Roll-forward: Consolidate tensor handle data types

Fixed remote handles to be ready when they are poisoned

PiperOrigin-RevId: 298519389
Change-Id: Icd693a354639622705ff08d253acfbbd40013bc7
This commit is contained in:
Gaurav Jain 2020-03-02 21:22:02 -08:00
parent 6c212dc330
commit ca879f6889
20 changed files with 519 additions and 779 deletions

View File

@ -1213,10 +1213,10 @@ TFE_TensorHandle* TFE_NewTensorHandleFromDeviceMemory(
tensorflow::TensorHandle* ret_handle;
if (custom_device == nullptr) {
status->status = tensorflow::TensorHandle::CreateLocalHandle(
t, device, context, &ret_handle);
std::move(t), device, device, context, &ret_handle);
} else {
status->status = tensorflow::TensorHandle::CreateLocalHandle(
t, custom_device, context, &ret_handle);
std::move(t), custom_device, context, &ret_handle);
}
if (!status->status.ok()) {
return nullptr;

View File

@ -140,6 +140,7 @@ tf_cuda_library(
"//tensorflow/core:android_tensorflow_lib_lite",
],
"//conditions:default": [
"@com_google_absl//absl/types:variant",
"//tensorflow/core:framework",
"//tensorflow/core:lib",
"//tensorflow/core/profiler/lib:traceme",

View File

@ -564,8 +564,7 @@ Status EagerLocalExecute(EagerOperation* op, TensorHandle** retvals,
}
}
}
const DataTypeVector& output_dtypes = kernel->output_dtypes();
const size_t num_outputs = static_cast<int>(output_dtypes.size());
int num_outputs = kernel->num_outputs();
if (num_outputs > *num_retvals) {
return errors::InvalidArgument("Expecting ", num_outputs,
" outputs, but *num_retvals is ",
@ -579,21 +578,19 @@ Status EagerLocalExecute(EagerOperation* op, TensorHandle** retvals,
graph_collector = ctx.GetGraphCollector();
}
const bool async = executor.Async();
for (int i = 0; i < num_outputs; ++i) {
TF_RETURN_IF_ERROR(TensorHandle::CreateEmptyLocalHandle(
async,
/* d= */ ctx.CanonicalDevice(kernel->OutputDevice(i)),
/* op_device= */ kernel->device(),
/* resource_device= */ kernel->OutputResourceDevice(i),
output_dtypes[i], &ctx, &retvals[i]));
}
Status s;
if (async) {
if (executor.Async()) {
const DataTypeVector& output_dtypes = kernel->output_dtypes();
for (int i = 0; i < num_outputs; ++i) {
TF_RETURN_IF_ERROR(TensorHandle::CreateEmptyLocalHandle(
/* d= */ ctx.CanonicalDevice(kernel->OutputDevice(i)),
/* op_device= */ kernel->device(),
/* resource_device= */ kernel->OutputResourceDevice(i),
output_dtypes[i], &ctx, &retvals[i]));
}
auto node = absl::make_unique<AsyncExecuteNode>(
&ctx, op->Inputs(), op->remote_func_params(), std::move(kernel),
graph_collector, output_dtypes, op->GetCancellationManager(),
graph_collector, op->GetCancellationManager(),
absl::Span<TensorHandle*>(retvals, num_outputs));
// For async mode, execution order will make sure that all
// input handles are ready before executing them.
@ -601,16 +598,21 @@ Status EagerLocalExecute(EagerOperation* op, TensorHandle** retvals,
// performance.
s = executor.AddOrExecute(std::move(node));
} else {
for (int i = 0; i < num_outputs; ++i) {
retvals[i] = nullptr;
}
ExecuteNode node(&ctx, op->Inputs(), op->remote_func_params(), kernel,
graph_collector, output_dtypes,
op->GetCancellationManager(), {retvals, num_outputs});
graph_collector, op->GetCancellationManager(),
{retvals, static_cast<size_t>(num_outputs)});
s = executor.SyncExecute(&node);
}
// Since the operation failed, we need to Unref any outputs that were
// Since the operation failed, we need to Unref any outputs if they were
// allocated.
if (!s.ok()) {
for (int i = 0; i < num_outputs; ++i) {
retvals[i]->Unref();
if (retvals[i] != nullptr) {
retvals[i]->Unref();
}
}
}
@ -733,12 +735,9 @@ Status EagerRemoteExecute(EagerOperation* op, TensorHandle** retvals,
input, input_handle, input_device, *input_device_name,
serialize_resource_dtype_and_shape));
if (!input_handle->resource_dtypes_and_shapes().empty()) {
auto tensor_handle_data =
absl::make_unique<UnshapedRemoteTensorHandleData>(
input_handle->op_id(), input_handle->output_num(), remote_task,
&ctx);
TF_RETURN_IF_ERROR(input->AddResourceShapeMirror(
std::move(tensor_handle_data), op_device));
TF_RETURN_IF_ERROR(
input->AddResourceShapeMirror(op_device, input_handle->op_id(),
input_handle->output_num(), &ctx));
}
}
}
@ -1032,13 +1031,24 @@ Status EagerKernelExecute(
}
}
DCHECK_EQ(retvals.size(), outputs.size());
for (int i = 0; i < retvals.size(); ++i) {
DCHECK_EQ(kernel->device(), retvals[i]->op_device());
DCHECK_EQ(ctx->CanonicalDevice(kernel->OutputDevice(i)),
absl::get<Device*>(retvals[i]->device()));
TF_RETURN_IF_ERROR(retvals[i]->SetTensor(
std::move(outputs[i]), ctx->CanonicalDevice(kernel->OutputDevice(i))));
for (int i = 0; i < retvals.size(); ++i) {
if (retvals[i] == nullptr) {
TF_RETURN_IF_ERROR(TensorHandle::CreateLocalHandle(
std::move(outputs[i]),
/* d= */ ctx->CanonicalDevice(kernel->OutputDevice(i)),
/* op_device= */ kernel->device(),
/* resource_device= */ kernel->OutputResourceDevice(i), ctx,
&retvals[i]));
} else {
DCHECK_EQ(kernel->device(), retvals[i]->op_device());
DCHECK_EQ(ctx->CanonicalDevice(kernel->OutputDevice(i)),
absl::get<Device*>(retvals[i]->device()));
TF_RETURN_IF_ERROR(
retvals[i]->SetTensor(std::move(outputs[i]),
ctx->CanonicalDevice(kernel->OutputDevice(i))));
}
}
return Status::OK();
}
@ -1069,7 +1079,7 @@ Status LocalEagerCopyToDevice(TensorHandle* h, EagerContext* ctx,
*result = h;
} else {
TF_RETURN_IF_ERROR(TensorHandle::CreateEmptyLocalHandle(
true, d, dstd, h->resource_device(), h->dtype, ctx, result));
d, dstd, h->resource_device(), h->dtype, ctx, result));
}
Status s;
@ -1138,7 +1148,7 @@ Status EagerCopyToDevice(TensorHandle* h, EagerContext* ctx,
*result = h;
} else {
TF_RETURN_IF_ERROR(TensorHandle::CreateEmptyLocalHandle(
true, /* d= */ d, /* op_device= */ device,
/* d= */ d, /* op_device= */ device,
/*resource_device=*/nullptr, h->dtype, ctx, result));
}
} else {
@ -1156,17 +1166,14 @@ Status EagerCopyToDevice(TensorHandle* h, EagerContext* ctx,
device->name());
}
recv_op_id = ctx->RemoteMgr()->NextOpId();
auto tensor_handle_data =
absl::make_unique<UnshapedRemoteTensorHandleData>(recv_op_id, 0,
remote_task, ctx);
if (mirror) {
TF_RETURN_IF_ERROR(
h->AddUnshapedRemoteMirror(std::move(tensor_handle_data), device));
TF_RETURN_IF_ERROR(h->AddUnshapedRemoteMirror(device, recv_op_id, 0,
remote_task, ctx));
h->Ref();
*result = h;
} else {
TF_RETURN_IF_ERROR(TensorHandle::CreateUnshapedRemoteHandle(
std::move(tensor_handle_data), h->dtype, device, ctx, result));
recv_op_id, 0, remote_task, h->dtype, device, ctx, result));
}
}

View File

@ -32,7 +32,7 @@ Status ExecuteNodeArgs::Init(
for (int i = 0; i < n_inputs; ++i) {
TensorHandle* in = op_inputs_flat[i];
Device* d = kernel->InputDevice(i);
Status s = in->TensorValue(&tensor_args_flat[i], ctx->CanonicalDevice(d));
Status s = in->TensorValue(ctx->CanonicalDevice(d), &tensor_args_flat[i]);
if (!s.ok()) {
#if !defined(IS_MOBILE_PLATFORM)
uint64 context_view_id = ctx->GetContextViewId();

View File

@ -77,7 +77,7 @@ class ExecuteNode : public EagerNode {
EagerContext* ctx, const absl::InlinedVector<TensorHandle*, 4>& inputs,
const absl::optional<EagerRemoteFunctionParams>& remote_func_params,
const core::RefCountPtr<KernelAndDevice>& kernel,
GraphCollector* graph_collector, const DataTypeVector& output_dtypes,
GraphCollector* graph_collector,
CancellationManager* cancellation_manager,
absl::Span<TensorHandle*> retvals)
: EagerNode(),
@ -130,7 +130,7 @@ class AsyncExecuteNode : public EagerNode {
EagerContext* ctx, const absl::InlinedVector<TensorHandle*, 4>& inputs,
const absl::optional<EagerRemoteFunctionParams>& remote_func_params,
core::RefCountPtr<KernelAndDevice> kernel,
GraphCollector* graph_collector, const DataTypeVector& output_dtypes,
GraphCollector* graph_collector,
CancellationManager* cancellation_manager,
absl::Span<TensorHandle*> retvals)
: EagerNode(),

View File

@ -67,6 +67,7 @@ class EagerKernelArgs : public FunctionArgsInterface {
~EagerKernelArgs() override{};
bool HasRemoteInputs() const override { return false; };
TensorValue* MutableInput(int i) { return &tensor_args_[i]; }
Status GetLocalArg(const int index, Tensor* val) const override;

