnyListFails) { ASSERT_OK(NodeDefBuilder("fails", &old_op_def) .Input(FakeInput(1, DT_INT32)) .Finalize(node_def())); - ExpectInvalid(old_op_def, - "value with type 'type' when 'list(type)' expected"); + ExpectInvalid(old_op_def, "value with type 'type' when 'list(type)' expected", + "Attr 'T' changed type 'type' -> 'list(type)'"); } // Changing an attr's default is not technically illegal, but should diff --git a/tensorflow/core/framework/op_def_util.cc b/tensorflow/core/framework/op_def_util.cc index e3aef011de3..7b0fa668bff 100644 --- a/tensorflow/core/framework/op_def_util.cc +++ b/tensorflow/core/framework/op_def_util.cc @@ -1,13 +1,14 @@ #include "tensorflow/core/framework/op_def_util.h" #include +#include #include "tensorflow/core/framework/attr_value_util.h" -#include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/framework/types.h" +#include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/gtl/map_util.h" -#include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/port.h" +#include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/regexp.h" namespace tensorflow { @@ -341,4 +342,161 @@ string SummarizeOpDef(const OpDef& op_def) { return ret; } +namespace { + +typedef std::unordered_map AttrMap; +void FillAttrMap(const OpDef& op_def, AttrMap* attr_map) { + for (const auto& attr : op_def.attr()) { + (*attr_map)[attr.name()] = &attr; + } +} + +// Add a comma to *s every call but the first (*add_comma should be +// initialized to false). +void AddComma(string* s, bool* add_comma) { + if (*add_comma) { + strings::StrAppend(s, ", "); + } else { + *add_comma = true; + } +} + +// Compute a signature for either inputs or outputs that will be the +// same for both the old and new OpDef if they are compatible. We +// assume that new_attrs is a superset of old_attrs, and that any attr +// in the difference has a default. Our strategy is to make a list of +// types, where the types are things like: +// * "int32", "float", etc., +// * "T" for some attr "T" in old_attrs, or +// * "N * type" for "N" either some attr in old_attrs. +// +// We get the types by either using the attrs in args if they are in +// old_attrs, or substituting the default value from new_attrs. +string ComputeArgSignature( + const protobuf::RepeatedPtrField& args, + const AttrMap& old_attrs, const AttrMap& new_attrs) { + string s; + bool add_comma = false; + for (const OpDef::ArgDef& arg : args) { + if (!arg.type_list_attr().empty()) { + const OpDef::AttrDef* old_attr = + gtl::FindPtrOrNull(old_attrs, arg.type_list_attr()); + if (old_attr) { + // Both old and new have the list(type) attr, so can use it directly. + AddComma(&s, &add_comma); + strings::StrAppend(&s, arg.type_list_attr()); + if (arg.is_ref()) strings::StrAppend(&s, " ref"); + } else { + // Missing the list(type) attr in the old, so use the default + // value for the attr from new instead. + const OpDef::AttrDef* new_attr = + gtl::FindPtrOrNull(new_attrs, arg.type_list_attr()); + const auto& type_list = new_attr->default_value().list().type(); + if (type_list.empty()) continue; + for (int i = 0; i < type_list.size(); ++i) { + AddComma(&s, &add_comma); + strings::StrAppend( + &s, DataTypeString(static_cast(type_list.Get(i)))); + if (arg.is_ref()) strings::StrAppend(&s, " ref"); + } + } + } else { + int num = 1; // How many input/outputs does this represent? + if (!arg.number_attr().empty()) { + // N * type case. + const OpDef::AttrDef* old_attr = + gtl::FindPtrOrNull(old_attrs, arg.number_attr()); + if (old_attr) { + // Both old and new have the number attr, so can use it directly. + AddComma(&s, &add_comma); + strings::StrAppend(&s, arg.number_attr(), " * "); + add_comma = false; // Don't add another comma before the type. + } else { + // Missing the number attr in the old, so use the default + // value for the attr from new instead. + const OpDef::AttrDef* new_attr = + gtl::FindPtrOrNull(new_attrs, arg.number_attr()); + num = new_attr->default_value().i(); + } + } + + string type; // What is the type of this arg? + if (arg.type() != DT_INVALID) { + // int32, float, etc. case + type = DataTypeString(arg.type()); + } else { + const OpDef::AttrDef* old_attr = + gtl::FindPtrOrNull(old_attrs, arg.type_attr()); + if (old_attr) { + // Both old and new have the type attr, so can use it directly. + type = arg.type_attr(); + } else { + // Missing the type attr in the old, so use the default + // value for the attr from new instead. + const OpDef::AttrDef* new_attr = + gtl::FindPtrOrNull(new_attrs, arg.type_attr()); + type = DataTypeString(new_attr->default_value().type()); + } + } + if (arg.is_ref()) strings::StrAppend(&type, " ref"); + + // Record `num` * `type` in the signature. + for (int i = 0; i < num; ++i) { + AddComma(&s, &add_comma); + strings::StrAppend(&s, type); + } + } + } + + return s; +} + +} // namespace + +Status OpDefCompatible(const OpDef& old_op, const OpDef& new_op) { +#define VALIDATE(CONDITION, ...) \ + if (!(CONDITION)) { \ + return errors::InvalidArgument("Incompatible Op change: ", __VA_ARGS__, \ + "; old: ", SummarizeOpDef(old_op), \ + "; new: ", SummarizeOpDef(new_op)); \ + } + + VALIDATE(old_op.name() == new_op.name(), "Name mismatch"); + + AttrMap new_attrs, old_attrs; + FillAttrMap(old_op, &old_attrs); + FillAttrMap(new_op, &new_attrs); + for (const auto& old_attr : old_op.attr()) { + const OpDef::AttrDef* new_attr = + gtl::FindPtrOrNull(new_attrs, old_attr.name()); + VALIDATE(new_attr != nullptr, "Attr '", old_attr.name(), "' removed"); + VALIDATE(old_attr.type() == new_attr->type(), "Attr '", old_attr.name(), + "' changed type '", old_attr.type(), "' -> '", new_attr->type(), + "'"); + } + + for (const auto& new_attr : new_op.attr()) { + const OpDef::AttrDef* old_attr = + gtl::FindPtrOrNull(old_attrs, new_attr.name()); + VALIDATE(old_attr != nullptr || new_attr.has_default_value(), "Attr '", + new_attr.name(), "' added without default"); + } + + const string old_in_sig = + ComputeArgSignature(old_op.input_arg(), old_attrs, new_attrs); + const string new_in_sig = + ComputeArgSignature(new_op.input_arg(), old_attrs, new_attrs); + VALIDATE(old_in_sig == new_in_sig, "Input signature mismatch '", old_in_sig, + "' vs. '", new_in_sig, "'"); + + const string old_out_sig = + ComputeArgSignature(old_op.output_arg(), old_attrs, new_attrs); + const string new_out_sig = + ComputeArgSignature(new_op.output_arg(), old_attrs, new_attrs); + VALIDATE(old_out_sig == new_out_sig, "Output signature mismatch '", + old_out_sig, "' vs. '", new_out_sig, "'"); + + return Status::OK(); +} + } // namespace tensorflow diff --git a/tensorflow/core/framework/op_def_util.h b/tensorflow/core/framework/op_def_util.h index a9fecf3fa01..c8440c5defb 100644 --- a/tensorflow/core/framework/op_def_util.h +++ b/tensorflow/core/framework/op_def_util.h @@ -27,6 +27,11 @@ OpDef::AttrDef* FindAttrMutable(StringPiece name, OpDef* op_def); // than a text-format proto. Excludes descriptions. string SummarizeOpDef(const OpDef& op_def); +// Returns an error if new_op is not backwards-compatible with (more +// accepting than) old_op. +// REQUIRES: old_op and new_op must pass validation. +Status OpDefCompatible(const OpDef& old_op, const OpDef& new_op); + } // namespace tensorflow #endif // TENSORFLOW_FRAMEWORK_OP_DEF_UTIL_H_ diff --git a/tensorflow/core/kernels/maxpooling_op_gpu.cu.cc b/tensorflow/core/kernels/maxpooling_op_gpu.cu.cc index 65262eb54e8..13684c82f72 100644 --- a/tensorflow/core/kernels/maxpooling_op_gpu.cu.cc +++ b/tensorflow/core/kernels/maxpooling_op_gpu.cu.cc @@ -3,6 +3,7 @@ #define EIGEN_USE_GPU #include +#include #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor_types.h" diff --git a/tensorflow/core/kernels/reverse_op.h b/tensorflow/core/kernels/reverse_op.h index bba25f70e8c..ca13b98a716 100644 --- a/tensorflow/core/kernels/reverse_op.h +++ b/tensorflow/core/kernels/reverse_op.h @@ -22,6 +22,16 @@ struct Reverse { } }; +template +struct Reverse { + void operator()(const Device& d, typename TTypes::ConstTensor input, + typename TTypes::ConstTensor, + typename TTypes::Tensor output) { + // Reversing a scalar is copying it. + output.device(d) = input; + } +}; + } // namespace