Export StringLookup and IntegerLookup layers.
PiperOrigin-RevId: 313801697 Change-Id: Ib159a0b7fe36e6d9d00a7e2d6bc6fbeb3c76af10
This commit is contained in:
parent
57749ce64f
commit
c3769e5ed3
|
@ -47,19 +47,31 @@ if tf2.enabled():
|
|||
from tensorflow.python.keras.layers.preprocessing.category_encoding import CategoryEncoding
|
||||
from tensorflow.python.keras.layers.preprocessing.category_encoding_v1 import CategoryEncoding as CategoryEncodingV1
|
||||
CategoryEncodingV2 = CategoryEncoding
|
||||
from tensorflow.python.keras.layers.preprocessing.integer_lookup import IntegerLookup
|
||||
from tensorflow.python.keras.layers.preprocessing.integer_lookup_v1 import IntegerLookup as IntegerLookupV1
|
||||
IntegerLookupV2 = IntegerLookup
|
||||
from tensorflow.python.keras.layers.preprocessing.normalization import Normalization
|
||||
from tensorflow.python.keras.layers.preprocessing.normalization_v1 import Normalization as NormalizationV1
|
||||
NormalizationV2 = Normalization
|
||||
from tensorflow.python.keras.layers.preprocessing.string_lookup import StringLookup
|
||||
from tensorflow.python.keras.layers.preprocessing.string_lookup_v1 import StringLookup as StringLookupV1
|
||||
StringLookupV2 = StringLookup
|
||||
from tensorflow.python.keras.layers.preprocessing.text_vectorization import TextVectorization
|
||||
from tensorflow.python.keras.layers.preprocessing.text_vectorization_v1 import TextVectorization as TextVectorizationV1
|
||||
TextVectorizationV2 = TextVectorization
|
||||
else:
|
||||
from tensorflow.python.keras.layers.preprocessing.integer_lookup_v1 import IntegerLookup
|
||||
from tensorflow.python.keras.layers.preprocessing.integer_lookup import IntegerLookup as IntegerLookupV2
|
||||
IntegerLookupV1 = IntegerLookup
|
||||
from tensorflow.python.keras.layers.preprocessing.category_encoding_v1 import CategoryEncoding
|
||||
from tensorflow.python.keras.layers.preprocessing.category_encoding import CategoryEncoding as CategoryEncodingV2
|
||||
CategoryEncodingV1 = CategoryEncoding
|
||||
from tensorflow.python.keras.layers.preprocessing.normalization_v1 import Normalization
|
||||
from tensorflow.python.keras.layers.preprocessing.normalization import Normalization as NormalizationV2
|
||||
NormalizationV1 = Normalization
|
||||
from tensorflow.python.keras.layers.preprocessing.string_lookup_v1 import StringLookup
|
||||
from tensorflow.python.keras.layers.preprocessing.string_lookup import StringLookup as StringLookupV2
|
||||
StringLookupV1 = StringLookup
|
||||
from tensorflow.python.keras.layers.preprocessing.text_vectorization_v1 import TextVectorization
|
||||
from tensorflow.python.keras.layers.preprocessing.text_vectorization import TextVectorization as TextVectorizationV2
|
||||
TextVectorizationV1 = TextVectorization
|
||||
|
|
|
@ -20,8 +20,10 @@ from __future__ import print_function
|
|||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.keras.layers.preprocessing import index_lookup
|
||||
from tensorflow.python.keras.layers.preprocessing import table_utils
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
||||
@keras_export("keras.layers.experimental.preprocessing.IntegerLookup", v1=[])
|
||||
class IntegerLookup(index_lookup.IndexLookup):
|
||||
"""Maps integers from a vocabulary to integer indices.
|
||||
|
||||
|
@ -39,18 +41,18 @@ class IntegerLookup(index_lookup.IndexLookup):
|
|||
Attributes:
|
||||
max_values: The maximum size of the vocabulary for this layer. If None,
|
||||
there is no cap on the size of the vocabulary. Note that this vocabulary
|
||||
includes the OOV and mask tokens, so the effective number of tokens is
|
||||
(max_tokens - num_oov_tokens - (1 if mask_token else 0))
|
||||
includes the OOV and mask values, so the effective number of values is
|
||||
(max_values - num_oov_values - (1 if mask_token else 0))
|
||||
num_oov_indices: The number of out-of-vocabulary values to use; defaults to
|
||||
1. If this value is more than 1, OOV inputs are hashed to determine their
|
||||
OOV value; if this value is 0, passing an OOV input will result in a '-1'
|
||||
being returned for that value in the output tensor. (Note that, because
|
||||
the value is -1 and not 0, this will allow you to effectively drop OOV
|
||||
values from categorical encodings.)