View File

@ -20,39 +20,31 @@ limitations under the License.
#include <memory>
#include <queue>
#include <string>
#include <utility>
#include <vector>
#include "absl/strings/substitute.h"
#include "absl/types/variant.h"
#include "tensorflow/core/common_runtime/copy_tensor.h"
#include "tensorflow/core/common_runtime/device.h"
#include "tensorflow/core/common_runtime/device_factory.h"
#include "tensorflow/core/common_runtime/eager/context.h"
#include "tensorflow/core/common_runtime/eager/eager_executor.h"
#include "tensorflow/core/common_runtime/eager/tensor_handle_data.h"
#include "tensorflow/core/common_runtime/function.h"
#include "tensorflow/core/common_runtime/rendezvous_mgr.h"
#include "tensorflow/core/framework/resource_mgr.h"
#include "tensorflow/core/framework/shape_inference.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/platform/errors.h"
#if !defined(IS_MOBILE_PLATFORM)
#include "tensorflow/core/distributed_runtime/eager/eager_client.h"
#include "tensorflow/core/distributed_runtime/eager/remote_tensor_handle_data.h"
#endif // IS_MOBILE_PLATFORM
#include "tensorflow/core/framework/rendezvous.h"
#include "tensorflow/core/framework/resource_var.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/types.pb.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/gtl/inlined_vector.h"
#include "tensorflow/core/lib/gtl/map_util.h"
#include "tensorflow/core/platform/fingerprint.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/core/platform/thread_annotations.h"
#include "tensorflow/core/profiler/lib/traceme.h"
#include "tensorflow/core/public/session_options.h"
#include "tensorflow/core/public/version.h"
namespace tensorflow {
@ -64,7 +56,7 @@ const int32 kInvalidOutputNum = -1;
} // namespace
void TensorHandle::SetResourceHandleDtypeAndShape(
std::vector<DtypeAndPartialTensorShape> dtypes_and_shapes) {
std::vector<DtypeAndPartialTensorShape>&& dtypes_and_shapes) {
handle_dtypes_and_shapes_ = std::move(dtypes_and_shapes);
}
@ -86,250 +78,191 @@ Status TensorHandle::GetResourceHandleDtypesAndShapes(
profiler::TraceMe activity(
"TensorHandle::GetResourceHandleDtypesAndShapes WaitReady",
profiler::TraceMeLevel::kInfo);
auto& data = absl::get<LocalTensorHandleData>(data_);
TF_RETURN_IF_ERROR(
WaitReady("TensorHandle::GetResourceHandleDtypesAndShapes"));
data.WaitReady("TensorHandle::GetResourceHandleDtypesAndShapes"));
*result = handle_dtypes_and_shapes_;
return Status::OK();
}
Status TensorHandle::CreateLocalHandle(const class Tensor& t,
Status TensorHandle::CreateLocalHandle(const tensorflow::Tensor& t,
TensorHandle** h) {
// TODO(b/136608821): Move away from nullptr
return CreateLocalHandle(t, /*d=*/static_cast<Device*>(nullptr),
tensorflow::Tensor tensor = t;
return CreateLocalHandle(std::move(tensor),
/*d=*/nullptr,
/*op_device=*/nullptr,
/*ctx=*/nullptr, h);
}
Status TensorHandle::CreateLocalHandle(const class Tensor& t, Device* d,
EagerContext* ctx, TensorHandle** h) {
return CreateLocalHandle(t, d, d, ctx, h);
}
Status TensorHandle::CreateLocalHandle(const class Tensor& t, Device* d,
Status TensorHandle::CreateLocalHandle(tensorflow::Tensor&& t, Device* d,
Device* op_device, EagerContext* ctx,
TensorHandle** h) {
if (t.dtype() != DT_RESOURCE) {
*h = new TensorHandle(absl::make_unique<LocalTensorHandleData>(t),
t.dtype(), d, op_device, ctx);
return CreateLocalHandle(std::move(t), d, op_device, nullptr, ctx, h);
}
Status TensorHandle::CreateLocalHandle(tensorflow::Tensor&& t, Device* d,
Device* op_device,
Device* resource_device,
EagerContext* ctx, TensorHandle** h) {
if (t.dtype() == DT_RESOURCE && t.NumElements() > 0) {
*h = new TensorHandle(std::move(t), d, op_device, ctx);
} else {
const ResourceHandle& resource_handle = t.flat<class ResourceHandle>()(0);
*h = new TensorHandle(absl::make_unique<LocalTensorHandleData>(t),
resource_handle, d, op_device, ctx);
*h = new TensorHandle(std::move(t), d, op_device, resource_device, ctx);
}
return Status::OK();
}
Status TensorHandle::CreateLocalHandle(const class Tensor& t, CustomDevice* d,
Status TensorHandle::CreateLocalHandle(tensorflow::Tensor&& t, CustomDevice* d,
EagerContext* ctx, TensorHandle** h) {
*h = new TensorHandle(absl::make_unique<LocalTensorHandleData>(t), t.dtype(),
d, ctx);
*h = new TensorHandle(std::move(t), d, ctx);
return Status::OK();
}
TensorHandle::TensorHandle(std::unique_ptr<LocalTensorHandleData> t,
DataType dtype, Device* d, Device* op_device,
EagerContext* ctx)
: dtype(dtype),
TensorHandle::TensorHandle(tensorflow::Tensor&& t, Device* d, Device* op_device,
Device* resource_device, EagerContext* ctx)
: dtype(t.dtype()),
device_((!ctx || d == ctx->HostCPU()) ? nullptr : d),
op_device_(op_device),
resource_device_(nullptr),
#if !defined(IS_MOBILE_PLATFORM)
remote_op_id_(kInvalidOpId),
remote_output_num_(kInvalidOutputNum),
#endif
resource_device_(resource_device),
ctx_(ctx),
is_remote_(false),
is_async_(false),
implicit_mirroring_(true),
is_ready_(true),
tensor_handle_data_(std::move(t)) {
data_(absl::in_place_type<LocalTensorHandleData>, std::move(t)) {
DVLOG(3) << "Creating Local TensorHandle: " << this
<< " device: " << VariantDeviceDebugString(device_);
<< " device: " << VariantDeviceDebugString(device_)
<< " tensor: " << t.DeviceSafeDebugString();
}
TensorHandle::TensorHandle(std::unique_ptr<LocalTensorHandleData> t,
const ResourceHandle& resource_handle, Device* d,
Device* op_device, EagerContext* ctx)
TensorHandle::TensorHandle(tensorflow::Tensor&& t, Device* d, Device* op_device,
EagerContext* ctx)
: dtype(DT_RESOURCE),
device_((!ctx || d == ctx->HostCPU()) ? nullptr : d),
op_device_(op_device),
resource_device_(GetResourceDevice(resource_handle, ctx)),
#if !defined(IS_MOBILE_PLATFORM)
remote_op_id_(kInvalidOpId),
remote_output_num_(kInvalidOutputNum),
#endif
resource_device_(
GetResourceDevice(t.flat<class ResourceHandle>()(0), ctx)),
ctx_(ctx),
is_remote_(false),
is_async_(false),
implicit_mirroring_(true),
is_ready_(true),
handle_dtypes_and_shapes_(resource_handle.dtypes_and_shapes()),
tensor_handle_data_(std::move(t)) {
handle_dtypes_and_shapes_(
t.flat<class ResourceHandle>()(0).dtypes_and_shapes()),
data_(absl::in_place_type<LocalTensorHandleData>, std::move(t)) {
DVLOG(3) << "Creating Local TensorHandle: " << this
<< " device: " << VariantDeviceDebugString(device_);
<< " device: " << VariantDeviceDebugString(device_)
<< " tensor: " << t.DeviceSafeDebugString();
}
TensorHandle::TensorHandle(std::unique_ptr<LocalTensorHandleData> t,
DataType dtype, CustomDevice* d, EagerContext* ctx)
: dtype(dtype),
TensorHandle::TensorHandle(tensorflow::Tensor&& t, CustomDevice* d,
EagerContext* ctx)
: dtype(t.dtype()),
device_(d),
op_device_(nullptr),
resource_device_(nullptr),
#if !defined(IS_MOBILE_PLATFORM)
remote_op_id_(kInvalidOpId),
remote_output_num_(kInvalidOutputNum),
#endif
ctx_(ctx),
is_remote_(false),
is_async_(false),
implicit_mirroring_(true),
is_ready_(true),
tensor_handle_data_(std::move(t)) {
data_(absl::in_place_type<LocalTensorHandleData>, std::move(t)) {
// TODO(allenl): Figure out a better op_device story for custom devices,
// since always setting it to CPU=nullptr doesn't make much sense.
DVLOG(3) << "Creating Local TensorHandle: " << this
<< " custom device: " << VariantDeviceDebugString(device_);
<< " custom device: " << VariantDeviceDebugString(device_)
<< " tensor: " << t.DeviceSafeDebugString();
}
Status TensorHandle::CreateEmptyLocalHandle(bool async, Device* d,
Device* op_device,
Status TensorHandle::CreateEmptyLocalHandle(Device* d, Device* op_device,
Device* resource_device,
DataType dtype, EagerContext* ctx,
TensorHandle** h) {
*h = new TensorHandle(absl::make_unique<EmptyLocalTensorHandleData>(), async,
d, op_device, resource_device, dtype, ctx);
*h = new TensorHandle(d, op_device, resource_device, dtype, ctx);
return Status::OK();
}
TensorHandle::TensorHandle(std::unique_ptr<EmptyLocalTensorHandleData> t,
bool async, Device* d, Device* op_device,
TensorHandle::TensorHandle(Device* d, Device* op_device,
Device* resource_device, DataType dtype,
EagerContext* ctx)
: dtype(dtype),
device_((d == ctx->HostCPU()) ? nullptr : d),
op_device_(op_device),
resource_device_(resource_device),
#if !defined(IS_MOBILE_PLATFORM)
remote_op_id_(kInvalidOpId),
remote_output_num_(kInvalidOutputNum),
#endif
ctx_(ctx),
is_remote_(false),
is_async_(async),
implicit_mirroring_(true),
is_ready_(!async),
tensor_handle_data_(std::move(t)) {
data_(absl::in_place_type<LocalTensorHandleData>) {
DVLOG(3) << "Creating empty Local TensorHandle: " << this
<< " device: " << VariantDeviceDebugString(device_);
}
#if !defined(IS_MOBILE_PLATFORM)
Status TensorHandle::CreateRemoteHandle(
std::unique_ptr<RemoteTensorHandleData> t, DataType dtype, Device* d,
Device* resource_device, EagerContext* ctx, TensorHandle** h) {
*h = new TensorHandle(std::move(t), dtype, d, resource_device, ctx);
Status TensorHandle::CreateUnshapedRemoteHandle(int64 op_id, int32 output_num,
const string& remote_task,
DataType dtype, Device* d,
EagerContext* ctx,
TensorHandle** h) {
*h = new TensorHandle(op_id, output_num, remote_task, dtype, d, ctx);
return Status::OK();
}
Status TensorHandle::CreateRemoteHandle(int64 op_id, int output_num,
const TensorShape& shape,
const string& remote_task,
DataType dtype, Device* d,
Device* resource_device,
EagerContext* ctx, TensorHandle** h) {
*h = new TensorHandle(absl::make_unique<RemoteTensorHandleData>(
op_id, output_num, shape, remote_task, ctx),
dtype, d, resource_device, ctx);
return Status::OK();
}
TensorHandle::TensorHandle(std::unique_ptr<RemoteTensorHandleData> t,
DataType dtype, Device* d, Device* resource_device,
TensorHandle::TensorHandle(int64 op_id, int32 output_num,