functor } // namespace tensorflow diff --git a/tensorflow/core/util/tensor_slice_reader_cache.cc b/tensorflow/core/util/tensor_slice_reader_cache.cc index af81d0115eb..24eedd5c5c9 100644 --- a/tensorflow/core/util/tensor_slice_reader_cache.cc +++ b/tensorflow/core/util/tensor_slice_reader_cache.cc @@ -9,9 +9,7 @@ namespace checkpoint { TensorSliceReaderCacheWrapper::TensorSliceReaderCacheWrapper() {} TensorSliceReaderCacheWrapper::~TensorSliceReaderCacheWrapper() { - if (cache_) { - delete cache_; - } + delete cache_; cache_ = nullptr; } diff --git a/tensorflow/g3doc/api_docs/leftnav_files b/tensorflow/g3doc/api_docs/leftnav_files new file mode 100644 index 00000000000..ceeb88af8fd --- /dev/null +++ b/tensorflow/g3doc/api_docs/leftnav_files @@ -0,0 +1,30 @@ +### [Overview](/api_docs/index.md) +### [Python API](/api_docs/python/index.md) +python/framework.md +python/constant_op.md +python/state_ops.md +python/array_ops.md +python/math_ops.md +python/control_flow_ops.md +python/image.md +python/sparse_ops.md +python/io_ops.md +python/python_io.md +python/nn.md +python/client.md +python/train.md +### [C++ API](/api_docs/cc/index.md) +cc/ClassEnv.md +cc/ClassRandomAccessFile.md +cc/ClassWritableFile.md +cc/ClassEnvWrapper.md +cc/ClassSession.md +cc/StructSessionOptions.md +cc/ClassStatus.md +cc/StructState.md +cc/ClassTensor.md +cc/ClassTensorShape.md +cc/StructTensorShapeDim.md +cc/ClassTensorShapeUtils.md +cc/ClassThread.md +cc/StructThreadOptions.md \ No newline at end of file diff --git a/tensorflow/g3doc/api_docs/python/array_ops.md b/tensorflow/g3doc/api_docs/python/array_ops.md index 10a6df41ff2..1b05a488626 100644 --- a/tensorflow/g3doc/api_docs/python/array_ops.md +++ b/tensorflow/g3doc/api_docs/python/array_ops.md @@ -329,7 +329,7 @@ reshape(t, [3, 3]) ==> [[1, 2, 3] # tensor 't' is [[[1, 1], [2, 2]] # [[3, 3], [4, 4]]] -# tensor 't' has shape [2, 2] +# tensor 't' has shape [2, 2, 2] reshape(t, [2, 4]) ==> [[1, 1, 2, 2] [3, 3, 4, 4]] diff --git a/tensorflow/g3doc/api_docs/python/framework.md b/tensorflow/g3doc/api_docs/python/framework.md index 1f88ad0ca4f..eab4ec01521 100644 --- a/tensorflow/g3doc/api_docs/python/framework.md +++ b/tensorflow/g3doc/api_docs/python/framework.md @@ -147,6 +147,11 @@ This method is thread-safe. A [`GraphDef`](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/graph.proto) protocol buffer. +##### Raises: + + +* `ValueError`: If the graph_def would be too large. + - - - diff --git a/tensorflow/g3doc/api_docs/python/io_ops.md b/tensorflow/g3doc/api_docs/python/io_ops.md index a728ba579e7..b10cc79bc88 100644 --- a/tensorflow/g3doc/api_docs/python/io_ops.md +++ b/tensorflow/g3doc/api_docs/python/io_ops.md @@ -65,7 +65,7 @@ be fed using the `feed_dict` optional argument to `Session.run()`, For example: ```python -x = tf.placeholder(float, shape=(1024, 1024)) +x = tf.placeholder(tf.float32, shape=(1024, 1024)) y = tf.matmul(x, x) with tf.Session() as sess: diff --git a/tensorflow/g3doc/api_docs/python/nn.md b/tensorflow/g3doc/api_docs/python/nn.md index 4f4292ff5ef..8cb1f96e09d 100644 --- a/tensorflow/g3doc/api_docs/python/nn.md +++ b/tensorflow/g3doc/api_docs/python/nn.md @@ -139,7 +139,8 @@ kept independently and each row and column will be kept or not kept together. * `x`: A tensor. -* `keep_prob`: A Python float. The probability that each element is kept. +* `keep_prob`: A scalar `Tensor` with the same type as x. The probability + that each element is kept. * `noise_shape`: A 1-D `Tensor` of type `int32`, representing the shape for randomly generated keep/drop flags. * `seed`: A Python integer. Used to create random seeds. See diff --git a/tensorflow/g3doc/api_docs/python/train.md b/tensorflow/g3doc/api_docs/python/train.md index 85739e6d3bd..a1ea3c2a2fa 100644 --- a/tensorflow/g3doc/api_docs/python/train.md +++ b/tensorflow/g3doc/api_docs/python/train.md @@ -850,9 +850,9 @@ Example: decay every 100000 steps with a base of 0.96: ... global_step = tf.Variable(0, trainable=False) starter_learning_rate = 0.1 -learning_rate = tf.exponential_decay(starter_learning_rate, global_step, - 