diff --git a/tensorflow/python/feature_column/feature_column_v2.py b/tensorflow/python/feature_column/feature_column_v2.py index 749d54fc794..a57ba8450c3 100644 --- a/tensorflow/python/feature_column/feature_column_v2.py +++ b/tensorflow/python/feature_column/feature_column_v2.py @@ -1560,19 +1560,27 @@ def categorical_column_with_identity(key, num_buckets, default_value=None): Linear model: ```python - video_id = categorical_column_with_identity( + import tensorflow as tf + video_id = tf.feature_column.categorical_column_with_identity( key='video_id', num_buckets=1000000, default_value=0) - columns = [video_id, ...] - features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) - linear_prediction, _, _ = linear_model(features, columns) + columns = [video_id] + features = {'video_id': tf.sparse.from_dense([[2, 85, 0, 0, 0], + [33,78, 2, 73, 1]])} + linear_prediction = tf.compat.v1.feature_column.linear_model(features, + columns) ``` Embedding for a DNN model: ```python - columns = [embedding_column(video_id, 9),...] - features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) - dense_tensor = input_layer(features, columns) + import tensorflow as tf + video_id = tf.feature_column.categorical_column_with_identity( + key='video_id', num_buckets=1000000, default_value=0) + columns = [tf.feature_column.embedding_column(video_id, 9)] + features = {'video_id': tf.sparse.from_dense([[2, 85, 0, 0, 0], + [33,78, 2, 73, 1]])} + input_layer = tf.keras.layers.DenseFeatures(columns) + dense_tensor = input_layer(features) ``` Args: