minor spelling tweaks

This commit is contained in:
Kazuaki Ishizaki 2021-01-07 02:58:08 +09:00
parent 934d476896
commit c98f8d9f8c
14 changed files with 17 additions and 17 deletions

View File

@ -191,7 +191,7 @@ void InitializeInputs(int left, int right,
// Invokes a prebuilt interpreter.
absl::Status Invoke(std::unique_ptr<Interpreter>* interpreter);
// Usability structure, which is used to pass parameters data to parametrized
// Usability structure, which is used to pass parameters data to parameterized
// tests.
struct TestParams {
// A gtest name, which will be used for a generated tests.

View File

@ -139,7 +139,7 @@ class _DataSet(object):
Args:
images: The images
labels: The labels
fake_data: Ignore inages and labels, use fake data.
fake_data: Ignore images and labels, use fake data.
one_hot: Bool, return the labels as one hot vectors (if True) or ints (if
False).
dtype: Output image dtype. One of [uint8, float32]. `uint8` output has

View File

@ -197,7 +197,7 @@ struct {
} depthwise_conv_2d;
```
Then polulate these new parameters in `GetOpSignature` function in
Then populate these new parameters in `GetOpSignature` function in
`lite/tools/versioning/op_version.cc`:
```

View File

@ -222,7 +222,7 @@ output-value deviation) in two settings:
To do so, the tool generates random Gaussian data and passes it through two
TFLite Interpreters - one running single-threaded CPU kernels, and the other
parametrized by the user's arguments.
parameterized by the user's arguments.
It measures the latency of both, as well as the absolute difference between the
output tensors from each Interpreter, on a per-element basis.

View File

@ -104,7 +104,7 @@ plt.plot(cmsis_dft, label='CMSIS fixed')
plt.legend()
plt.subplot(313)
plt.plot(to_float(micro_dft, 22), label='Micro to float')
# CMSIS result has 6 fractionanl bits (not 7) due to documentation error (see
# CMSIS result has 6 fractional bits (not 7) due to documentation error (see
# README.md)
plt.plot(to_float(cmsis_dft, 6), label='CMSIS to float')
plt.plot(py_result, label='Python result')

View File

@ -2498,7 +2498,7 @@ class FromKerasFile(TestModels, parameterized.TestCase):
self.assertEqual((0., 0.), output_details[1]['quantization'])
def testPartialShapeOverriding(self):
"""Test a Functional tf.keras model with parital input shape overriding."""
"""Test a Functional tf.keras model with partial input shape overriding."""
self._getFunctionalModelMultipleInputs()
# Convert to TFLite model.

View File

@ -26,7 +26,7 @@ def get_builtin_code_from_operator_code(opcode):
"""Return the builtin code of the given operator code.
The following method is introduced to resolve op builtin code shortage
problem. The new builtin opreator will be assigned to the extended builtin
problem. The new builtin operator will be assigned to the extended builtin
code field in the flatbuffer schema. Those methods helps to hide builtin code
details.

View File

@ -17,7 +17,7 @@
The functions defined in this library have been copied over from Keras in order
to remove the dependency from TensorFlow Lite to Keras. The functions which
could not be copied over are accessed using the dependecy inversion principle.
could not be copied over are accessed using the dependency inversion principle.
(for details, refer to tensorflow/python/util/keras_deps.py).
"""

View File

@ -21,7 +21,7 @@ limitations under the License.
namespace tflite {
// The following methods are introduced to resolve op builtin code shortage
// problem. The new builtin opreator will be assigned to the extended builtin
// problem. The new builtin operator will be assigned to the extended builtin
// code field in the flatbuffer schema. Those methods helps to hide builtin code
// details.
BuiltinOperator GetBuiltinCode(const OperatorCode *op_code);

View File

@ -70,7 +70,7 @@ def tflite_hexagon_nn_skel_libraries():
name = "libhexagon_nn_skel",
srcs = glob(["*.so"]),
)
you need to modify this macro to specifiy the build target.
you need to modify this macro to specify the build target.
return ["//third_party/hexagon_nn_skel:libhexagon_nn_skel"]
"""
return []

View File

@ -561,7 +561,7 @@ def compare_model_golden(tflite_model,
input_data: np.ndarray to pass into models during inference.
golden_name: Name of the file containing the (expected) golden values.
update_golden: Whether to update the golden values with the model output
instead of comparing againts them. This should only be done when a change
instead of comparing against them. This should only be done when a change
in TFLite warrants it.
tolerance: Decimal place to check accuracy to. (default 5).
"""
@ -815,7 +815,7 @@ def _test_conversion_quant_float16(converter,
golden_name: Optional golden values to compare the output of the model
against.
update_golden: Whether to update the golden values with the model output
instead of comparing againts them.
instead of comparing against them.
**kwargs: Additional arguments to be passed into the converter.
"""
tflite_model_float = _convert(converter, version=2, **kwargs)
@ -867,7 +867,7 @@ def test_saved_model_v2_quant_float16(directory,
golden_name: Optional golden values to compare the output of the model
against.
update_golden: Whether to update the golden values with the model output
instead of comparing againts them.
instead of comparing against them.
**kwargs: Additional arguments to be passed into the converter.
"""
converter = _lite.TFLiteConverterV2.from_saved_model(directory)
@ -897,7 +897,7 @@ def test_frozen_graph_quant_float16(filename,
golden_name: Optional golden values to compare the output of the model
against.
update_golden: Whether to update the golden values with the model output
instead of comparing againts them.
instead of comparing against them.
**kwargs: Additional arguments to be passed into the converter.
"""
converter = _lite.TFLiteConverter.from_frozen_graph(filename, input_arrays,

View File

@ -35,7 +35,7 @@ def make_not_equal_tests(options):
}]
def build_graph(parameters):
"""Build the not euqal op testing graph."""
"""Build the not equal op testing graph."""
input_value1 = tf.compat.v1.placeholder(
dtype=parameters["input_dtype"],
name="input1",

View File

@ -85,7 +85,7 @@ def main():
parser.add_argument(
"--enable_mlir_converter",
action="store_true",
help=("Boolean indiciating whether to enable MLIR-based conversion "
help=("Boolean indicating whether to enable MLIR-based conversion "
"instead of TOCO conversion. (default False)"))
FLAGS, unparsed = parser.parse_known_args()

View File

@ -45,7 +45,7 @@ filegroup(
```
you need to modify tflite_hexagon_nn_skel_libraries macro in
tensorflow/lite/special_rules.bzl to specifiy the build target.
tensorflow/lite/special_rules.bzl to specify the build target.
```
return ["//third_party/hexagon_nn_skel:libhexagon_nn_skel"]