|
||||
1. If this value is more than 1, OOV inputs are modulated to determine
|
||||
their OOV value; if this value is 0, passing an OOV input will result in
|
||||
a '-1' being returned for that value in the output tensor. (Note that,
|
||||
because the value is -1 and not 0, this will allow you to effectively drop
|
||||
OOV values from categorical encodings.)
|
||||
mask_value: A value that represents masked inputs, and which is mapped to
|
||||
index 0. Defaults to 0. If set to None, no mask term will be added and the
|
||||
OOV tokens, if any, will be indexed from (0...num_oov_tokens) instead of
|
||||
(1...num_oov_tokens+1).
|
||||
OOV values, if any, will be indexed from (0...num_oov_values) instead of
|
||||
(1...num_oov_values+1).
|
||||
oov_value: The value representing an out-of-vocabulary value. Defaults to
|
||||
-1.
|
||||
vocabulary: An optional list of values, or a path to a text file containing
|
||||
|
@ -87,7 +89,7 @@ class IntegerLookup(index_lookup.IndexLookup):
|
|||
[0, -1, 42, 1138, 1000, 36, 12]
|
||||
|
||||
Note how the mask value 0 and the OOV value -1 have been added to the
|
||||
vocabulary. The remaining tokens are sorted by frequency (1138, which has
|
||||
vocabulary. The remaining values are sorted by frequency (1138, which has
|
||||
2 occurrences, is first) then by inverse sort order.
|
||||
|
||||
>>> data = tf.constant([[12, 1138, 42], [42, 1000, 36]])
|
||||
|
@ -99,6 +101,27 @@ class IntegerLookup(index_lookup.IndexLookup):
|
|||
[2, 4, 5]])>
|
||||
|
||||
|
||||
Lookups with multiple OOV tokens.
|
||||
|
||||
This example demonstrates how to use a lookup layer with multiple OOV tokens.
|
||||
When a layer is created with more than one OOV token, any OOV values are
|
||||
hashed into the number of OOV buckets, distributing OOV values in a
|
||||
deterministic fashion across the set.
|
||||
|
||||
>>> vocab = [12, 36, 1138, 42]
|
||||
>>> data = tf.constant([[12, 1138, 42], [37, 1000, 36]])
|
||||
>>> layer = IntegerLookup(vocabulary=vocab, num_oov_indices=2)
|
||||
>>> layer(data)
|
||||
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
|
||||
array([[3, 5, 6],
|
||||
[2, 1, 4]])>
|
||||
|
||||
Note that the output for OOV value 37 is 2, while the output for OOV value
|
||||
1000 is 1. The in-vocab terms have their output index increased by 1 from
|
||||
earlier examples (12 maps to 3, etc) in order to make space for the extra OOV
|
||||
value.
|
||||
|
||||
|
||||
Inverse lookup
|
||||
|
||||
This example demonstrates how to map indices to values using this layer. (You
|
||||
|
|
|
@ -19,7 +19,9 @@ from __future__ import print_function
|
|||
|
||||
from tensorflow.python.keras.layers.preprocessing import index_lookup_v1
|
||||
from tensorflow.python.keras.layers.preprocessing import integer_lookup
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
||||
@keras_export(v1=["keras.layers.experimental.preprocessing.IntegerLookup"])
|
||||
class IntegerLookup(integer_lookup.IntegerLookup, index_lookup_v1.IndexLookup):
|
||||
pass
|
||||
|
|
|
@ -20,8 +20,10 @@ from __future__ import print_function
|
|||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.keras.layers.preprocessing import index_lookup
|
||||
from tensorflow.python.keras.layers.preprocessing import table_utils
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
||||
@keras_export("keras.layers.experimental.preprocessing.StringLookup", v1=[])
|
||||
class StringLookup(index_lookup.IndexLookup):
|
||||
"""Maps strings from a vocabulary to integer indices.