const string& remote_task, DataType dtype, Device* d,
EagerContext* ctx)
: dtype(dtype),
device_(d),
op_device_(d),
resource_device_(resource_device),
remote_op_id_(t->op_id()),
remote_output_num_(t->output_num()),
resource_device_(dtype == DT_RESOURCE ? d : nullptr),
ctx_(ctx),
is_remote_(true),
is_async_(false),
implicit_mirroring_(true),
is_ready_(true),
tensor_handle_data_(std::move(t)) {
DVLOG(3) << "Creating Remote TensorHandle: " << this
data_(absl::in_place_type<RemoteTensorHandleData>, op_id, output_num,
remote_task, ctx) {
DVLOG(3) << "Creating Unshaped Remote TensorHandle: " << this
<< " device: " << VariantDeviceDebugString(device_);
}
Status TensorHandle::CreateUnshapedRemoteHandle(
std::unique_ptr<UnshapedRemoteTensorHandleData> t, DataType dtype,
Device* d, EagerContext* ctx, TensorHandle** h) {
*h = new TensorHandle(std::move(t), dtype, d, ctx);
Status TensorHandle::CreateLazyRemoteHandle(int64 op_id, int32 output_num,
DataType dtype, Device* d,
EagerContext* ctx,
TensorHandle** h) {
*h = new TensorHandle(op_id, output_num, dtype, d, ctx);
return Status::OK();
}
Status TensorHandle::CreateUnshapedRemoteHandle(int64 op_id, int32 output_num,
const string& remote_task,
DataType dtype, Device* device,
EagerContext* ctx,
TensorHandle** h) {
*h = new TensorHandle(absl::make_unique<UnshapedRemoteTensorHandleData>(
op_id, output_num, remote_task, ctx),
dtype, device, ctx);
return Status::OK();
}
TensorHandle::TensorHandle(std::unique_ptr<UnshapedRemoteTensorHandleData> t,
DataType dtype, Device* device, EagerContext* ctx)
TensorHandle::TensorHandle(int64 op_id, int32 output_num, DataType dtype,
Device* d, EagerContext* ctx)
: dtype(dtype),
device_(device),
op_device_(device),
resource_device_(dtype == DT_RESOURCE ? device : nullptr),
remote_op_id_(t->op_id()),
remote_output_num_(t->output_num()),
device_(d),
op_device_(d),
resource_device_(dtype == DT_RESOURCE ? d : nullptr),
ctx_(ctx),
is_remote_(true),
is_async_(true),
implicit_mirroring_(true),
is_ready_(false),
tensor_handle_data_(std::move(t)) {
DVLOG(3) << "Creating Unshaped Remote TensorHandle: " << this
data_(absl::in_place_type<RemoteTensorHandleData>, op_id, output_num,
ctx->GetContextViewId()) {
DVLOG(3) << "Creating Lazy Remote TensorHandle: " << this
<< " device: " << VariantDeviceDebugString(device_);
}
#endif
bool TensorHandle::IsReady() const {
// Avoid mutex acquisition for local sync handles
if (!is_async_ && !is_remote_) {
return true;
}
tf_shared_lock l(mu_);
return is_ready_;
return absl::visit([](auto& data) { return data.IsReady(); }, data_);
}
Status TensorHandle::WaitReady(const char* caller) const {
if (!IsReady()) {
profiler::TraceMe activity(absl::StrCat(caller, " WaitReady"),
profiler::TraceMeLevel::kInfo);
tf_shared_lock l(mu_);
mu_.Await(Condition(&is_ready_));
}
return is_poisoned_;
bool TensorHandle::IsRemote() const {
#if !defined(IS_MOBILE_PLATFORM)
return data_.index() == 1;
#else
return false;
#endif
}
Status TensorHandle::Tensor(const tensorflow::Tensor** t) const {
DVLOG(3) << "Tensor on TensorHandle: " << this;
TF_RETURN_IF_ERROR(WaitReady("TensorHandle::Tensor"));
return tensor_handle_data_->Tensor(t);
if (IsRemote()) {
return errors::Internal("Invalid Tensor call on remote handle: ", this);
}
auto& data = absl::get<LocalTensorHandleData>(data_);
return data.Tensor(t);
}
Status TensorHandle::TensorFromDevice(const Device* d,
@ -337,12 +270,12 @@ Status TensorHandle::TensorFromDevice(const Device* d,
DVLOG(3) << "TensorFromDevice on TensorHandle: " << this << " device: " << d;
if (d == absl::get<Device*>(device_)) {
if (is_remote_) {
if (IsRemote()) {
return errors::Internal("Invalid Tensor call on remote handle: ", this);
}
TF_RETURN_IF_ERROR(WaitReady("TensorHandle::TensorFromDevice"));
return tensor_handle_data_->Tensor(t);
auto& data = absl::get<LocalTensorHandleData>(data_);
return data.Tensor(t);
}
tf_shared_lock l(mu_);
@ -352,25 +285,21 @@ Status TensorHandle::TensorFromDevice(const Device* d,
" in Tensor call to handle: ", this);
}
// Check if the handle is non-empty, else wait.
auto& mirror = elem->second;
if (mirror.second == nullptr) {
TF_RETURN_IF_ERROR(
mirror.first->WaitReady("TensorHandle::TensorFromDevice"));
}
return mirror.second->Tensor(t);
return mirror.Tensor(t);
}
Status TensorHandle::TensorValue(tensorflow::TensorValue* t, const Device* d) {
Status TensorHandle::TensorValue(const Device* d, tensorflow::TensorValue* t) {
DVLOG(3) << "TensorValue on TensorHandle: " << this << " device: " << d;
if (d == absl::get<Device*>(device_)) {
if (is_remote_) {
if (IsRemote()) {
return errors::Internal("Invalid TensorValue call on remote handle: ",
this);
}
TF_RETURN_IF_ERROR(WaitReady("TensorHandle::TensorValue"));
return tensor_handle_data_->TensorValue(t);
auto& data = absl::get<LocalTensorHandleData>(data_);
return data.TensorValue(t);
}
tf_shared_lock l(mu_);
@ -380,13 +309,8 @@ Status TensorHandle::TensorValue(tensorflow::TensorValue* t, const Device* d) {
" in TensorValue call to handle: ", this);
}
// Check if the handle is non-empty, else wait.
auto& mirror = elem->second;
if (mirror.second == nullptr) {
TF_RETURN_IF_ERROR(mirror.first->WaitReady("TensorHandle::TensorValue"));
}
return mirror.second->TensorValue(t);
return mirror.TensorValue(t);
}
TensorHandle::VariantDevice TensorHandle::DeviceOrHostCPU(
@ -405,8 +329,8 @@ Status TensorHandle::Shape(tensorflow::TensorShape* shape) {
DCHECK(fill);
return Status::OK();
} else {
TF_RETURN_IF_ERROR(WaitReady("TensorHandle::Shape"));
return tensor_handle_data_->Shape(shape);
return absl::visit([shape](auto& data) { return data.Shape(shape); },
data_);
}
}
@ -480,8 +404,8 @@ Status TensorHandle::NumDims(int* num_dims) const {
*num_dims = inference_shape_.dims();
return Status::OK();
} else {
TF_RETURN_IF_ERROR(WaitReady("TensorHandle::NumDims"));
return tensor_handle_data_->NumDims(num_dims);
return absl::visit(
[num_dims](auto& data) { return data.NumDims(num_dims); }, data_);
}
}
@ -492,8 +416,9 @@ Status TensorHandle::Dim(int dim_index, int64* dim) const {
*dim = inference_shape_.dim_size(dim_index);
return Status::OK();
} else {
TF_RETURN_IF_ERROR(WaitReady("TensorHandle::Dim"));
return tensor_handle_data_->Dim(dim_index, dim);
return absl::visit(
[dim_index, dim](auto& data) { return data.Dim(dim_index, dim); },
data_);
}
}
@ -503,8 +428,9 @@ Status TensorHandle::NumElements(int64* num_elements) const {
*num_elements = inference_shape_.num_elements();
return Status::OK();
} else {
TF_RETURN_IF_ERROR(WaitReady("TensorHandle::NumElements"));
return tensor_handle_data_->NumElements(num_elements);
return absl::visit(
[num_elements](auto& data) { return data.NumElements(num_elements); },
data_);
}
}
@ -512,7 +438,8 @@ Status TensorHandle::Unprotect(const Device* d) {
DVLOG(3) << "Unprotect on TensorHandle: " << this << " device: " << d;
if (d == absl::get<Device*>(device_)) {
return tensor_handle_data_->Unprotect();
auto& data = absl::get<LocalTensorHandleData>(data_);
return data.Unprotect();
}
tf_shared_lock l(mu_);
@ -524,11 +451,7 @@ Status TensorHandle::Unprotect(const Device* d) {
// Check if the handle is non-empty
auto& mirror = elem->second;
if (mirror.second == nullptr) {
return errors::Internal("Attempted to unprotect an empty mirror");
}
return mirror.second->Unprotect();
return mirror.Unprotect();
}
bool TensorHandle::HasLocalMirror(const Device* d) const {
@ -551,8 +474,8 @@ Status TensorHandle::AddEmptyLocalMirror(const Device* d) {
return errors::Internal("Attempted to duplicate a local mirror.");
}
local_mirrors_[d] =
std::make_pair(std::make_unique<EmptyLocalTensorHandleData>(), nullptr);
local_mirrors_.emplace(std::piecewise_construct, std::forward_as_tuple(d),
std::forward_as_tuple());
return Status::OK();
}
@ -567,15 +490,8 @@ Status TensorHandle::RemoteAddress(const Device* d, int64* op_id,
tf_shared_lock l(mu_);
auto mirror = remote_mirrors_.find(d->name());
if (mirror != remote_mirrors_.end()) {
*op_id = mirror->second->op_id();
*output_num = mirror->second->output_num();
return Status::OK();
}
auto unshaped_mirror = unshaped_remote_mirrors_.find(d->name());
if (unshaped_mirror != unshaped_remote_mirrors_.end()) {
*op_id = unshaped_mirror->second->op_id();
*output_num = unshaped_mirror->second->output_num();
*op_id = mirror->second.op_id();
*output_num = mirror->second.output_num();
return Status::OK();
}
@ -583,14 +499,14 @@ Status TensorHandle::RemoteAddress(const Device* d, int64* op_id,
"Could not find remote mirror for specified device");
}
if (remote_op_id_ == kInvalidOpId ||
remote_output_num_ == kInvalidOutputNum) {
return errors::InvalidArgument("Remote handle (op_id:", remote_op_id_,
", output_num:", remote_output_num_,
") is not set.");
if (!IsRemote()) {
return errors::InvalidArgument("Primary device is not remote");
}
*op_id = remote_op_id_;
*output_num = remote_output_num_;
auto& data = absl::get<RemoteTensorHandleData>(data_);
*op_id = data.op_id();
*output_num = data.output_num();
return Status::OK();
}
@ -603,16 +519,7 @@ bool TensorHandle::HasRemoteMirror(const Device* d,
auto mirror = remote_mirrors_.find(d->name());
if (mirror != remote_mirrors_.end()) {
// Check if mirror is stale
if (mirror->second->context_view_id() != context_view_id) {
return false;
}
return true;
}
auto unshaped_mirror = unshaped_remote_mirrors_.find(d->name());
if (unshaped_mirror != unshaped_remote_mirrors_.end()) {
// Check if mirror is stale
if (unshaped_mirror->second->context_view_id() != context_view_id) {
if (mirror->second.context_view_id() != context_view_id) {
return false;
}
return true;
@ -630,7 +537,7 @@ bool TensorHandle::HasResourceShapeMirror(const Device* d,
auto mirror = resource_shape_mirrors_.find(d->name());