100000, 0.96, staircase=True) -optimizer = tf.GradientDescent(learning_rate) +learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, + 100000, 0.96, staircase=True) +optimizer = tf.GradientDescentOptimizer(learning_rate) # Passing global_step to minimize() will increment it at each step. optimizer.minimize(...my loss..., global_step=global_step) ``` @@ -888,7 +888,7 @@ moving averages for evaluations often improve results significantly. ### `class tf.train.ExponentialMovingAverage` -Maintains moving averages of variables by employing and exponential decay. +Maintains moving averages of variables by employing an exponential decay. When training a model, it is often beneficial to maintain moving averages of the trained parameters. Evaluations that use averaged parameters sometimes diff --git a/tensorflow/g3doc/get_started/leftnav_files b/tensorflow/g3doc/get_started/leftnav_files new file mode 100644 index 00000000000..3fccbc0db51 --- /dev/null +++ b/tensorflow/g3doc/get_started/leftnav_files @@ -0,0 +1,3 @@ +index.md +os_setup.md +basic_usage.md \ No newline at end of file diff --git a/tensorflow/g3doc/how_tos/leftnav_files b/tensorflow/g3doc/how_tos/leftnav_files new file mode 100644 index 00000000000..f2b0a9fe9d2 --- /dev/null +++ b/tensorflow/g3doc/how_tos/leftnav_files @@ -0,0 +1,10 @@ +variables/index.md +../tutorials/mnist/tf/index.md +summaries_and_tensorboard/index.md +graph_viz/index.md +reading_data/index.md +threading_and_queues/index.md +adding_an_op/index.md +new_data_formats/index.md +using_gpu/index.md +variable_scope/index.md \ No newline at end of file diff --git a/tensorflow/g3doc/resources/leftnav_files b/tensorflow/g3doc/resources/leftnav_files new file mode 100644 index 00000000000..2e1940b5d42 --- /dev/null +++ b/tensorflow/g3doc/resources/leftnav_files @@ -0,0 +1,5 @@ +bib.md +uses.md +faq.md +glossary.md +dims_types.md diff --git a/tensorflow/g3doc/tutorials/leftnav_files b/tensorflow/g3doc/tutorials/leftnav_files new file mode 100644 index 00000000000..d27ec1bbf64 --- /dev/null +++ b/tensorflow/g3doc/tutorials/leftnav_files @@ -0,0 +1,10 @@ +mnist/beginners/index.md +mnist/pros/index.md +mnist/tf/index.md +deep_cnn/index.md +word2vec/index.md +recurrent/index.md +seq2seq/index.md +mandelbrot/index.md +pdes/index.md +mnist/download/index.md diff --git a/tensorflow/g3doc/tutorials/mnist/beginners/index.md b/tensorflow/g3doc/tutorials/mnist/beginners/index.md index fcd891c58b8..f21c97b7c62 100644 --- a/tensorflow/g3doc/tutorials/mnist/beginners/index.md +++ b/tensorflow/g3doc/tutorials/mnist/beginners/index.md @@ -418,6 +418,6 @@ a look at this [list of results](http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html).) What matters is that we learned from this model. Still, if you're feeling a bit -down about these results, check out [the next tutorial](../../../tutorials/index.md) where we +down about these results, check out [the next tutorial](../../../tutorials/mnist/pros/index.md) where we do a lot better, and learn how to build more sophisticated models using TensorFlow! diff --git a/tensorflow/g3doc/tutorials/mnist/pros/index.md b/tensorflow/g3doc/tutorials/mnist/pros/index.md index 0a7d1aeae0f..58cec4c3484 100644 --- a/tensorflow/g3doc/tutorials/mnist/pros/index.md +++ b/tensorflow/g3doc/tutorials/mnist/pros/index.md @@ -232,9 +232,9 @@ print accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}) ## Build a Multilayer Convolutional Network Getting 91% accuracy on MNIST is bad. It's almost embarrassingly bad. In this -section, we'll fix that, jumping from a very simple model to something moderately -sophisticated: a small convolutional neural network. This will get us to around -99.2% accuracy -- not state of the art, but respectable. +section, we'll fix that, jumping from a very simple model to something +moderately sophisticated: a small convolutional neural network. This will get us +to around 99.2% accuracy -- not state of the art, but respectable. ### Weight Initialization diff --git a/tensorflow/g3doc/tutorials/recurrent/index.md