|
||||
|
||||
|
@ -52,7 +54,7 @@ class StringLookup(index_lookup.IndexLookup):
|
|||
will be added and the OOV tokens, if any, will be indexed from
|
||||
(0...num_oov_indices) instead of (1...num_oov_indices+1).
|
||||
oov_token: The token representing an out-of-vocabulary value. Defaults to
|
||||
"[OOV]".
|
||||
"[UNK]".
|
||||
vocabulary: An optional list of vocabulary terms, or a path to a text file
|
||||
containing a vocabulary to load into this layer. The file should contain
|
||||
one token per line. If the list or file contains the same token multiple
|
||||
|
@ -85,9 +87,9 @@ class StringLookup(index_lookup.IndexLookup):
|
|||
>>> layer = StringLookup()
|
||||
>>> layer.adapt(data)
|
||||
>>> layer.get_vocabulary()
|
||||
['', '[OOV]', 'd', 'z', 'c', 'b', 'a']
|
||||
['', '[UNK]', 'd', 'z', 'c', 'b', 'a']
|
||||
|
||||
Note how the mask token '' and the OOV token [OOV] have been added to the
|
||||
Note how the mask token '' and the OOV token [UNK] have been added to the
|
||||
vocabulary. The remaining tokens are sorted by frequency ('d', which has
|
||||
2 occurrences, is first) then by inverse sort order.
|
||||
|
||||
|
@ -99,6 +101,25 @@ class StringLookup(index_lookup.IndexLookup):
|
|||
array([[6, 4, 2],
|
||||
[2, 3, 5]])>
|
||||
|
||||
Lookups with multiple OOV tokens.
|
||||
|
||||
This example demonstrates how to use a lookup layer with multiple OOV tokens.
|
||||
When a layer is created with more than one OOV token, any OOV values are
|
||||
hashed into the number of OOV buckets, distributing OOV values in a
|
||||
deterministic fashion across the set.
|
||||
|
||||
>>> vocab = ["a", "b", "c", "d"]
|
||||
>>> data = tf.constant([["a", "c", "d"], ["m", "z", "b"]])
|
||||
>>> layer = StringLookup(vocabulary=vocab, num_oov_indices=2)
|
||||
>>> layer(data)
|
||||
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
|
||||
array([[3, 5, 6],
|
||||
[1, 2, 4]])>
|
||||
|
||||
Note that the output for OOV value 'm' is 1, while the output for OOV value
|
||||
'z' is 2. The in-vocab terms have their output index increased by 1 from
|
||||
earlier examples (a maps to 3, etc) in order to make space for the extra OOV
|
||||
value.
|
||||
|
||||
Inverse lookup
|
||||
|
||||
|
@ -112,7 +133,7 @@ class StringLookup(index_lookup.IndexLookup):
|
|||
>>> layer(data)
|
||||
<tf.Tensor: shape=(2, 3), dtype=string, numpy=
|
||||
array([[b'a', b'c', b'd'],
|
||||
[b'd', b'[OOV]', b'b']], dtype=object)>
|
||||
[b'd', b'[UNK]', b'b']], dtype=object)>
|
||||
|
||||
Note that the integer 5, which is out of the vocabulary space, returns an OOV
|
||||
token.
