diff --git a/tensorflow/python/autograph/operators/py_builtins.py b/tensorflow/python/autograph/operators/py_builtins.py index ddf05f73f37..9f54cf4fe5d 100644 --- a/tensorflow/python/autograph/operators/py_builtins.py +++ b/tensorflow/python/autograph/operators/py_builtins.py @@ -37,7 +37,7 @@ from tensorflow.python.ops import list_ops from tensorflow.python.ops import math_ops -UNDEFINED = object() +UNSPECIFIED = object() def overload_of(f): @@ -77,14 +77,14 @@ def _py_float(x): return float(x) -def int_(x=0, base=UNDEFINED): +def int_(x=0, base=UNSPECIFIED): if tensor_util.is_tensor(x): return _tf_int(x, base) return _py_int(x, base) def _tf_int(x, base): - if base not in (10, UNDEFINED): + if base not in (10, UNSPECIFIED): raise NotImplementedError('base {} not supported for int'.format(base)) # TODO(mdan): We shouldn't assume int32. @@ -94,7 +94,7 @@ def _tf_int(x, base): def _py_int(x, base): - if base is UNDEFINED: + if base is UNSPECIFIED: return int(x) return int(x, base) @@ -167,7 +167,7 @@ def print_(*objects, **kwargs): def _tf_py_func_print(objects, kwargs): """Overload of print_ as a py_func implementation.""" - override_kwargs = {k: v for k, v in kwargs.items() if v is not UNDEFINED} + override_kwargs = {k: v for k, v in kwargs.items() if v is not UNSPECIFIED} if 'flush' not in override_kwargs: # Defaulting to flushing the console in graph mode, which helps reduce # garbled output in IPython. @@ -187,7 +187,7 @@ def _tf_py_func_print(objects, kwargs): print_wrapper, None, objects, use_dummy_return=True) -def range_(start_or_stop, stop=UNDEFINED, step=UNDEFINED): +def range_(start_or_stop, stop=UNSPECIFIED, step=UNSPECIFIED): if any(tensor_util.is_tensor(s) for s in (start_or_stop, stop, step)): return _tf_range(start_or_stop, stop, step) return _py_range(start_or_stop, stop, step) @@ -200,10 +200,10 @@ def _tf_range(start_or_stop, stop, step): # graph construction error aligns the semantics with Python. # TODO(mdan): We should optimize this when a full tensor is not required. - if step is not UNDEFINED: + if step is not UNSPECIFIED: # TODO(mdan): Add argument coercion similar to other cases. return math_ops.range(start_or_stop, stop, step) - if stop is not UNDEFINED: + if stop is not UNSPECIFIED: stop = math_ops.maximum(start_or_stop, stop) return math_ops.range(start_or_stop, stop) start_or_stop = math_ops.maximum(start_or_stop, 0) @@ -211,9 +211,9 @@ def _tf_range(start_or_stop, stop, step): def _py_range(start_or_stop, stop, step): - if step is not UNDEFINED: + if step is not UNSPECIFIED: return range(start_or_stop, stop, step) - if stop is not UNDEFINED: + if stop is not UNSPECIFIED: return range(start_or_stop, stop) return range(start_or_stop)