Go: Update generated wrapper functions for TensorFlow ops.

Change: 149040924
This commit is contained in:
A. Unique TensorFlower 2017-03-02 13:34:54 -08:00 committed by TensorFlower Gardener
parent c35d9489b0
commit c28b1ec2ef

View File

@ -10134,9 +10134,9 @@ func Conv2DUseCudnnOnGpu(value bool) Conv2DAttr {
// //
// value: Specify the data format of the input and output data. With the // value: Specify the data format of the input and output data. With the
// default format "NHWC", the data is stored in the order of: // default format "NHWC", the data is stored in the order of:
// [batch, in_height, in_width, in_channels]. // [batch, height, width, channels].
// Alternatively, the format could be "NCHW", the data storage order of: // Alternatively, the format could be "NCHW", the data storage order of:
// [batch, in_channels, in_height, in_width]. // [batch, channels, height, width].
// If not specified, defaults to s:"NHWC" // If not specified, defaults to s:"NHWC"
func Conv2DDataFormat(value string) Conv2DAttr { func Conv2DDataFormat(value string) Conv2DAttr {
return func(m optionalAttr) { return func(m optionalAttr) {
@ -10169,11 +10169,17 @@ func Conv2DDataFormat(value string) Conv2DAttr {
// horizontal and vertices strides, `strides = [1, stride, stride, 1]`. // horizontal and vertices strides, `strides = [1, stride, stride, 1]`.
// //
// Arguments: // Arguments:
// // input: A 4-D tensor. The dimension order is interpreted according to the value
// // of `data_format`, see below for details.
// strides: 1-D of length 4. The stride of the sliding window for each dimension // filter: A 4-D tensor of shape
// of `input`. Must be in the same order as the dimension specified with format. // `[filter_height, filter_width, in_channels, out_channels]`
// strides: 1-D tensor of length 4. The stride of the sliding window for each
// dimension of `input`. The dimension order is determined by the value of
// `data_format`, see below for details.
// padding: The type of padding algorithm to use. // padding: The type of padding algorithm to use.
//
// Returns A 4-D tensor. The dimension order is determined by the value of
// `data_format`, see below for details.
func Conv2D(scope *Scope, input tf.Output, filter tf.Output, strides []int64, padding string, optional ...Conv2DAttr) (output tf.Output) { func Conv2D(scope *Scope, input tf.Output, filter tf.Output, strides []int64, padding string, optional ...Conv2DAttr) (output tf.Output) {
if scope.Err() != nil { if scope.Err() != nil {
return return