if (mirror != resource_shape_mirrors_.end()) {
// Check if mirror is stale
if (mirror->second->context_view_id() != context_view_id) {
if (mirror->second.context_view_id() != context_view_id) {
return false;
}
return true;
@ -638,45 +545,39 @@ bool TensorHandle::HasResourceShapeMirror(const Device* d,
return false;
}
Status TensorHandle::AddUnshapedRemoteMirror(
std::unique_ptr<UnshapedRemoteTensorHandleData> t, const Device* d) {
Status TensorHandle::AddUnshapedRemoteMirror(const Device* d, int64 op_id,
int output_num,
const string& remote_task,
EagerContext* ctx) {
DVLOG(3) << "AddUnshapedRemoteMirror on TensorHandle: " << this
<< " device: " << d << " " << d->name();
<< " device: " << d << " " << d->name() << " op_id: " << op_id
<< " output_num: " << output_num;
mutex_lock l(mu_);
auto remote_mirror = remote_mirrors_.find(d->name());
if (remote_mirror != remote_mirrors_.end()) {
if (remote_mirror->second->context_view_id() == t->context_view_id()) {
if (remote_mirror->second.context_view_id() == ctx->GetContextId()) {
return errors::Internal("Attempted to duplicate a remote mirror.");
}
// Remove stale mirror
remote_mirrors_.erase(remote_mirror);
}
auto unshaped_remote_mirror = unshaped_remote_mirrors_.find(d->name());
if (unshaped_remote_mirror != unshaped_remote_mirrors_.end()) {
if (unshaped_remote_mirror->second->context_view_id() ==
t->context_view_id()) {
return errors::Internal(
"Attempted to duplicate an unshaped remote mirror.");
}
// Remove stale mirror
unshaped_remote_mirrors_.erase(unshaped_remote_mirror);
}
unshaped_remote_mirrors_[d->name()] = std::move(t);
remote_mirrors_.emplace(
std::piecewise_construct, std::forward_as_tuple(d->name()),
std::forward_as_tuple(op_id, output_num, remote_task, ctx));
return Status::OK();
}
Status TensorHandle::AddResourceShapeMirror(
std::unique_ptr<UnshapedRemoteTensorHandleData> t, const Device* d) {
Status TensorHandle::AddResourceShapeMirror(const Device* d, int64 op_id,
int output_num, EagerContext* ctx) {
DVLOG(3) << "AddResourceShapeMirror on TensorHandle: " << this;
mutex_lock l(mu_);
auto mirror = resource_shape_mirrors_.find(d->name());
if (mirror != resource_shape_mirrors_.end()) {
if (mirror->second->context_view_id() == t->context_view_id()) {
if (mirror->second.context_view_id() == ctx->GetContextViewId()) {
return errors::Internal(
"Attempted to duplicate a resource shape mirror.");
}
@ -684,26 +585,9 @@ Status TensorHandle::AddResourceShapeMirror(
resource_shape_mirrors_.erase(mirror);
}
resource_shape_mirrors_[d->name()] = std::move(t);
return Status::OK();
}
Status TensorHandle::AddRemoteMirror(std::unique_ptr<RemoteTensorHandleData> t,
const Device* d) {
DVLOG(3) << "AddRemoteMirror on TensorHandle: " << this << " device: " << d;
mutex_lock l(mu_);
auto mirror = remote_mirrors_.find(d->name());
if (mirror != remote_mirrors_.end()) {
if (mirror->second->context_view_id() == t->context_view_id()) {
return errors::Internal("Attempted to duplicate a remote mirror.");
}
// Remove stale mirror
remote_mirrors_.erase(mirror);
}
remote_mirrors_[d->name()] = std::move(t);
resource_shape_mirrors_.emplace(
std::piecewise_construct, std::forward_as_tuple(d->name()),
std::forward_as_tuple(op_id, output_num, ctx->GetContextViewId()));
return Status::OK();
}
@ -717,53 +601,24 @@ Status TensorHandle::SetRemoteShape(const TensorShape& shape, const Device* d,
mutex_lock l(mu_);
auto remote_mirror = remote_mirrors_.find(d->name());
if (remote_mirror != remote_mirrors_.end()) {
if (remote_mirror->second->context_view_id() == context_view_id) {
return errors::Internal(
"Attempted to set remote shape for existing mirror.");
auto& mirror = remote_mirror->second;
if (mirror.context_view_id() == context_view_id) {
return mirror.SetShape(shape);
}
remote_mirrors_.erase(remote_mirror);
}
auto elem = unshaped_remote_mirrors_.find(d->name());
if (elem == unshaped_remote_mirrors_.end()) {
return errors::Internal(
"Attempted to set remote shape for non-waiting mirror.");
}
if (elem->second->context_view_id() != context_view_id) {
unshaped_remote_mirrors_.erase(elem);
return errors::Internal(
"Attempted to set remote shape for a stale mirror.");
}
auto& data = elem->second;
data->ReleaseRemoteTensorHandle();
remote_mirrors_[d->name()] = absl::make_unique<RemoteTensorHandleData>(
data->op_id(), data->output_num(), shape, data->remote_task(),
&data->ctx());
unshaped_remote_mirrors_.erase(elem);
return Status::OK();
}
DCHECK(is_remote_) << "SetRemoteShape is only called on remote handles.";
DCHECK(!IsReady()) << "SetRemoteShape is only called on non-ready handles.";
DCHECK(IsRemote()) << "SetRemoteShape is only called on remote handles.";
UnshapedRemoteTensorHandleData* p =
reinterpret_cast<UnshapedRemoteTensorHandleData*>(
tensor_handle_data_.get());
if (p->context_view_id() != context_view_id) {
auto& data = absl::get<RemoteTensorHandleData>(data_);
if (data.context_view_id() != context_view_id) {
return errors::Internal("Attempted to set remote shape for an old handle.");
}
p->ReleaseRemoteTensorHandle();
tensor_handle_data_ = absl::make_unique<RemoteTensorHandleData>(
remote_op_id_, remote_output_num_, shape, p->remote_task(), ctx_);
is_poisoned_ = Status::OK();
mutex_lock l(mu_);
is_ready_ = true;
return Status::OK();
return data.SetShape(shape);
}
void TensorHandle::PoisonRemote(Status status, const Device* d,
@ -772,18 +627,16 @@ void TensorHandle::PoisonRemote(Status status, const Device* d,
<< " " << d->name();
if (!VariantDeviceIsCustom(device_) && d == absl::get<Device*>(device_)) {
DCHECK(!is_async_ || !IsReady())
<< "PoisonRemote can only be called on non-ready handle: " << this;
DCHECK(IsRemote()) << "Poison can only be on remote handles: " << this;
is_poisoned_ = status;
mutex_lock l(mu_);
is_ready_ = true;
auto& data = absl::get<RemoteTensorHandleData>(data_);
data.Poison(status);
} else {
tf_shared_lock l(mu_);
auto mirror = unshaped_remote_mirrors_.find(d->name());
if (mirror != unshaped_remote_mirrors_.end()) {
if (mirror->second->context_view_id() == context_view_id) {
mirror->second->Poison(status);
auto mirror = remote_mirrors_.find(d->name());
if (mirror != remote_mirrors_.end()) {
if (mirror->second.context_view_id() == context_view_id) {
mirror->second.Poison(status);
}
}
}
@ -798,9 +651,9 @@ Status TensorHandle::AddLocalMirror(tensorflow::Tensor&& tensor,
}
mutex_lock l(mu_);
auto elem = local_mirrors_.insert(std::make_pair(
d, std::make_pair(nullptr,
std::make_unique<LocalTensorHandleData>(tensor))));
auto elem =
local_mirrors_.emplace(std::piecewise_construct, std::forward_as_tuple(d),
std::forward_as_tuple(std::move(tensor)));
if (!elem.second) {
return errors::Internal("Attempted to set tensor for existing mirror.");
}
@ -808,24 +661,18 @@ Status TensorHandle::AddLocalMirror(tensorflow::Tensor&& tensor,
return Status::OK();
}
Status TensorHandle::SetTensor(tensorflow::Tensor&& tensor, const Device* d) {
Status TensorHandle::SetTensor(tensorflow::Tensor&& t, const Device* d) {
DVLOG(3) << "SetTensor on TensorHandle: " << this << " device: " << d;
if (d == absl::get<Device*>(device_)) {
DCHECK(!is_remote_) << "SetTensor is not called on remote handles.";
DCHECK(!is_async_ || !IsReady())
<< "SetTensor is only called on non-ready handles.";
DCHECK(!IsRemote()) << "SetTensor is not called on remote handles.";
if (tensor.dtype() == DT_RESOURCE && tensor.NumElements() > 0) {
auto& resource_handle = tensor.flat<class ResourceHandle>()(0);
if (t.dtype() == DT_RESOURCE && t.NumElements() > 0) {
auto& resource_handle = t.flat<class ResourceHandle>()(0);
handle_dtypes_and_shapes_ = resource_handle.dtypes_and_shapes();
}
tensor_handle_data_ = absl::make_unique<LocalTensorHandleData>(tensor);
if (is_async_) {
is_poisoned_ = Status::OK();
mutex_lock l(mu_);
is_ready_ = true;
}
auto& data = absl::get<LocalTensorHandleData>(data_);
return data.SetTensor(std::move(t));
} else {
tf_shared_lock l(mu_);
auto elem = local_mirrors_.find(d);
@ -835,12 +682,7 @@ Status TensorHandle::SetTensor(tensorflow::Tensor&& tensor, const Device* d) {
}
auto& mirror = elem->second;
if (mirror.second != nullptr) {
return errors::Internal("Attempted to set tensor for existing mirror.");
}
mirror.second = absl::make_unique<LocalTensorHandleData>(tensor);
mirror.first->SetReady();
return mirror.SetTensor(std::move(t));
}
return Status::OK();
@ -850,12 +692,10 @@ void TensorHandle::Poison(Status status, const Device* d) {
DVLOG(3) << "Poison on TensorHandle: " << this << " device: " << d;
if (!VariantDeviceIsCustom(device_) && d == absl::get<Device*>(device_)) {
DCHECK(!is_async_ || !IsReady())
<< "Poison can only be called on non-ready handle: " << this;
DCHECK(!IsRemote()) << "Poison can only be on local handles: " << this;
is_poisoned_ = status;
mutex_lock l(mu_);
is_ready_ = true;
auto& data = absl::get<LocalTensorHandleData>(data_);
data.Poison(status);
} else {
tf_shared_lock l(mu_);
auto elem = local_mirrors_.find(d);
@ -864,9 +704,7 @@ void TensorHandle::Poison(Status status, const Device* d) {
<< " device: " << d;
auto& mirror = elem->second;
DCHECK(mirror.second == nullptr) << "Attempted to poison existing mirror.";
mirror.first->Poison(status);
mirror.Poison(status);
}
}
@ -977,8 +815,11 @@ string TensorHandle::DebugString() const {
!VariantDeviceIsCustom(device_) && device_ != kVariantDeviceNull;
// Consider supporting non-CPU tensors and CPU tensors with a device_ set to
// non-NULL if needed.
strings::StrAppend(&out, ", Tensor: ",
is_cpu ? tensor_handle_data_->DebugString() : "?", "\n");
strings::StrAppend(
&out, ", Tensor: ",
is_cpu ? absl::visit([](auto& data) { return data.DebugString(); }, data_)
: "?",
"\n");
return out;
}