|
||||
|
@ -131,9 +152,9 @@ class StringLookup(index_lookup.IndexLookup):
|
|||
>>> i_layer(int_data)
|
||||
<tf.Tensor: shape=(2, 3), dtype=string, numpy=
|
||||
array([[b'a', b'c', b'd'],
|
||||
[b'd', b'[OOV]', b'b']], dtype=object)>
|
||||
[b'd', b'[UNK]', b'b']], dtype=object)>
|
||||
|
||||
In this example, the input value 'z' resulted in an output of '[OOV]', since
|
||||
In this example, the input value 'z' resulted in an output of '[UNK]', since
|
||||
1000 was not in the vocabulary - it got represented as an OOV, and all OOV
|
||||
values are returned as '[OOV}' in the inverse layer. Also, note that for the
|
||||
inverse to work, you must have already set the forward layer vocabulary
|
||||
|
@ -144,9 +165,9 @@ class StringLookup(index_lookup.IndexLookup):
|
|||
max_tokens=None,
|
||||
num_oov_indices=1,
|
||||
mask_token="",
|
||||
oov_token="[OOV]",
|
||||
oov_token="[UNK]",
|
||||
vocabulary=None,
|
||||
encoding="utf-8",
|
||||
encoding=None,
|
||||
invert=False,
|
||||
**kwargs):
|
||||
allowed_dtypes = [dtypes.string]
|
||||
|
@ -158,6 +179,9 @@ class StringLookup(index_lookup.IndexLookup):
|
|||
if "dtype" not in kwargs:
|
||||
kwargs["dtype"] = dtypes.string
|
||||
|
||||
if encoding is None:
|
||||
encoding = "utf-8"
|
||||
|
||||
if vocabulary is not None:
|
||||
if isinstance(vocabulary, str):
|
||||
vocabulary = table_utils.get_vocabulary_from_file(vocabulary, encoding)
|
||||
|
|
|
@ -36,6 +36,7 @@ from tensorflow.python.keras.layers.preprocessing import string_lookup
|
|||
from tensorflow.python.keras.layers.preprocessing import string_lookup_v1
|
||||
from tensorflow.python.keras.saving import save
|
||||
from tensorflow.python.keras.utils.generic_utils import CustomObjectScope
|
||||
from tensorflow.python.ops.ragged import ragged_factory_ops
|
||||
from tensorflow.python.platform import gfile
|
||||
from tensorflow.python.platform import test
|
||||
|
||||
|
@ -155,7 +156,7 @@ class StringLookupVocabularyTest(keras_parameterized.TestCase,
|
|||
|
||||
def test_get_vocab_returns_str(self):
|
||||
vocab_data = ["earth", "wind", "and", "fire"]
|
||||
expected_vocab = ["", "[OOV]", "earth", "wind", "and", "fire"]
|
||||
expected_vocab = ["", "[UNK]", "earth", "wind", "and", "fire"]
|
||||
layer = get_layer_class()(vocabulary=vocab_data)
|
||||
layer_vocab = layer.get_vocabulary()
|
||||
self.assertAllEqual(expected_vocab, layer_vocab)
|
||||
|
@ -205,7 +206,7 @@ class StringLookupVocabularyTest(keras_parameterized.TestCase,
|
|||
input_array = np.array([["earth", "wind", "and", "fire"],
|
||||
["fire", "and", "earth", "michigan"]])
|
||||
expected_output = np.array([["earth", "wind", "and", "fire"],
|
||||
["fire", "and", "earth", "[OOV]"]])
|
||||
["fire", "and", "earth", "[UNK]"]])
|
||||
|
||||
input_data = keras.Input(shape=(None,), dtype=dtypes.string)
|
||||
layer = get_layer_class()(vocabulary=vocab_data)
|
||||
|
@ -217,6 +218,21 @@ class StringLookupVocabularyTest(keras_parameterized.TestCase,
|
|||
output_dataset = model.predict(input_array)
|
||||
self.assertAllEqual(expected_output, output_dataset)
|
||||
|
||||
def test_ragged_string_input_multi_bucket(self):
|
||||
vocab_data = ["earth", "wind", "and", "fire"]
|
||||
input_array = ragged_factory_ops.constant([["earth", "wind", "fire"],
|
||||
["fire", "and", "earth",
|
||||
"ohio"]])
|
||||
expected_output = [[3, 4, 6], [6, 5, 3, 2]]
|
||||
|
||||
input_data = keras.Input(shape=(None,), dtype=dtypes.string, ragged=True)
|
||||
layer = get_layer_class()(num_oov_indices=2)
|
||||
layer.set_vocabulary(vocab_data)
|
||||
int_data = layer(input_data)
|
||||
model = keras.Model(inputs=input_data, outputs=int_data)
|
||||
output_dataset = model.predict(input_array)
|
||||
self.assertAllEqual(expected_output, output_dataset)
|
||||
|
||||
|
||||
@keras_parameterized.run_all_keras_modes(always_skip_eager=True)
|
||||
class StringLookupSaveableTest(keras_parameterized.TestCase,
|
||||
|
|
|
@ -19,7 +19,9 @@ from __future__ import print_function
|
|||
|
||||
from tensorflow.python.keras.layers.preprocessing import index_lookup_v1
|
||||
from tensorflow.python.keras.layers.preprocessing import string_lookup
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
||||
@keras_export(v1=["keras.layers.experimental.preprocessing.StringLookup"])
|
||||
class StringLookup(string_lookup.StringLookup, index_lookup_v1.IndexLookup):
|
||||
pass
|
||||
|
|
|
@ -51,8 +51,12 @@ from tensorflow.python.keras.layers.preprocessing import category_encoding_v1
|
|||
from tensorflow.python.keras.layers.preprocessing import discretization
|
||||
from tensorflow.python.keras.layers.preprocessing import hashing
|
||||
from tensorflow.python.keras.layers.preprocessing import image_preprocessing
|
||||
from tensorflow.python.keras.layers.preprocessing import integer_lookup as preprocessing_integer_lookup
|
||||
from tensorflow.python.keras.layers.preprocessing import integer_lookup_v1 as preprocessing_integer_lookup_v1
|
||||
from tensorflow.python.keras.layers.preprocessing import normalization as preprocessing_normalization
|
||||
from tensorflow.python.keras.layers.preprocessing import normalization_v1 as preprocessing_normalization_v1
|
||||
from tensorflow.python.keras.layers.preprocessing import string_lookup as preprocessing_string_lookup
|
||||
from tensorflow.python.keras.layers.preprocessing import string_lookup_v1 as preprocessing_string_lookup_v1
|
||||
from tensorflow.python.keras.layers.preprocessing import text_vectorization as preprocessing_text_vectorization
|
||||
from tensorflow.python.keras.layers.preprocessing import text_vectorization_v1 as preprocessing_text_vectorization_v1
|
||||
from tensorflow.python.keras.utils import generic_utils
|
||||
|
@ -63,11 +67,13 @@ from tensorflow.python.util.tf_export import keras_export
|
|||
ALL_MODULES = (base_layer, input_layer, advanced_activations, convolutional,
|
||||
convolutional_recurrent, core, cudnn_recurrent, dense_attention,
|
||||
embeddings, einsum_dense, local, merge, noise, normalization,
|
||||
pooling, image_preprocessing, preprocessing_normalization_v1,
|
||||
pooling, image_preprocessing, preprocessing_integer_lookup_v1,
|
||||
preprocessing_normalization_v1, preprocessing_string_lookup_v1,
|
||||
preprocessing_text_vectorization_v1, recurrent, wrappers,
|
||||
hashing, category_crossing, category_encoding_v1, discretization)
|
||||
ALL_V2_MODULES = (rnn_cell_wrapper_v2, normalization_v2, recurrent_v2,
|
||||
preprocessing_normalization, preprocessing_text_vectorization,
|
||||
preprocessing_integer_lookup, preprocessing_normalization,
|
||||
preprocessing_string_lookup, preprocessing_text_vectorization,
|
||||
category_encoding)
|
||||
# ALL_OBJECTS is meant to be a global mutable. Hence we need to make it
|
||||
# thread-local to avoid concurrent mutations.
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
path: "tensorflow.keras.layers.experimental.preprocessing.IntegerLookup.__metaclass__"
|
||||
tf_class {
|
||||
is_instance: "<type \'type\'>"
|
||||
member_method {
|
||||
name: "__init__"
|
||||
}
|
||||
member_method {
|
||||
name: "mro"
|
||||
}
|
||||
member_method {
|
||||
name: "register"
|
||||
argspec: "args=[\'cls\', \'subclass\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
|
@ -0,0 +1,240 @@
|
|||
path: "tensorflow.keras.layers.experimental.preprocessing.IntegerLookup"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.preprocessing.integer_lookup_v1.IntegerLookup\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.preprocessing.integer_lookup.IntegerLookup\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.preprocessing.index_lookup_v1.IndexLookup\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.preprocessing.index_lookup.IndexLookup\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_preprocessing_layer_v1.CombinerPreprocessingLayer\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_preprocessing_layer.CombinerPreprocessingLayer\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_preprocessing_layer.PreprocessingLayer\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>"
|
||||
is_instance: "<class \'tensorflow.python.module.module.Module\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.utils.version_utils.LayerVersionSelector\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "activity_regularizer"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dtype"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dynamic"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "inbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "metrics"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name_scope"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "outbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "stateful"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "submodules"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "updates"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'max_values\', \'num_oov_indices\', \'mask_value\', \'oov_value\', \'vocabulary\', \'invert\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1\', \'0\', \'-1\', \'None\', \'False\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "adapt"
|
||||
argspec: "args=[\'self\', \'data\', \'reset_state\'], varargs=None, keywords=None, defaults=[\'True\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_loss"
|
||||
argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "add_metric"
|
||||
argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_update"
|
||||
argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_variable"
|
||||
argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "add_weight"
|
||||
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'partitioner\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "build"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "call"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_mask"
|
||||
argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_shape"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_signature"
|
||||
argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "count_params"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_config"
|
||||
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_config"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_losses_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_updates_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_vocabulary"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_weights"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "set_vocabulary"
|
||||
argspec: "args=[\'self\', \'vocab\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "set_weights"
|
||||
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "vocab_size"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "with_name_scope"
|
||||
argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
path: "tensorflow.keras.layers.experimental.preprocessing.StringLookup.__metaclass__"
|
||||
tf_class {
|
||||
is_instance: "<type \'type\'>"
|
||||
member_method {
|
||||
name: "__init__"
|
||||
}
|
||||
member_method {
|
||||
name: "mro"
|
||||
}
|
||||
member_method {
|
||||
name: "register"
|
||||
argspec: "args=[\'cls\', \'subclass\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
|
@ -0,0 +1,240 @@
|
|||
path: "tensorflow.keras.layers.experimental.preprocessing.StringLookup"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.preprocessing.string_lookup_v1.StringLookup\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.preprocessing.string_lookup.StringLookup\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.preprocessing.index_lookup_v1.IndexLookup\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.preprocessing.index_lookup.IndexLookup\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_preprocessing_layer_v1.CombinerPreprocessingLayer\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_preprocessing_layer.CombinerPreprocessingLayer\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_preprocessing_layer.PreprocessingLayer\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>"
|
||||
