diff --git a/tensorflow/lite/experimental/examples/lstm/g3doc/README.md b/tensorflow/lite/experimental/examples/lstm/g3doc/README.md index 63873fd9752..ef21a3e0301 100644 --- a/tensorflow/lite/experimental/examples/lstm/g3doc/README.md +++ b/tensorflow/lite/experimental/examples/lstm/g3doc/README.md @@ -71,7 +71,7 @@ tflite_model = converter.convert() # You got a tflite model! + tf.lite.experimental.nn.TFLiteLSTMCell( self.num_lstm_units, forget_bias=0)) # Weights and biases for output softmax layer. - out_weights = tf.Variable(tf.random_normal([self.units, self.num_class])) + out_weights = tf.Variable(tf.random.normal([self.units, self.num_class])) @@ -67,7 +67,7 @@ class MnistLstmModel(object): lstm_cells = tf.nn.rnn_cell.MultiRNNCell(lstm_layers) # Note here, we use `tf.lite.experimental.nn.dynamic_rnn` and `time_major` @@ -170,7 +170,7 @@ class MnistLstmModel(object): tf.lite.experimental.nn.TFLiteLSTMCell( self.num_lstm_units, forget_bias=0)) # Weights and biases for output softmax layer. - out_weights = tf.Variable(tf.random_normal([self.units, self.num_class])) + out_weights = tf.Variable(tf.random.normal([self.units, self.num_class])) out_bias = tf.Variable(tf.zeros([self.num_class])) # Transpose input x to make it time major.