View File

@ -17,10 +17,10 @@ limitations under the License.
#include <algorithm>
#include <cstddef>
#include <map>
#include <memory>
#include <queue>
#include <string>
#include <unordered_map>
#include <vector>
// clang-format off
@ -32,28 +32,20 @@ limitations under the License.
#include "absl/types/variant.h"
#include "tensorflow/core/common_runtime/device.h"
#include "tensorflow/core/common_runtime/device_factory.h"
#include "tensorflow/core/common_runtime/eager/context.h"
#include "tensorflow/core/common_runtime/eager/eager_executor.h"
#include "tensorflow/core/common_runtime/eager/tensor_handle_data.h"
#include "tensorflow/core/common_runtime/function.h"
#include "tensorflow/core/common_runtime/rendezvous_mgr.h"
#if !defined(IS_MOBILE_PLATFORM)
#include "tensorflow/core/distributed_runtime/eager/eager_client.h"
#include "tensorflow/core/distributed_runtime/eager/remote_tensor_handle_data.h"
#endif // IS_MOBILE_PLATFORM
#include "tensorflow/core/framework/rendezvous.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/gtl/map_util.h"
#include "tensorflow/core/platform/fingerprint.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/core/platform/notification.h"
#include "tensorflow/core/platform/thread_annotations.h"
#include "tensorflow/core/public/session_options.h"
#include "tensorflow/core/public/version.h"
namespace tensorflow {
@ -67,56 +59,45 @@ class TensorHandle : public core::RefCounted {
using VariantDevice = absl::variant<Device*, CustomDevice*>;
// TensorHandle for dtype != DT_RESOURCE
TensorHandle(std::unique_ptr<LocalTensorHandleData> t, DataType dtype,
Device* d, Device* op_device, EagerContext* ctx);
TensorHandle(tensorflow::Tensor&& t, Device* d, Device* op_device,
Device* resource_device, EagerContext* ctx);
// TensorHandle for dtype == DT_RESOURCE
TensorHandle(std::unique_ptr<LocalTensorHandleData> t,
const ResourceHandle& resource_handle, Device* d,
Device* op_device, EagerContext* ctx);
TensorHandle(std::unique_ptr<LocalTensorHandleData> t, DataType dtype,
CustomDevice* d, EagerContext* ctx);
TensorHandle(std::unique_ptr<EmptyLocalTensorHandleData> t, bool async,
Device* d, Device* op_device, Device* resource_device,
TensorHandle(tensorflow::Tensor&& t, Device* d, Device* op_device,
EagerContext* ctx);
TensorHandle(tensorflow::Tensor&& t, CustomDevice* d, EagerContext* ctx);
TensorHandle(Device* d, Device* op_device, Device* resource_device,
DataType dtype, EagerContext* ctx);
#if !defined(IS_MOBILE_PLATFORM)
TensorHandle(std::unique_ptr<RemoteTensorHandleData> t, DataType dtype,
Device* d, Device* resource_device, EagerContext* ctx);
TensorHandle(std::unique_ptr<UnshapedRemoteTensorHandleData> t,
TensorHandle(int64 op_id, int32 output_num, const string& remote_task,
DataType dtype, Device* device, EagerContext* ctx);
TensorHandle(int64 op_id, int32 output_num, DataType dtype, Device* device,
EagerContext* ctx);
#endif // IS_MOBILE_PLATFORM
public:
// TensorHandle with no assigned device
static Status CreateLocalHandle(const class Tensor& t, TensorHandle** h);
// TensorHandle with device == op_device
static Status CreateLocalHandle(const class Tensor& t, Device* d,
EagerContext* ctx, TensorHandle** h);
static Status CreateLocalHandle(const class Tensor& t, Device* d,
static Status CreateLocalHandle(const tensorflow::Tensor& t,
TensorHandle** h);
static Status CreateLocalHandle(tensorflow::Tensor&& t, Device* d,
Device* op_device, EagerContext* ctx,
TensorHandle** h);
static Status CreateLocalHandle(const class Tensor& t, CustomDevice* d,
static Status CreateLocalHandle(tensorflow::Tensor&& t, Device* d,
Device* op_device, Device* resource_device,
EagerContext* ctx, TensorHandle** h);
static Status CreateEmptyLocalHandle(bool async, Device* d, Device* op_device,
static Status CreateLocalHandle(tensorflow::Tensor&& t, CustomDevice* d,
EagerContext* ctx, TensorHandle** h);
static Status CreateEmptyLocalHandle(Device* d, Device* op_device,
Device* resource_device, DataType dtype,
EagerContext* ctx, TensorHandle** h);
#if !defined(IS_MOBILE_PLATFORM)
static Status CreateRemoteHandle(int64 op_id, int output_num,
const TensorShape& shape,
const string& remote_task, DataType dtype,
Device* d, Device* resource_device,
EagerContext* ctx, TensorHandle** h);
static Status CreateRemoteHandle(std::unique_ptr<RemoteTensorHandleData> t,
DataType dtype, Device* d,
Device* resource_device, EagerContext* ctx,
TensorHandle** h);
static Status CreateUnshapedRemoteHandle(int64 op_id, int32 output_num,
const string& remote_task,
DataType dtype, Device* device,
DataType dtype, Device* d,
EagerContext* ctx, TensorHandle** h);
static Status CreateUnshapedRemoteHandle(
std::unique_ptr<UnshapedRemoteTensorHandleData> t, DataType dtype,
Device* device, EagerContext* ctx, TensorHandle** h);
static Status CreateLazyRemoteHandle(int64 op_id, int32 output_num,
DataType dtype, Device* d,
EagerContext* ctx, TensorHandle** h);
#endif // IS_MOBILE_PLATFORM
~TensorHandle() override { DVLOG(3) << "Deleting TensorHandle " << this; }
@ -131,7 +112,7 @@ class TensorHandle : public core::RefCounted {
// Return the TensorValue from the specified device which could be either the
// default device or a local mirror. The device pointer should be nullptr if
// requesting the HostCPU.
Status TensorValue(tensorflow::TensorValue* t, const Device* d);
Status TensorValue(const Device* d, tensorflow::TensorValue* t);
VariantDevice device() const { return device_; }
Device* op_device() const { return op_device_; }
@ -161,12 +142,10 @@ class TensorHandle : public core::RefCounted {
bool HasRemoteMirror(const Device* d, uint64 context_view_id) const;
bool HasResourceShapeMirror(const Device* d, uint64 context_view_id) const;
Status AddUnshapedRemoteMirror(
std::unique_ptr<UnshapedRemoteTensorHandleData> t, const Device* d);
Status AddRemoteMirror(std::unique_ptr<RemoteTensorHandleData> t,
const Device* d);
Status AddResourceShapeMirror(
std::unique_ptr<UnshapedRemoteTensorHandleData> t, const Device* d);
Status AddUnshapedRemoteMirror(const Device* d, int64 op_id, int output_num,
const string& remote_task, EagerContext* ctx);
Status AddResourceShapeMirror(const Device* d, int64 op_id, int output_num,
EagerContext* ctx);
// Return the op_id and output num if the handle refers to a remote tensor.
Status RemoteAddress(const Device* d, int64* op_id, int32* output_num) const;
@ -212,14 +191,12 @@ class TensorHandle : public core::RefCounted {
Status CopyInferenceShape(TensorHandle* other);
// Warning: can return nullptr for CPU tensors.
// TODO(b/136608821): Move away from nullptr
EagerContext* Context() { return ctx_; }
// dtype for the handle. It must be the same as t.dtype() once the handle is
// ready.
const DataType dtype;
// TODO(b/136608821): Move away from nullptr
bool OnHostCPU() const {
return (
device_.index() == 0 &&
@ -227,14 +204,14 @@ class TensorHandle : public core::RefCounted {
(ctx_ != nullptr && ctx_->HostCPU() == absl::get<Device*>(device_))));
}
bool IsRemote() const { return is_remote_; }
bool IsRemote() const;
void EnableImplicitMirroring() { implicit_mirroring_ = true; }
bool ImplicitMirroring() const { return implicit_mirroring_; }
string DebugString() const;
void SetResourceHandleDtypeAndShape(
std::vector<DtypeAndPartialTensorShape> dtypes_and_shapes);
std::vector<DtypeAndPartialTensorShape>&& dtypes_and_shapes);
// If this TensorHandle is 1) a local tensor, and 2) a resource handle,
// return data types and shapes of the underlying resource.
@ -248,19 +225,6 @@ class TensorHandle : public core::RefCounted {
// with a ready version of the tensor handle data.
bool IsReady() const;
// If the contents of the Tensor pointed to by this handle is yet to be
// computed by a EagerNode, this function will block till that computation is
// done and the handle is "ready".
Status WaitReady(const char* caller) const;
// TODO(b/136608821): device_ == nullptr (Device*) iff Host CPU:0
// This was expedient, but perhaps worth revisiting ('device_' should always
// be a valid pointer?)
// This can be done if TFE_NewOp() and the TFE_TensorHandle constructors are
// provided with the appropriate TFE_Context.
//
// TODO(ashankar): Reference count TFE_Context to ensure that 'device_' of a
// TFE_TensorHandle does not outlive the TFE_Context from which it came?
VariantDevice const device_;
// Device in which the op producing this tensor was executed. Equals to
@ -275,47 +239,33 @@ class TensorHandle : public core::RefCounted {
mutable mutex mu_;
// Map of local mirrors. In sync mode the EmptyLocalTensorHandleData is
// nullptr. In async mode, we use the EmptyLocalTensorHandleData to manage
// waiting clients. Once the EmptyLocalTensorHandleData is "ready" only the
// LocalTensorHandleData should be used.
std::map<const tensorflow::Device*,
std::pair<std::unique_ptr<EmptyLocalTensorHandleData>,
std::unique_ptr<LocalTensorHandleData>>>
// Map of local mirrors. This can include both ready and non-ready mirrors.
std::unordered_map<const tensorflow::Device*, LocalTensorHandleData>
local_mirrors_ GUARDED_BY(mu_);
#if !defined(IS_MOBILE_PLATFORM)
// TODO(yujingzhang): Remove resource_shape_mirrors_ once scalable per-replica
// variable is ready, since we could get the shape locally without remote copy
// then.
std::map<string, std::unique_ptr<UnshapedRemoteTensorHandleData>>
resource_shape_mirrors_ GUARDED_BY(mu_);
// TODO(gjn): Unshaped remote mirrors are not expected to be long-lived.
// Consider replacing the unshaped_remote_mirrors_ map with something more
// efficient.
std::map<string, std::unique_ptr<UnshapedRemoteTensorHandleData>>
unshaped_remote_mirrors_ GUARDED_BY(mu_);
std::unordered_map<string, RemoteTensorHandleData> resource_shape_mirrors_
GUARDED_BY(mu_);
// TODO(gjn): Is std::map the most optimal choice here? Perhaps this should be
// a fixed size map.
std::map<string, std::unique_ptr<RemoteTensorHandleData>> remote_mirrors_
std::unordered_map<string, RemoteTensorHandleData> remote_mirrors_
GUARDED_BY(mu_);
// IDs required when this class is representing a remote tensor handle.
int64 remote_op_id_;
int32 remote_output_num_;
#endif
// `ctx` is only guaranteed to be set if the handle is not "ready". This is
// typically true when the handle was produced during async execution.
// `ctx` object is not owned and should outlive this handle.
//
// TODO(b/150614042): Reference count EagerContext to ensure that 'device_' of
// a TensorHandle does not outlive the EagerContext from which it came?
EagerContext* const ctx_;
// Does not need synchronization because it can be accessed only after
// WaitReady() has returned. At that point, is_poisoned_ is immutable.
Status is_poisoned_;
const bool is_remote_;
const bool is_async_;
bool implicit_mirroring_;
bool is_ready_ GUARDED_BY(mu_);
// If this TensorHandle 1) is a local tensor, and 2) is a resource handle or
// refers to a remote resource handle, we store data types and shapes for
@ -323,8 +273,12 @@ class TensorHandle : public core::RefCounted {
std::vector<DtypeAndPartialTensorShape> handle_dtypes_and_shapes_;
// Does not need synchronization because it can be accessed only after
// WaitReady() has returned. At that point, tensor_handle_data_ is immutable.
std::unique_ptr<TensorHandleData> tensor_handle_data_;
// WaitReady() has returned. At that point, data_ is immutable.
#if !defined(IS_MOBILE_PLATFORM)
absl::variant<LocalTensorHandleData, RemoteTensorHandleData> data_;
#else
absl::variant<LocalTensorHandleData> data_;
#endif
PartialTensorShape inference_shape_;
};

