Merge pull request #33063 from bas-aarts:xla-merge

PiperOrigin-RevId: 276286841
Change-Id: I4f9cbc4d82cc963676b0b55ea023d4792ee1b0c7
This commit is contained in:
TensorFlower Gardener 2019-10-23 09:14:40 -07:00
commit c87a16e17a
10 changed files with 58 additions and 9 deletions

View File

@ -157,9 +157,12 @@ void MergeOutgoingDataEdges(const Scope& s, Node* old_node, Node* new_node,
new_output = check_numerics_op;
}
ops::Merge merge_op(s.WithOpName("merge_oidx_", oidx),
{Output(old_node, oidx), new_output});
merged_output = merged_outputs[oidx] = merge_op.output;
ops::_XlaMerge xla_merge_op(s.WithOpName("merge_oidx_", oidx),
Output(old_node, oidx), new_output);
if (xla_merge_op.output.type() == DT_INT32) {
LOG(INFO) << "int32 output at index " << oidx;
}
merged_output = merged_outputs[oidx] = xla_merge_op.output;
}
Node* dst = e->dst();

View File

@ -208,7 +208,7 @@ TEST_F(BuildXlaOpsTest, OnNonXlaDevice) {
NodeWith(Op("PartitionedCall"),
CtrlDeps(NodeWith(Op("Identity"),
Inputs(Out(0, predicated_compilation_key)))));
auto merge = NodeWith(Op("Merge"), Inputs(Out(tf_call), Out(xla_run)));
auto merge = NodeWith(Op("_XlaMerge"), Inputs(Out(tf_call), Out(xla_run)));
auto assign_var = NodeWith(Op("AssignVariableOp"), Inputs(_, Out(merge)));
std::unique_ptr<Graph> graph;

View File

@ -533,6 +533,7 @@ void XlaCompileOp::Compute(OpKernelContext* ctx) {
compilation_successful.scalar<bool>()() = false;
ctx->set_output(0, Tensor(cpu_allocator, DT_STRING, TensorShape({})));
ctx->set_output(1, compilation_successful);
LOG(INFO) << "Compilation bailout!";
return;
}
@ -630,6 +631,16 @@ void XlaRunOp::Compute(OpKernelContext* ctx) {
input_output_alias, closure.resource_var_snapshots()));
}
XlaMergeOp::XlaMergeOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}
void XlaMergeOp::Compute(OpKernelContext* ctx) {
VLOG(3) << "XlaMergeOp " << def().name();
int i = 0;
if (ctx->has_input(i) || ctx->has_input(++i)) {
ctx->set_output(0, ctx->input(i));
}
}
REGISTER_KERNEL_BUILDER(Name("XlaLaunch").Device(DEVICE_CPU), XlaLocalLaunchOp);
REGISTER_KERNEL_BUILDER(Name("XlaLaunch")
@ -648,6 +659,10 @@ REGISTER_KERNEL_BUILDER(Name("_XlaCompile")
XlaCompileOp);
REGISTER_KERNEL_BUILDER(Name("_XlaRun").Device(DEVICE_CPU), XlaRunOp);
REGISTER_KERNEL_BUILDER(Name("_XlaRun").Device(DEVICE_GPU), XlaRunOp);
REGISTER_KERNEL_BUILDER(Name("_XlaRun").Device(DEVICE_GPU).HostMemory("key"),
XlaRunOp);
REGISTER_KERNEL_BUILDER(Name("_XlaMerge").Device(DEVICE_CPU), XlaMergeOp);
REGISTER_KERNEL_BUILDER(Name("_XlaMerge").Device(DEVICE_GPU), XlaMergeOp);
} // namespace tensorflow

View File

@ -175,6 +175,13 @@ class XlaRunOp : public OpKernel {
const XlaPlatformInfo platform_info_;
};
class XlaMergeOp : public OpKernel {
public:
explicit XlaMergeOp(OpKernelConstruction* ctx);
void Compute(OpKernelContext* ctx) override;
};
} // namespace tensorflow
#endif // TENSORFLOW_COMPILER_JIT_KERNELS_XLA_LAUNCH_OP_H_

View File

@ -95,4 +95,23 @@ Executes a TensorFlow function previously compiled into a LocalExecutable by an
_XlaCompile op.
)");
REGISTER_OP("_XlaMerge")
.Input("partitioned_call: T")
.Input("xla_run: T")
.Output("output: T")
.Attr("T: type")
.SetShapeFn([](InferenceContext* c) {
c->set_output(0, c->input(0));
return Status::OK();
})
.Doc(R"(XLA Merge Op. For use by the XLA JIT only.
Merges the outputs from the PartitionedCall node and the _XlaRun node.
Unlike the TensorFlow Merge op, which requires inputs of some types to be
placed on the host, the _XlaMerge op can merge inputs of all types when
placed on the device. This prevents the need for copy operations, in
particluar when an XLA cluster has int32 outputs. The _XlaMerge up does not
have a value_index output that identifies the chosen input.
)");
} // namespace tensorflow

View File

@ -103,6 +103,7 @@ const std::unordered_map<string, Node::NodeClass>& Node::kNodeClassTable =
{"_DeviceArg", NC_ARG},
{"_Retval", NC_RETVAL},
{"_DeviceRetval", NC_RETVAL},
{"_XlaMerge", NC_MERGE},
});
#undef REF_CLASS

View File

@ -56,7 +56,8 @@ namespace {
static constexpr const bool kDoNotCheckDuplicates = true;
inline bool IsMerge(const NodeDef& node_def) {
return node_def.op() == "Merge" || node_def.op() == "RefMerge";
return node_def.op() == "Merge" || node_def.op() == "RefMerge" ||
node_def.op() == "_XlaMerge";
}
inline bool IsNextIteration(const NodeDef& node_def) {

View File

@ -47,7 +47,8 @@ namespace tensorflow {
namespace {
inline bool IsMerge(const NodeDef& node_def) {
return node_def.op() == "Merge" || node_def.op() == "RefMerge";
return node_def.op() == "Merge" || node_def.op() == "RefMerge" ||
node_def.op() == "_XlaMerge";
}
inline bool IsNextIteration(const NodeDef& node_def) {

View File

@ -153,6 +153,7 @@ bool IsControlFlow(const NodeDef& node) {
node.op() == "Exit" ||
node.op() == "LoopCond" ||
node.op() == "Merge" ||
node.op() == "_XlaMerge" ||
node.op() == "NextIteration" ||
node.op() == "Switch" ||
node.op() == "_SwitchN";
@ -332,7 +333,7 @@ bool IsMean(const NodeDef& node) { return node.op() == "Mean"; }
bool IsMerge(const NodeDef& node) {
const auto& op = node.op();
return op == "Merge" || op == "RefMerge";
return op == "Merge" || op == "RefMerge" || op == "_XlaMerge";
}
bool IsMin(const NodeDef& node) { return node.op() == "Min"; }

View File

@ -26,7 +26,8 @@ namespace graph_transforms {
namespace {
inline bool IsMerge(const NodeDef& node_def) {
return node_def.op() == "Merge" || node_def.op() == "RefMerge";
return node_def.op() == "Merge" || node_def.op() == "RefMerge" ||
node_def.op() == "_XlaMerge";
}
void RecordMatchedNodes(const NodeMatch& match,