diff --git a/tensorflow/docs_src/get_started/linear_regression.md b/tensorflow/docs_src/get_started/linear_regression.md index 7cfff8db15e..45cb9d829cf 100644 --- a/tensorflow/docs_src/get_started/linear_regression.md +++ b/tensorflow/docs_src/get_started/linear_regression.md @@ -4,32 +4,28 @@ This unit provides the following short examples demonstrating how to implement regression in Estimators: - + - - - - @@ -96,7 +92,7 @@ During training, all three programs output the following information: For example, here's some possible output for the `linear_regressor.py` program: -```bsh +``` None INFO:tensorflow:Saving checkpoints for 1 into /tmp/tmpAObiz9/model.ckpt. INFO:tensorflow:loss = 161.308, step = 1 INFO:tensorflow:global_step/sec: 1557.24
Example Data Set Demonstrates How To...
Example Demonstrates How To...
linear_regression.py[imports85](https://archive.ics.uci.edu/ml/datasets/automobile) Use the @{tf.estimator.LinearRegressor} Estimator to train a regression model on numeric data.
linear_regression_categorical.py[imports85](https://archive.ics.uci.edu/ml/datasets/automobile) Use the @{tf.estimator.LinearRegressor} Estimator to train a regression model on categorical data.
dnn_regression.py[imports85](https://archive.ics.uci.edu/ml/datasets/automobile) Use the @{tf.estimator.DNNRegressor} Estimator to train a regression model on discrete data with a deep neural network.
custom_regression.py[imports85](https://archive.ics.uci.edu/ml/datasets/automobile) Use @{tf.estimator.Estimator} to train a customized dnn regression model.