b/tensorflow/g3doc/tutorials/recurrent/index.md index d1be50e00f7..510ecd5d66e 100644 --- a/tensorflow/g3doc/tutorials/recurrent/index.md +++ b/tensorflow/g3doc/tutorials/recurrent/index.md @@ -186,7 +186,7 @@ Now we can run the model: ``` bazel-bin/tensorflow/models/rnn/ptb/ptb_word_lm \ - --data_path=/tmp/simple-examples/data/ --alsologtostderr --model small + --data_path=/tmp/simple-examples/data/ --model small ``` There are 3 supported model configurations in the tutorial code: "small", diff --git a/tensorflow/g3doc/tutorials/seq2seq/index.md b/tensorflow/g3doc/tutorials/seq2seq/index.md index a13f7cd95c8..66c653e1f8e 100644 --- a/tensorflow/g3doc/tutorials/seq2seq/index.md +++ b/tensorflow/g3doc/tutorials/seq2seq/index.md @@ -12,7 +12,7 @@ This tutorial will show you how to build and train such a system end-to-end. You can start by running this binary. ``` -bazel run -c opt <...>/models/rnn/translate/translate.py +bazel run -c opt <...>/models/rnn/translate:translate --data_dir [your_data_directory] ``` diff --git a/tensorflow/models/embedding/BUILD b/tensorflow/models/embedding/BUILD index fe52778fa91..9cd0d24b5b4 100644 --- a/tensorflow/models/embedding/BUILD +++ b/tensorflow/models/embedding/BUILD @@ -49,6 +49,9 @@ py_test( size = "small", srcs = ["word2vec_optimized_test.py"], srcs_version = "PY2AND3", + tags = [ + "notsan", + ], deps = [ ":word2vec_optimized", "//tensorflow:tensorflow_py", diff --git a/tensorflow/models/embedding/word2vec.py b/tensorflow/models/embedding/word2vec.py index 29bd9602bb9..400168c8cac 100644 --- a/tensorflow/models/embedding/word2vec.py +++ b/tensorflow/models/embedding/word2vec.py @@ -18,13 +18,14 @@ from __future__ import division from __future__ import print_function import os -from six.moves import xrange # pylint: disable=redefined-builtin import sys import threading import time import tensorflow.python.platform +from six.moves import xrange # pylint: disable=redefined-builtin + import numpy as np import tensorflow as tf diff --git a/tensorflow/models/embedding/word2vec_optimized.py b/tensorflow/models/embedding/word2vec_optimized.py index e6fccf689a3..547abf8c3e6 100644 --- a/tensorflow/models/embedding/word2vec_optimized.py +++ b/tensorflow/models/embedding/word2vec_optimized.py @@ -17,13 +17,14 @@ from __future__ import division from __future__ import print_function import os -from six.moves import xrange # pylint: disable=redefined-builtin import sys import threading import time import tensorflow.python.platform +from six.moves import xrange # pylint: disable=redefined-builtin + import numpy as np import tensorflow as tf diff --git a/tensorflow/models/rnn/ptb/ptb_word_lm.py b/tensorflow/models/rnn/ptb/ptb_word_lm.py index 8a6c7203c2e..3a7330836be 100644 --- a/tensorflow/models/rnn/ptb/ptb_word_lm.py +++ b/tensorflow/models/rnn/ptb/ptb_word_lm.py @@ -37,8 +37,7 @@ To compile on GPU: bazel build -c opt tensorflow --config=cuda \ tensorflow/models/rnn/ptb:ptb_word_lm To run: - ./bazel-bin/.../ptb_word_lm \ - --data_path=/tmp/simple-examples/data/ --alsologtostderr + ./bazel-bin/.../ptb_word_lm --data_path=/tmp/simple-examples/data/ """ from __future__ import absolute_import diff --git a/tensorflow/models/rnn/rnn_cell.py b/tensorflow/models/rnn/rnn_cell.py index ff93b478920..3ffff7815c9 100644 --- a/tensorflow/models/rnn/rnn_cell.py +++ b/tensorflow/models/rnn/rnn_cell.py @@ -68,8 +68,8 @@ class RNNCell(object): A 2D Tensor of shape [batch_size x state_size] filled with zeros. """ zeros = tf.zeros(tf.pack([batch_size, self.state_size]), dtype=dtype) - # The reshape below is a no-op, but it allows shape inference of shape[1]. - return tf.reshape(zeros, [-1, self.state_size]) + zeros.set_shape([None, self.state_size]) + return zeros class BasicRNNCell(RNNCell): diff --git a/tensorflow/python/client/session_test.py b/tensorflow/python/client/session_test.py index 96b7136b15c..99bf356cc23 100644 --- a/tensorflow/python/client/session_test.py +++ b/tensorflow/python/client/session_test.py @@ -602,6 +602,29 @@ class