View File

@ -23,12 +23,16 @@ namespace tensorflow {
class Status;
Status LocalTensorHandleData::Tensor(const tensorflow::Tensor** t) const {
TF_RETURN_IF_ERROR(WaitReady("Tensor"));
*t = &tensor_;
return Status::OK();
}
Status LocalTensorHandleData::TensorValue(tensorflow::TensorValue* t) {
TF_RETURN_IF_ERROR(WaitReady("TensorValue"));
tensorflow::Tensor& tensor = tensor_;
*t = tensorflow::TensorValue(&tensor);
@ -36,103 +40,96 @@ Status LocalTensorHandleData::TensorValue(tensorflow::TensorValue* t) {
}
Status LocalTensorHandleData::Shape(TensorShape* shape) const {
TF_RETURN_IF_ERROR(WaitReady("Shape"));
*shape = tensor_.shape();
return Status::OK();
}
Status LocalTensorHandleData::NumDims(int* num_dims) const {
TF_RETURN_IF_ERROR(WaitReady("NumDims"));
*num_dims = tensor_.dims();
return Status::OK();
}
Status LocalTensorHandleData::Dim(int dim_index, int64* dim) const {
TF_RETURN_IF_ERROR(WaitReady("Dim"));
*dim = tensor_.dim_size(dim_index);
return Status::OK();
}
Status LocalTensorHandleData::NumElements(int64* num_elements) const {
TF_RETURN_IF_ERROR(WaitReady("NumElements"));
*num_elements = tensor_.NumElements();
return Status::OK();
}
Status LocalTensorHandleData::Unprotect() {
if (!IsReady()) {
return errors::Internal("Cannot unprotect a non-ready tensor");
}
forwarding_protection_tensor_ = tensorflow::Tensor();
return Status::OK();
}
Status EmptyLocalTensorHandleData::Tensor(const tensorflow::Tensor** t) const {
return errors::Unavailable(
"Unable to get a tensor for an empty handle. "
"Please wait until it is ready");
Status LocalTensorHandleData::SetTensor(tensorflow::Tensor&& t) {
DCHECK(!IsReady()) << "SetTensor is only called on non-ready handles.";
tensor_ = std::move(t);
// Create copy of original tensor to avoid forwarding
forwarding_protection_tensor_ = tensor_;
auto& state = absl::get<BlockingControl>(ctrl_);
state.SetReady();
return Status::OK();
}
Status EmptyLocalTensorHandleData::TensorValue(tensorflow::TensorValue* t) {
return errors::Unavailable(
"Unable to get a tensor for an empty handle. "
"Please wait until it is ready");
string LocalTensorHandleData::DebugString() const {
if (IsReady()) {
return tensor_.DeviceSafeDebugString();
} else {
return "LocalTensorHandleData";
}
}
Status EmptyLocalTensorHandleData::Shape(TensorShape* shape) const {
return errors::Unavailable(
"Unable to get shape information for an empty handle. "
"Please wait until it is ready");
}
Status EmptyLocalTensorHandleData::NumDims(int* num_dims) const {
return errors::Unavailable(
"Unable to get shape information for an empty handle. "
"Please wait until it is ready");
}
Status EmptyLocalTensorHandleData::Dim(int dim_index, int64* dim) const {
return errors::Unavailable(
"Unable to get shape information for an empty handle. "
"Please wait until it is ready");
}
Status EmptyLocalTensorHandleData::NumElements(int64* num_elements) const {
return errors::Unavailable(
"Unable to get shape information for an empty handle. "
"Please wait until it is ready");
}
Status EmptyLocalTensorHandleData::Unprotect() {
return errors::Unavailable("Unable to unprotect an empty handle.");
}
bool EmptyLocalTensorHandleData::IsReady() const {
tf_shared_lock l(mu_);
return is_ready_;
}
void EmptyLocalTensorHandleData::SetReady() {
void LocalTensorHandleData::BlockingControl::SetReady() {
mutex_lock l(mu_);
is_ready_ = true;
}
Status EmptyLocalTensorHandleData::WaitReady(const char* caller) const {
if (!IsReady()) {
profiler::TraceMe activity(absl::StrCat(caller, " WaitReady"),
profiler::TraceMeLevel::kInfo);
tf_shared_lock l(mu_);
Status LocalTensorHandleData::BlockingControl::WaitReady(
const char* caller) const {
tf_shared_lock l(mu_);
if (!is_ready_) {
profiler::TraceMe activity(
[caller] { return absl::StrCat(caller, " WaitReady"); },
profiler::TraceMeLevel::kInfo);
DVLOG(3) << "WaitReady: " << caller << " " << this;
mu_.Await(Condition(&is_ready_));
}
return is_poisoned_;
}
void EmptyLocalTensorHandleData::Poison(Status status) {
is_poisoned_ = status;
void LocalTensorHandleData::BlockingControl::Poison(Status status) {
mutex_lock l(mu_);
if (is_ready_) {
LOG(ERROR) << "Poison can only be called on non-ready handle: " << this;
return;
}
is_poisoned_ = status;
is_ready_ = true;
}
string EmptyLocalTensorHandleData::DebugString() const {
return "EmptyLocalTensorHandleData";
}
} // namespace tensorflow

View File

@ -15,52 +15,50 @@ limitations under the License.
#ifndef TENSORFLOW_CORE_COMMON_RUNTIME_EAGER_TENSOR_HANDLE_DATA_H_
#define TENSORFLOW_CORE_COMMON_RUNTIME_EAGER_TENSOR_HANDLE_DATA_H_
#include "absl/types/variant.h"
#include "tensorflow/core/common_runtime/eager/context.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/lib/core/status.h"
namespace tensorflow {
class TensorHandleData {
public:
virtual ~TensorHandleData() {}
// Different tensor handles support a set of these calls. In some cases these
// are resolved with a Tensor or TensorShape. Typically if the handle is not
// ready, none of these are supported operations.
virtual Status Tensor(const tensorflow::Tensor** t) const = 0;
virtual Status TensorValue(tensorflow::TensorValue* t) = 0;
virtual Status Shape(TensorShape* shape) const = 0;
virtual Status NumDims(int* num_dims) const = 0;
virtual Status Dim(int dim_index, int64* dim) const = 0;
virtual Status NumElements(int64* num_elements) const = 0;
// Allow the backing Tensor to be available for buffer reuse during op
// execution.
virtual Status Unprotect() = 0;
virtual string DebugString() const = 0;
};
// Local Tensor Handle: Handle to a Tensor present on the local host.
class LocalTensorHandleData : public TensorHandleData {
class LocalTensorHandleData {
public:
explicit LocalTensorHandleData(const tensorflow::Tensor& t)
: tensor_(t), forwarding_protection_tensor_(t) {}
~LocalTensorHandleData() override {}
LocalTensorHandleData() : ctrl_(absl::in_place_type<BlockingControl>) {}
explicit LocalTensorHandleData(tensorflow::Tensor&& t)
: tensor_(std::move(t)),
forwarding_protection_tensor_(tensor_),
ctrl_(absl::in_place_type<NonBlockingControl>) {}
// A local tensor handle should be able to satisfy all of these requests.
Status Tensor(const tensorflow::Tensor** t) const override;
Status TensorValue(tensorflow::TensorValue* t) override;
Status Shape(TensorShape* shape) const override;
Status NumDims(int* num_dims) const override;
Status Dim(int dim_index, int64* dim) const override;
Status NumElements(int64* num_elements) const override;
Status Unprotect() override;
Status Tensor(const tensorflow::Tensor** t) const;
Status TensorValue(tensorflow::TensorValue* t);
Status Shape(TensorShape* shape) const;
Status NumDims(int* num_dims) const;
Status Dim(int dim_index, int64* dim) const;
Status NumElements(int64* num_elements) const;
Status Unprotect();
string DebugString() const override {
return tensor_.DeviceSafeDebugString();
bool IsReady() const {
return absl::visit([](auto& data) { return data.IsReady(); }, ctrl_);
}
Status WaitReady(const char* caller) const {
return absl::visit([caller](auto& data) { return data.WaitReady(caller); },
ctrl_);
}
void Poison(Status status) {
return absl::visit([status](auto& data) { data.Poison(status); }, ctrl_);
}
Status IsPoisoned() const {
return absl::visit([](auto& data) { return data.IsPoisoned(); }, ctrl_);
}
Status SetTensor(tensorflow::Tensor&& t);
string DebugString() const;
private:
tensorflow::Tensor tensor_;
// TensorHandle has its own reference counting which is distinct from the
@ -70,37 +68,41 @@ class LocalTensorHandleData : public TensorHandleData {
// forwarding_protection_tensor_ Tensor. When Unprotect() is called, we
// release this Tensor to allow forwarding.
tensorflow::Tensor forwarding_protection_tensor_;
};
// Empty Local Tensor Handle: Once the execution is complete this is replaced by
// a local tensor handle.
class EmptyLocalTensorHandleData : public TensorHandleData {
public:
EmptyLocalTensorHandleData() {}
~EmptyLocalTensorHandleData() override {}
// We distinguish between ready and empty tensors with the ctrl_ variant.
// which contains 2 implementations of the waiting logic. The
// NonBlockingControl is a simple no-op class whereas the BlockingControl
// actually uses a mutex. By using a variant we avoid the overhead of
// constructing and destructing the mutex for ready local tensors.
class NonBlockingControl {
public:
bool IsReady() const { return true; }
Status WaitReady(const char* caller) const { return Status::OK(); }
void Poison(Status status) {}
Status IsPoisoned() const { return Status::OK(); }
};
// Empty tensor handles are not ready and hence cannot satisfy any of these
// requests.
Status Tensor(const tensorflow::Tensor** t) const override;
Status TensorValue(tensorflow::TensorValue* t) override;
Status Shape(TensorShape* shape) const override;
Status NumDims(int* num_dims) const override;
Status Dim(int dim_index, int64* dim) const override;
Status NumElements(int64* num_elements) const override;
Status Unprotect() override;
class BlockingControl {
public:
bool IsReady() const {
tf_shared_lock l(mu_);
return is_ready_;
}
void SetReady();
Status WaitReady(const char* caller) const;
void Poison(Status status);
Status IsPoisoned() const {
tf_shared_lock l(mu_);
return is_poisoned_;
}
bool IsReady() const;
void SetReady();
Status WaitReady(const char* caller) const;
void Poison(Status status);
Status IsPoisoned() const { return is_poisoned_; }
private:
mutable mutex mu_;
bool is_ready_ GUARDED_BY(mu_);
Status is_poisoned_ GUARDED_BY(mu_);
};
string DebugString() const override;
private:
mutable mutex mu_;
bool is_ready_ GUARDED_BY(mu_);
Status is_poisoned_;
absl::variant<NonBlockingControl, BlockingControl> ctrl_;
};
} // namespace tensorflow