is_instance: "<class \'tensorflow.python.module.module.Module\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.utils.version_utils.LayerVersionSelector\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "activity_regularizer"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dtype"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dynamic"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "inbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "metrics"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name_scope"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "outbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "stateful"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "submodules"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "updates"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'max_tokens\', \'num_oov_indices\', \'mask_token\', \'oov_token\', \'vocabulary\', \'encoding\', \'invert\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1\', \'\', \'[UNK]\', \'None\', \'None\', \'False\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "adapt"
|
||||
argspec: "args=[\'self\', \'data\', \'reset_state\'], varargs=None, keywords=None, defaults=[\'True\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_loss"
|
||||
argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "add_metric"
|
||||
argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_update"
|
||||
argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_variable"
|
||||
argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "add_weight"
|
||||
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'partitioner\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "build"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "call"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_mask"
|
||||
argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_shape"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_signature"
|
||||
argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "count_params"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_config"
|
||||
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_config"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_losses_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_updates_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_vocabulary"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_weights"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "set_vocabulary"
|
||||
argspec: "args=[\'self\', \'vocab\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "set_weights"
|
||||
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "vocab_size"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "with_name_scope"
|
||||
argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
|
@ -20,6 +20,10 @@ tf_module {
|
|||
name: "Hashing"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "IntegerLookup"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Normalization"
|
||||
mtype: "<type \'type\'>"
|
||||
|
@ -68,6 +72,10 @@ tf_module {
|
|||
name: "Resizing"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "StringLookup"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "TextVectorization"
|
||||
mtype: "<type \'type\'>"
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
path: "tensorflow.keras.layers.experimental.preprocessing.IntegerLookup.__metaclass__"
|
||||
tf_class {
|
||||
is_instance: "<type \'type\'>"
|
||||
member_method {
|
||||
name: "__init__"
|
||||
}
|
||||
member_method {
|
||||
name: "mro"
|
||||
}
|
||||
member_method {
|
||||
name: "register"
|
||||
argspec: "args=[\'cls\', \'subclass\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
|
@ -0,0 +1,237 @@
|
|||
path: "tensorflow.keras.layers.experimental.preprocessing.IntegerLookup"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.preprocessing.integer_lookup.IntegerLookup\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.preprocessing.index_lookup.IndexLookup\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_preprocessing_layer.CombinerPreprocessingLayer\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_preprocessing_layer.PreprocessingLayer\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>"
|
||||
is_instance: "<class \'tensorflow.python.module.module.Module\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.utils.version_utils.LayerVersionSelector\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "activity_regularizer"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dtype"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dynamic"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "inbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "metrics"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name_scope"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "outbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "stateful"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "submodules"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "updates"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'max_values\', \'num_oov_indices\', \'mask_value\', \'oov_value\', \'vocabulary\', \'invert\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1\', \'0\', \'-1\', \'None\', \'False\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "adapt"
|
||||
argspec: "args=[\'self\', \'data\', \'reset_state\'], varargs=None, keywords=None, defaults=[\'True\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_loss"
|
||||
argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "add_metric"
|
||||
argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_update"
|
||||
argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_variable"
|
||||
argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "add_weight"
|
||||
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'partitioner\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "build"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "call"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_mask"
|
||||
argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_shape"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_signature"
|
||||
argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "count_params"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_config"
|
||||
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_config"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_losses_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_updates_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_vocabulary"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_weights"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "set_vocabulary"
|
||||
argspec: "args=[\'self\', \'vocab\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "set_weights"
|
||||
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "vocab_size"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "with_name_scope"
|
||||
argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
path: "tensorflow.keras.layers.experimental.preprocessing.StringLookup.__metaclass__"
|
||||
tf_class {
|
||||
is_instance: "<type \'type\'>"
|
||||
member_method {
|
||||
name: "__init__"
|
||||
}
|
||||
member_method {
|
||||
name: "mro"
|
||||
}
|
||||
member_method {
|
||||
name: "register"
|
||||
argspec: "args=[\'cls\', \'subclass\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
|
@ -0,0 +1,237 @@
|
|||
path: "tensorflow.keras.layers.experimental.preprocessing.StringLookup"
|
||||
tf_class {
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.preprocessing.string_lookup.StringLookup\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.layers.preprocessing.index_lookup.IndexLookup\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_preprocessing_layer.CombinerPreprocessingLayer\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_preprocessing_layer.PreprocessingLayer\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>"
|
||||
is_instance: "<class \'tensorflow.python.module.module.Module\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>"
|
||||
is_instance: "<class \'tensorflow.python.keras.utils.version_utils.LayerVersionSelector\'>"
|
||||
is_instance: "<type \'object\'>"
|
||||
member {
|
||||
name: "activity_regularizer"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dtype"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "dynamic"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "inbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "input_spec"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "losses"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "metrics"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "name_scope"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "non_trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "outbound_nodes"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_mask"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "output_shape"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "stateful"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "submodules"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "trainable_weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "updates"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "variables"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member {
|
||||
name: "weights"
|
||||
mtype: "<type \'property\'>"
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'max_tokens\', \'num_oov_indices\', \'mask_token\', \'oov_token\', \'vocabulary\', \'encoding\', \'invert\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'1\', \'\', \'[UNK]\', \'None\', \'None\', \'False\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "adapt"
|
||||
argspec: "args=[\'self\', \'data\', \'reset_state\'], varargs=None, keywords=None, defaults=[\'True\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_loss"
|
||||
argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "add_metric"
|
||||
argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_update"
|
||||
argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "add_variable"
|
||||
argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "add_weight"
|
||||
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'partitioner\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "apply"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "build"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "call"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_mask"
|
||||
argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_shape"
|
||||
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "compute_output_signature"
|
||||
argspec: "args=[\'self\', \'input_spec\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "count_params"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "from_config"
|
||||
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_config"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_input_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_losses_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_mask_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_output_shape_at"
|
||||
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_updates_for"
|
||||
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_vocabulary"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "get_weights"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "set_vocabulary"
|
||||
argspec: "args=[\'self\', \'vocab\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "set_weights"
|
||||
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "vocab_size"
|
||||
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
member_method {
|
||||
name: "with_name_scope"
|
||||
argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None"
|
||||
}
|
||||
}
|
|
@ -20,6 +20,10 @@ tf_module {
|
|||
name: "Hashing"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "IntegerLookup"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "Normalization"
|
||||
mtype: "<type \'type\'>"
|
||||
|
@ -68,6 +72,10 @@ tf_module {
|
|||
name: "Resizing"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "StringLookup"
|
||||
mtype: "<type \'type\'>"
|
||||
}
|
||||
member {
|
||||
name: "TextVectorization"
|
||||
mtype: "<type \'type\'>"
|
||||
|
|
Loading…
Reference in New Issue