SessionTest(test_util.TensorFlowTestCase): self.assertEqual(45.0, sess.run(b'f:0')) self.assertEqual(45.0, sess.run(r'f:0')) + def testIncorrectGraph(self): + with ops.Graph().as_default() as g_1: + c_1 = constant_op.constant(1.0, name='c') + + with ops.Graph().as_default() as g_2: + c_2 = constant_op.constant(2.0, name='c') + + self.assertEqual('c', c_1.op.name) + self.assertEqual('c', c_2.op.name) + + with session.Session(graph=g_1) as sess_1: + self.assertEqual(1.0, sess_1.run(c_1)) + with self.assertRaises(ValueError): + sess_1.run(c_2) + with self.assertRaises(ValueError): + sess_1.run(c_2.op) + + with session.Session(graph=g_2) as sess_2: + with self.assertRaises(ValueError): + sess_2.run(c_1) + with self.assertRaises(ValueError): + sess_2.run(c_1.op) + self.assertEqual(2.0, sess_2.run(c_2)) if __name__ == '__main__': googletest.main() diff --git a/tensorflow/python/framework/ops.py b/tensorflow/python/framework/ops.py index 54917a506f1..e5a8f8a4dc1 100644 --- a/tensorflow/python/framework/ops.py +++ b/tensorflow/python/framework/ops.py @@ -1552,7 +1552,7 @@ class Graph(object): # new operations can be added. self._finalized = False # Functions defined in the graph - self._functions = [] + self._functions = collections.OrderedDict() def _check_not_finalized(self): """Check if the graph is finalized. @@ -1647,6 +1647,9 @@ class Graph(object): Returns: A [`GraphDef`](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/graph.proto) protocol buffer. + + Raises: + ValueError: If the graph_def would be too large. """ graph = graph_pb2.GraphDef() bytesize = 0 @@ -1658,18 +1661,18 @@ class Graph(object): if bytesize >= (1 << 31) or bytesize < 0: raise ValueError("GraphDef cannot be larger than 2GB.") if self._functions: - for f in self._functions: + for f in self._functions.values(): bytesize += f.ByteSize() if bytesize >= (1 << 31) or bytesize < 0: raise ValueError("GraphDef cannot be larger than 2GB.") - graph.library.function.extend(self._functions) + graph.library.function.extend(self._functions.values()) return graph def _add_function(self, function_def): """Adds a function to the graph. The function is specified as a [`FunctionDef`] - (https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/graph.proto) + (https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/function.proto) protocol buffer. After the function has been added, you can call to the function by @@ -1679,7 +1682,14 @@ class Graph(object): Args: function_def: A `FunctionDef` protocol buffer. """ - self._functions.append(function_def) + previous_def = self._functions.get(function_def.signature.name, None) + if previous_def: + if previous_def != function_def: + raise ValueError("Another function is already defined with that name") + else: + # No need to add again. + return + self._functions[function_def.signature.name] = function_def # Helper functions to create operations. def create_op(self, op_type, inputs, dtypes, @@ -1871,9 +1881,13 @@ class Graph(object): elif isinstance(obj, Tensor) and allow_tensor: # Actually obj is just the object it's referring to. + if obj.graph is not self: + raise ValueError("Tensor %s is not an element of this graph." % obj) return obj elif isinstance(obj, Operation) and allow_operation: # Actually obj is just the object it's referring to. + if obj.graph is not self: + raise ValueError("Operation %s is not an element of this graph." % obj) return obj else: # We give up! diff --git a/tensorflow/python/kernel_tests/gradient_checker.py b/tensorflow/python/kernel_tests/gradient_checker.py index 1adf22d5125..d08fc393fa0 100644 --- a/tensorflow/python/kernel_tests/gradient_checker.py +++ b/tensorflow/python/kernel_tests/gradient_checker.py @@ -80,7 +80,7 @@ def _ComputeTheoricalJacobian(x, x_shape, x_data, dy, dy_shape, dx): def _ComputeNumericJacobian(x, x_shape, x_data, y, y_shape, delta): """Computes the numeric Jacobian for dy/dx. - Computes the numeric Japcobian by slightly perturbing the inputs and + Computes the numeric Jacobian by slightly perturbing the inputs and measuring the differences on the output. Args: diff --git a/tensorflow/python/ops/array_ops.py