View File

@ -39,12 +39,13 @@ TEST(TensorHandle_ShapeTest, AsyncShape) {
tensorflow::ContextMirroringPolicy::MIRRORING_NONE, false, false,
&device_mgr, false, nullptr, nullptr, nullptr);
TensorHandle* sync_th;
EXPECT_TRUE(
TensorHandle::CreateLocalHandle(t, ctx->HostCPU(), ctx, &sync_th).ok());
EXPECT_TRUE(TensorHandle::CreateLocalHandle(std::move(t), nullptr, nullptr,
ctx, &sync_th)
.ok());
TensorHandle* async_th;
EXPECT_TRUE(TensorHandle::CreateEmptyLocalHandle(true, nullptr, nullptr,
nullptr, DataType::DT_UINT16,
ctx, &async_th)
EXPECT_TRUE(TensorHandle::CreateEmptyLocalHandle(nullptr, nullptr, nullptr,
DataType::DT_UINT16, ctx,
&async_th)
.ok());
EXPECT_TRUE(async_th->CopyInferenceShape(sync_th).ok());

View File

@ -190,8 +190,10 @@ cc_library(
deps = [
":destroy_tensor_handle_node",
":eager_client",
"//tensorflow/core:framework",
"//tensorflow/core:lib",
"//tensorflow/core/common_runtime/eager:tensor_handle_data",
"//tensorflow/core/common_runtime/eager:context",
"//tensorflow/core/profiler/lib:traceme",
],
)

View File

@ -530,7 +530,8 @@ Status EagerServiceImpl::SendTensor(const SendTensorOp& send_tensor,
}
TensorHandle* tensor_handle = nullptr;
TF_RETURN_IF_ERROR(TensorHandle::CreateLocalHandle(tensor, &tensor_handle));
TF_RETURN_IF_ERROR(TensorHandle::CreateLocalHandle(
std::move(tensor), nullptr, nullptr, eager_context, &tensor_handle));
TensorHandle* copied_handle = nullptr;
Device* device;
TF_RETURN_IF_ERROR(eager_context->FindDeviceFromName(

View File

@ -101,12 +101,10 @@ Status RemoteCopyNode::RunLocalSend(EagerOperation* op) {
core::RefCountPtr<KernelAndDevice> kernel;
TF_RETURN_IF_ERROR(CreateUncachedKernelAndDeviceOp(op, &kernel));
gtl::InlinedVector<TensorValue, 4> input_vector(1);
TF_RETURN_IF_ERROR(src_->TensorValue(
&input_vector[0],
ctx_->CanonicalDevice(absl::get<Device*>(op->Device()))));
EagerKernelArgs args(1);
Device* d = ctx_->CanonicalDevice(absl::get<Device*>(op->Device()));
TF_RETURN_IF_ERROR(src_->TensorValue(d, args.MutableInput(0)));
EagerKernelArgs args(std::move(input_vector));
return kernel->Run(args, /*outputs=*/nullptr,
/*cancellation_manager=*/nullptr,
/*remote_func_params=*/absl::nullopt);

View File

@ -162,16 +162,8 @@ Status RemoteMgr::DeserializeRemoteTensorHandle(const RemoteTensorHandle& in,
in.op_device().empty() ? in.device() : in.op_device();
TF_RETURN_IF_ERROR(
parent_->FindDeviceFromName(device_name.c_str(), &device));
string remote_task;
if (!DeviceNameUtils::GetTaskName(device->parsed_name(), &remote_task)) {
return errors::InvalidArgument(
"Unable to find remote task corresponding to device ", device_name);
}
auto remote_handle_data = absl::make_unique<UnshapedRemoteTensorHandleData>(
in.op_id(), in.output_num(), remote_task, parent_);
remote_handle_data->ReleaseRemoteTensorHandle();
TF_RETURN_IF_ERROR(TensorHandle::CreateUnshapedRemoteHandle(
std::move(remote_handle_data), in.dtype(), device, parent_, out));
TF_RETURN_IF_ERROR(TensorHandle::CreateLazyRemoteHandle(
in.op_id(), in.output_num(), in.dtype(), device, parent_, out));
std::vector<DtypeAndPartialTensorShape> dtypes_and_shapes;
if (!GetMirroredResourceShape(RemoteTensorHandleInternal(in),
&dtypes_and_shapes)

View File

@ -71,14 +71,12 @@ TEST_F(RemoteMgrTest, SerializeLocalTensorHandleWithRemoteMirror) {
Tensor t(DT_FLOAT, TensorShape({0}));
TensorHandle* handle;
TF_ASSERT_OK(
TensorHandle::CreateLocalHandle(t, local_device_, ctx_, &handle));
TF_ASSERT_OK(TensorHandle::CreateLocalHandle(std::move(t), local_device_,
local_device_, ctx_, &handle));
const uint64 op_id = 2;
const int output_num = 3;
auto tensor_handle_data = absl::make_unique<RemoteTensorHandleData>(
op_id, output_num, t.shape(), /*remote_task=*/"", ctx_);
TF_ASSERT_OK(
handle->AddRemoteMirror(std::move(tensor_handle_data), remote_device_));
TF_ASSERT_OK(handle->AddUnshapedRemoteMirror(remote_device_, op_id,
output_num, "", ctx_));
RemoteTensorHandle remote_handle;
TF_ASSERT_OK(remote_mgr.SerializeRemoteTensorHandle(
handle, &remote_handle, remote_device_, remote_device_->name()));
@ -90,14 +88,13 @@ TEST_F(RemoteMgrTest, SerializeLocalTensorHandleWithRemoteMirror) {
TEST_F(RemoteMgrTest, SerializeRemoteTensorHandle) {
RemoteMgr remote_mgr(false, ctx_);
Tensor t(DT_FLOAT, TensorShape({0}));
const uint64 op_id = 3;
const int output_num = 1;
TensorHandle* handle;
TF_ASSERT_OK(TensorHandle::CreateRemoteHandle(
op_id, output_num, t.shape(), /*remote_task=*/"", DT_FLOAT,
remote_device_, /*resource_device=*/nullptr, ctx_, &handle));
TF_ASSERT_OK(TensorHandle::CreateUnshapedRemoteHandle(
op_id, output_num,
/*remote_task=*/"", DT_FLOAT, remote_device_, ctx_, &handle));
RemoteTensorHandle remote_handle;
TF_ASSERT_OK(remote_mgr.SerializeRemoteTensorHandle(
handle, &remote_handle, remote_device_, remote_device_->name()));

View File

@ -19,6 +19,7 @@ limitations under the License.
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/gtl/cleanup.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/profiler/lib/traceme.h"
namespace tensorflow {
@ -84,66 +85,104 @@ void DestroyRemoteTensorHandle(EagerContext* ctx, const string& remote_task,
} // namespace
RemoteTensorHandleData::RemoteTensorHandleData(int64 op_id, int output_num,
const TensorShape& shape,
const string& remote_task,
EagerContext* ctx)
: op_id_(op_id),
uint64 context_view_id)
: is_ready_(false),
op_id_(op_id),
output_num_(output_num),
shape_(shape),
remote_task_(remote_task),
context_id_(ctx->GetContextId()),
context_view_id_(ctx->GetContextViewId()),
ctx_(*ctx) {
context_view_id_(context_view_id),
ctx_(nullptr) {
DCHECK(op_id_ >= 0 && output_num_ >= 0)
<< "Op ID and output num should be >= 0. Op ID: " << op_id
<< ", Output num: " << output_num;
ctx_.Ref();
}
RemoteTensorHandleData::RemoteTensorHandleData(int64 op_id, int output_num,
const string& remote_task,
EagerContext* ctx)
: is_ready_(false),
op_id_(op_id),
output_num_(output_num),
remote_task_(remote_task),
context_id_(ctx->GetContextId()),
context_view_id_(ctx->GetContextViewId()),
ctx_(ctx) {
DCHECK(op_id_ >= 0 && output_num_ >= 0)
<< "Op ID and output num should be >= 0. Op ID: " << op_id
<< ", Output num: " << output_num;
ctx_->Ref();
}
RemoteTensorHandleData::~RemoteTensorHandleData() {
DestroyRemoteTensorHandle(&ctx_, remote_task_, context_id_, op_id_,
output_num_, /*ready=*/true);
ctx_.Unref();
}
Status RemoteTensorHandleData::Tensor(const tensorflow::Tensor** t) const {
return errors::Unavailable(
"Unable to get a tensor for a remote device. Please copy the tensor "
"handle to a local device using TFE_TensorHandleCopyToDevice");
}
Status RemoteTensorHandleData::TensorValue(tensorflow::TensorValue* t) {
return errors::Unavailable(
"Unable to get a tensor for a remote device. Please copy the tensor "
"handle to a local device using TFE_TensorHandleCopyToDevice");
if (ctx_) {
DestroyRemoteTensorHandle(ctx_, remote_task_, context_id_, op_id_,
output_num_, /*ready=*/true);
ctx_->Unref();
}
}
Status RemoteTensorHandleData::Shape(TensorShape* shape) const {
TF_RETURN_IF_ERROR(WaitReady("Shape"));
tf_shared_lock l(mu_);
*shape = shape_;
return Status::OK();
}
Status RemoteTensorHandleData::NumDims(int* num_dims) const {
TF_RETURN_IF_ERROR(WaitReady("NumDims"));
tf_shared_lock l(mu_);
*num_dims = shape_.dims();
return Status::OK();
}
Status RemoteTensorHandleData::Dim(int dim_index, int64* dim) const {
TF_RETURN_IF_ERROR(WaitReady("Dim"));
tf_shared_lock l(mu_);
*dim = shape_.dim_size(dim_index);
return Status::OK();
}
Status RemoteTensorHandleData::NumElements(int64* num_elements) const {
TF_RETURN_IF_ERROR(WaitReady("NumElements"));
tf_shared_lock l(mu_);
*num_elements = shape_.num_elements();
return Status::OK();
}
Status RemoteTensorHandleData::Unprotect() {
return errors::Unavailable("Unable to unprotect a remote handle.");
bool RemoteTensorHandleData::IsReady() const {
tf_shared_lock l(mu_);
return is_ready_;
}
void RemoteTensorHandleData::Poison(Status status) {
mutex_lock l(mu_);
is_poisoned_ = status;
is_ready_ = true;
}
Status RemoteTensorHandleData::IsPoisoned() const {
tf_shared_lock l(mu_);
return is_poisoned_;
}
Status RemoteTensorHandleData::SetShape(const TensorShape& shape) {
mutex_lock l(mu_);
if (is_ready_) {
return errors::Internal("SetShape is only called on non-ready handles.");
}
shape_ = shape;
is_poisoned_ = Status::OK();
is_ready_ = true;
return Status::OK();
}
string RemoteTensorHandleData::DebugString() const {
@ -151,73 +190,20 @@ string RemoteTensorHandleData::DebugString() const {
" output_num: ", output_num_);
}
UnshapedRemoteTensorHandleData::UnshapedRemoteTensorHandleData(
int64 op_id, int32 output_num, const string& remote_task, EagerContext* ctx)
: op_id_(op_id),
output_num_(output_num),
delete_remote_tensor_(true),
remote_task_(remote_task),
context_id_(ctx->GetContextId()),
context_view_id_(ctx->GetContextViewId()),
ctx_(*ctx) {
DCHECK(op_id_ >= 0 && output_num_ >= 0)
<< "Op ID and output num should be >= 0. Op ID: " << op_id
<< ", Output num: " << output_num;
ctx_.Ref();
}
UnshapedRemoteTensorHandleData::~UnshapedRemoteTensorHandleData() {
if (delete_remote_tensor_) {
DestroyRemoteTensorHandle(&ctx_, remote_task_, context_id_, op_id_,
output_num_, /*ready=*/false);
Status RemoteTensorHandleData::WaitReady(const char* caller) const {
if (ctx_ == nullptr) {
return errors::Internal("Cannot wait on lazy remote handle");
}
ctx_.Unref();
}
Status UnshapedRemoteTensorHandleData::Tensor(
const tensorflow::Tensor** t) const {
return errors::Unavailable(
"Unable to get a tensor for a remote handle. Please copy the tensor "
"handle to a local device using TFE_TensorHandleCopyToDevice");
}
Status UnshapedRemoteTensorHandleData::TensorValue(tensorflow::TensorValue* t) {
return errors::Unavailable(
"Unable to get a tensor for a remote handle. Please copy the tensor "
"handle to a local device using TFE_TensorHandleCopyToDevice");
}
Status UnshapedRemoteTensorHandleData::Shape(TensorShape* shape) const {
return errors::Unavailable(
"Unable to get shape information for an async remote handle. Please wait "
"until it is ready");
}
Status UnshapedRemoteTensorHandleData::NumDims(int* num_dims) const {
return errors::Unavailable(
"Unable to get shape information for an async remote handle. Please wait "
"until it is ready");
}
Status UnshapedRemoteTensorHandleData::Dim(int dim_index, int64* dim) const {
return errors::Unavailable(
"Unable to get shape information for an async remote handle. Please wait "
"until it is ready");
}
Status UnshapedRemoteTensorHandleData::NumElements(int64* num_elements) const {
return errors::Unavailable(
"Unable to get shape information for an async remote handle. Please wait "
"until it is ready");
}
Status UnshapedRemoteTensorHandleData::Unprotect() {
return errors::Unavailable("Unable to unprotect a remote handle.");
}
string UnshapedRemoteTensorHandleData::DebugString() const {
return strings::StrCat("UnshapedRemoteTensorHandleDat:", " op_id: ", op_id_,
" output_num: ", output_num_);
tf_shared_lock l(mu_);
if (!is_ready_) {
profiler::TraceMe activity(
[caller] { return absl::StrCat(caller, " WaitReady"); },
profiler::TraceMeLevel::kInfo);
DVLOG(3) << "WaitReady: " << caller << " " << this;
mu_.Await(Condition(&is_ready_));
}
return is_poisoned_;
}
} // namespace tensorflow

View File

@ -15,97 +15,56 @@ limitations under the License.
#ifndef TENSORFLOW_CORE_DISTRIBUTED_RUNTIME_EAGER_REMOTE_TENSOR_HANDLE_DATA_H_
#define TENSORFLOW_CORE_DISTRIBUTED_RUNTIME_EAGER_REMOTE_TENSOR_HANDLE_DATA_H_
#include "tensorflow/core/common_runtime/eager/tensor_handle_data.h"
#include "tensorflow/core/distributed_runtime/eager/eager_client.h"
#include "tensorflow/core/common_runtime/eager/context.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/lib/core/status.h"
namespace tensorflow {
// Remote Tensor Handle: A handle to a Tensor on a remote host. Note that only
// the shape is known.
class RemoteTensorHandleData : public TensorHandleData {
class RemoteTensorHandleData {
public:
RemoteTensorHandleData(int64 op_id, int output_num, const TensorShape& shape,
const string& remote_task, EagerContext* ctx);
~RemoteTensorHandleData() override;
// Constructor for lazy remote handles
RemoteTensorHandleData(int64 op_id, int output_num, uint64 context_view_id);
// Constructor for unshaped remote handles
RemoteTensorHandleData(int64 op_id, int output_num, const string& remote_task,
EagerContext* ctx);
~RemoteTensorHandleData();
// A remote tensor handle does not have a Tensor object, hence it can only
// support the shape requests.
Status Tensor(const tensorflow::Tensor** t) const override;
Status TensorValue(tensorflow::TensorValue* t) override;
Status Shape(TensorShape* shape) const override;
Status NumDims(int* num_dims) const override;
Status Dim(int dim_index, int64* dim) const override;
Status NumElements(int64* num_elements) const override;
Status Unprotect() override;
EagerContext& ctx() const { return ctx_; }
Status Shape(TensorShape* shape) const;
Status NumDims(int* num_dims) const;
Status Dim(int dim_index, int64* dim) const;
Status NumElements(int64* num_elements) const;
string DebugString() const override;
bool IsReady() const;
Status SetShape(const TensorShape& shape);
void Poison(Status status);
Status IsPoisoned() const;
string DebugString() const;
int64 op_id() const { return op_id_; }
int32 output_num() const { return output_num_; }
uint64 context_id() const { return context_id_; }
uint64 context_view_id() const { return context_view_id_; }
private:
Status WaitReady(const char* caller) const;
mutable mutex mu_;
bool is_ready_ GUARDED_BY(mu_);
Status is_poisoned_ GUARDED_BY(mu_);
TensorShape shape_ GUARDED_BY(mu_);
// IDs required when this class is representing a remote tensor handle.
const int64 op_id_;
const int32 output_num_;
const TensorShape shape_;
string remote_task_;
uint64 context_id_;
uint64 context_view_id_;
EagerContext& ctx_;
};
// Async Remote Tensor Handle: A handle to a Tensor on a remote host. Once the
// shape has been computed this is replaced with a remote tensor handle.
class UnshapedRemoteTensorHandleData : public TensorHandleData {
public:
UnshapedRemoteTensorHandleData(int64 op_id, int32 output_num,
const string& remote_task, EagerContext* ctx);
~UnshapedRemoteTensorHandleData() override;
// Unshaped remote tensor handles are not ready and hence cannot satisfy any
// of these requests.
Status Tensor(const tensorflow::Tensor** t) const override;
Status TensorValue(tensorflow::TensorValue* t) override;
Status Shape(TensorShape* shape) const override;
Status NumDims(int* num_dims) const override;
Status Dim(int dim_index, int64* dim) const override;
Status NumElements(int64* num_elements) const override;
Status Unprotect() override;
void Poison(Status status) { is_poisoned_ = status; }
Status IsPoisoned() const { return is_poisoned_; }
string DebugString() const override;
int64 op_id() const { return op_id_; }
int32 output_num() const { return output_num_; }
string remote_task() const { return remote_task_; }
uint64 context_id() const { return context_id_; }
uint64 context_view_id() const { return context_view_id_; }
EagerContext& ctx() const { return ctx_; }
// When constructed, UnshapedRemoteTensorHandleData owns the remote
// TensorHandle and should delete it by issuing an RPC. Once the remote
// shape has been learned, the ownership is transferred to
// RemoteTensorHandleData. This method must be called to let `this` know
// that it no longer owns the remote handle.
// TODO(iga): Add a factory method here that will create a new
// RemoteTensorHandleData from this and transfer ownership in the process.
void ReleaseRemoteTensorHandle() { delete_remote_tensor_ = false; }
private:
Status is_poisoned_;
// IDs required when this class is representing a remote tensor handle.
const int64 op_id_;
const int32 output_num_;
bool delete_remote_tensor_;
string remote_task_;
uint64 context_id_;
uint64 context_view_id_;
EagerContext& ctx_;
EagerContext* ctx_;
};
} // namespace tensorflow

View File

@ -91,11 +91,11 @@ Status MakeArgTuple(const PyCall* call, EagerContext* ctx, PyObject** tuple) {
Device* device = IsCPUDevice(call->device) ? nullptr : call->device;
for (int64 i = 0; i < n; ++i) {
PyObject* arg = nullptr;
const Tensor& t = call->ins[i];
if (call->eager) {
TensorHandle* handle;
Tensor t = call->ins[i];
TF_RETURN_IF_ERROR(TensorHandle::CreateLocalHandle(
t, ctx->CanonicalDevice(device), nullptr, ctx, &handle));
std::move(t), ctx->CanonicalDevice(device), nullptr, ctx, &handle));
arg = EagerTensorFromHandle(new TFE_TensorHandle{
std::make_unique<tensorflow::TensorHandleInterface>(handle)});
if (arg == nullptr) {
@ -103,7 +103,7 @@ Status MakeArgTuple(const PyCall* call, EagerContext* ctx, PyObject** tuple) {
return errors::Internal("Unable to procure EagerTensor from Tensor.");
}
} else {
Status s = TensorToNdarray(t, &arg);
Status s = TensorToNdarray(call->ins[i], &arg);
if (!s.ok()) {
Py_DECREF(lst);
return s;

View File

@ -277,7 +277,8 @@ struct Converter {
static Status Convert(TFE_Context* ctx, PyObject* obj, ConverterState* state,
TFE_TensorHandle** h, const char** error) {
/* TODO(josh11b): Allocator & attributes? */
// TODO(josh11b): Allocator & attributes
// TODO(gjn): Use optimized scalar constructors when possible.
Tensor result(ConverterTraits<T>::kTypeEnum,
TensorShape(state->inferred_shape));
if (state->inferred_shape.empty()) { /* Scalar case */
@ -294,7 +295,7 @@ struct Converter {
}
tensorflow::TensorHandle* handle = nullptr;
auto status = tensorflow::TensorHandle::CreateLocalHandle(
result, /*d=*/ctx->context->HostCPU(), /*op_device=*/nullptr,
std::move(result), /*d=*/ctx->context->HostCPU(), /*op_device=*/nullptr,
ctx->context, &handle);
if (!status.ok()) {
return status;
@ -610,8 +611,8 @@ TFE_TensorHandle* NumpyToTFE_TensorHandle(TFE_Context* ctx, PyObject* obj) {
auto cppstatus = tensorflow::NdarrayToTensor(obj, &t);
if (cppstatus.ok()) {
cppstatus = tensorflow::TensorHandle::CreateLocalHandle(
t, /*d=*/ctx->context->HostCPU(), /*op_device=*/nullptr, ctx->context,
&handle);
std::move(t), /*d=*/ctx->context->HostCPU(), /*op_device=*/nullptr,
ctx->context, &handle);
}
if (!cppstatus.ok()) {
PyErr_SetString(PyExc_ValueError,
@ -805,10 +806,10 @@ TFE_TensorHandle* PySeqToTFE_TensorHandle(TFE_Context* ctx, PyObject* obj,
case DT_INVALID: // Only occurs for empty tensors.
{
tensorflow::TensorHandle* h = nullptr;
Tensor tensor(requested_dtype == DT_INVALID ? DT_FLOAT : requested_dtype,
TensorShape(state.inferred_shape));
Tensor t(requested_dtype == DT_INVALID ? DT_FLOAT : requested_dtype,
TensorShape(state.inferred_shape));
status = tensorflow::TensorHandle::CreateLocalHandle(
tensor, /*d=*/ctx->context->HostCPU(), /*op_device=*/nullptr,
std::move(t), /*d=*/ctx->context->HostCPU(), /*op_device=*/nullptr,
ctx->context, &h);
if (!status.ok()) {
PyErr_SetString(PyExc_ValueError, status.error_message().c_str());