b/tensorflow/python/ops/array_ops.py index 78262a55f39..33fdc017c7a 100644 --- a/tensorflow/python/ops/array_ops.py +++ b/tensorflow/python/ops/array_ops.py @@ -624,7 +624,7 @@ def placeholder(dtype, shape=None, name=None): For example: ```python - x = tf.placeholder(float, shape=(1024, 1024)) + x = tf.placeholder(tf.float32, shape=(1024, 1024)) y = tf.matmul(x, x) with tf.Session() as sess: diff --git a/tensorflow/python/training/input.py b/tensorflow/python/training/input.py index 77c496fb85c..3f9371fead4 100644 --- a/tensorflow/python/training/input.py +++ b/tensorflow/python/training/input.py @@ -243,7 +243,7 @@ def _merge_shapes(shape_list, enqueue_many): shape_list = [tensor_shape.as_shape(s) for s in shape_list] if enqueue_many: # We want the shapes without the leading batch dimension. - shape_list = [s.WithRankAtLeast(1)[1:] for s in shape_list] + shape_list = [s.with_rank_at_least(1)[1:] for s in shape_list] merged_shape = shape_list[0] for s in shape_list[1:]: merged_shape.merge_with(s) diff --git a/tensorflow/python/training/input_test.py b/tensorflow/python/training/input_test.py index d85df524314..bd6e199054f 100644 --- a/tensorflow/python/training/input_test.py +++ b/tensorflow/python/training/input_test.py @@ -269,6 +269,31 @@ class BatchTest(tf.test.TestCase): for thread in threads: thread.join() + def testOneThreadEnqueueMany(self): + with self.test_session() as sess: + batch_size = 10 + num_batches = 3 + zero64 = tf.constant(0, dtype=tf.int64) + examples = tf.Variable(zero64) + counter = examples.count_up_to(num_batches * batch_size) + pre_batched = tf.train.batch([counter, "string"], batch_size=2) + batched = tf.train.batch(pre_batched, enqueue_many=True, + batch_size=batch_size) + tf.initialize_all_variables().run() + threads = tf.train.start_queue_runners() + + for i in range(num_batches): + results = sess.run(batched) + self.assertAllEqual(results[0], np.arange(i * batch_size, + (i + 1) * batch_size)) + self.assertAllEqual(results[1], ["string"] * batch_size) + + # Reached the limit. + with self.assertRaises(tf.errors.OutOfRangeError): + sess.run(batched) + for thread in threads: + thread.join() + def testManyThreads(self): with self.test_session() as sess: batch_size = 10 diff --git a/tensorflow/python/training/moving_averages.py b/tensorflow/python/training/moving_averages.py index d834b698ba2..50a8f9bbce3 100644 --- a/tensorflow/python/training/moving_averages.py +++ b/tensorflow/python/training/moving_averages.py @@ -45,7 +45,7 @@ def assign_moving_average(variable, value, decay, name=None): class ExponentialMovingAverage(object): - """Maintains moving averages of variables by employing and exponential decay. + """Maintains moving averages of variables by employing an exponential decay. When training a model, it is often beneficial to maintain moving averages of the trained parameters. Evaluations that use averaged parameters sometimes diff --git a/tensorflow/tensorboard/components/tf-graph-common/lib/hierarchy.ts b/tensorflow/tensorboard/components/tf-graph-common/lib/hierarchy.ts index 8ada82770c5..36692dd0f04 100644 --- a/tensorflow/tensorboard/components/tf-graph-common/lib/hierarchy.ts +++ b/tensorflow/tensorboard/components/tf-graph-common/lib/hierarchy.ts @@ -372,7 +372,7 @@ function findEdgeTargetsInGraph( interface HierarchyParams { verifyTemplate: boolean; - groupSeries: boolean; + seriesNodeMinSize: number; } /** @@ -396,8 +396,8 @@ export function build(graph: tf.graph.SlimGraph, params: HierarchyParams, }, tracker) .then(() => { return runAsyncTask("Detect series", 20, () => { - if (params.groupSeries) { - groupSeries(h.root, h, seriesNames); + if (params.seriesNodeMinSize > 0) { + groupSeries(h.root, h, seriesNames, params.seriesNodeMinSize); } }, tracker); }) @@ -550,15 +550,17 @@ function addEdges(h: Hierarchy, graph: SlimGraph, * * @param metanode * @param hierarchy + * @param threshold If the series has this many nodes or more, then group them + * into a series. * @return A dictionary from node name to series node name that contains the node */ function groupSeries(metanode: Metanode, hierarchy: Hierarchy, - seriesNames: { [name: string]: string }) { + seriesNames: { [name: string]: string }, threshold: number) { let metagraph = metanode.metagraph; _.each(metagraph.nodes(), n => { let child = metagraph.node(n); if (child.type === tf.graph.NodeType.META) { - groupSeries(child, hierarchy, seriesNames); + groupSeries(child, hierarchy, seriesNames, threshold); } }); @@ -569,6 +571,9 @@ function groupSeries(metanode: Metanode, hierarchy: Hierarchy, // metagraph. _.each(seriesDict, function(seriesNode: SeriesNode, seriesName: string) { let nodeMemberNames = seriesNode.metagraph.nodes(); + if (nodeMemberNames.length < threshold) { + return; + } let firstMember = seriesNode.metagraph.node(nodeMemberNames[0]); let seriesType = firstMember.type; diff --git a/tensorflow/tensorboard/components/tf-graph-loader/tf-graph-loader.html b/tensorflow/tensorboard/components/tf-graph-loader/tf-graph-loader.html index 3f290f21524..c3647a41b5c 100644 --- a/tensorflow/tensorboard/components/tf-graph-loader/tf-graph-loader.html +++ b/tensorflow/tensorboard/components/tf-graph-loader/tf-graph-loader.html @@ -126,7 +126,9 @@ Polymer({ } var hierarchyParams = { verifyTemplate: true, - groupSeries: true, + // If a set of numbered op nodes has at least this number of nodes + // then group them into a series node. + seriesNodeMinSize: 5, }; var hierarchyTracker = tf.getSubtaskTracker(tracker, 50, 'Namespace hierarchy'); diff --git a/third_party/eigen3/unsupported/Eigen/CXX11/src/NeuralNetworks/Pooling.h b/third_party/eigen3/unsupported/Eigen/CXX11/src/NeuralNetworks/Pooling.h index 8dea22806c9..942b060ba76 100644 --- a/third_party/eigen3/unsupported/Eigen/CXX11/src/NeuralNetworks/Pooling.h +++ b/third_party/eigen3/unsupported/Eigen/CXX11/src/NeuralNetworks/Pooling.h @@ -196,7 +196,7 @@ namespace internal { template struct AvgPoolMeanReducer { -#if (EIGEN_ARCH_i386 || EIGEN_ARCH_x86_64 || defined (EIGEN_USE_GPU) || defined(__CUDACC__) || defined(__CUDA_ARCH__)) +#if (EIGEN_ARCH_i386 || EIGEN_ARCH_x86_64) && !defined(__CUDACC__) // We only support packet access for floats. static const bool PacketAccess = internal::is_same::value; #else @@ -216,8 +216,16 @@ template struct AvgPoolMeanReducer } } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { + return static_cast(0); + } -#if (!defined (EIGEN_USE_GPU) || !defined(__CUDACC__) || !defined(__CUDA_ARCH__)) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const { + eigen_assert(scalarCount_ > 0); + return accum / scalarCount_; + } + +#if (EIGEN_ARCH_i386 || EIGEN_ARCH_x86_64) && !defined(__CUDACC__) #ifdef EIGEN_VECTORIZE_AVX #define pequal(a,b) _mm256_cmp_ps(a,b,_CMP_EQ_UQ) #define psel(a,b,false_mask) _mm256_blendv_ps(a,b,false_mask) @@ -238,29 +246,11 @@ template struct AvgPoolMeanReducer packetCount_ = padd(packetCount_, psel(pset1(1), pset1(0), skip_mask)); } -#else -#define pequal(a,b) make_float4(a.x == b.x ? 1.f : 0, a.y == b.y ? 1.f : 0, a.z == b.z ? 1.f : 0, a.w == b.w ? 1.f : 0) -#define psel(a,b,c) make_float4(c.x ? b.x : a.x, c.y ? b.y : a.y, c.z ? b.z : a.z, c.w ? b.w : a.w) - - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const float4& p, float4* accum) { - float4 skip_mask = pequal(p, pset1(-Eigen::NumTraits::highest())); - (*accum) = padd(*accum, psel(p, pset1(0), skip_mask)); - packetCount_ = padd(packetCount_, psel(pset1(1), pset1(0), skip_mask)); - } - -#endif - - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { - return static_cast(0); - } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const { return pset1(0); } - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const { - eigen_assert(scalarCount_ > 0); - return accum / scalarCount_; - } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const { return pdiv(vaccum, packetCount_); @@ -269,6 +259,7 @@ template struct AvgPoolMeanReducer EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const { return (saccum + predux(vaccum)) / (scalarCount_ + predux(packetCount_)); } +#endif protected: typedef typename packet_traits::type Packet;