Go: Update generated wrapper functions for TensorFlow ops.
PiperOrigin-RevId: 286371061 Change-Id: I2817748cc82f745cae8cc71f6d1f44dd7d7ba6cc
This commit is contained in:
parent
dd34097b12
commit
c19bfd4219
@ -6223,77 +6223,6 @@ func OrderedMapUnstageNoKey(scope *Scope, indices tf.Output, dtypes []tf.DataTyp
|
||||
return key, values
|
||||
}
|
||||
|
||||
// OrderedMapUnstageAttr is an optional argument to OrderedMapUnstage.
|
||||
type OrderedMapUnstageAttr func(optionalAttr)
|
||||
|
||||
// OrderedMapUnstageCapacity sets the optional capacity attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
//
|
||||
// REQUIRES: value >= 0
|
||||
func OrderedMapUnstageCapacity(value int64) OrderedMapUnstageAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["capacity"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// OrderedMapUnstageMemoryLimit sets the optional memory_limit attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
//
|
||||
// REQUIRES: value >= 0
|
||||
func OrderedMapUnstageMemoryLimit(value int64) OrderedMapUnstageAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["memory_limit"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// OrderedMapUnstageContainer sets the optional container attribute to value.
|
||||
// If not specified, defaults to ""
|
||||
func OrderedMapUnstageContainer(value string) OrderedMapUnstageAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["container"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// OrderedMapUnstageSharedName sets the optional shared_name attribute to value.
|
||||
// If not specified, defaults to ""
|
||||
func OrderedMapUnstageSharedName(value string) OrderedMapUnstageAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["shared_name"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Op removes and returns the values associated with the key
|
||||
//
|
||||
// from the underlying container. If the underlying container
|
||||
// does not contain this key, the op will block until it does.
|
||||
func OrderedMapUnstage(scope *Scope, key tf.Output, indices tf.Output, dtypes []tf.DataType, optional ...OrderedMapUnstageAttr) (values []tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{"dtypes": dtypes}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "OrderedMapUnstage",
|
||||
Input: []tf.Input{
|
||||
key, indices,
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
var idx int
|
||||
var err error
|
||||
if values, idx, err = makeOutputList(op, idx, "values"); err != nil {
|
||||
scope.UpdateErr("OrderedMapUnstage", err)
|
||||
return
|
||||
}
|
||||
return values
|
||||
}
|
||||
|
||||
// OrderedMapPeekAttr is an optional argument to OrderedMapPeek.
|
||||
type OrderedMapPeekAttr func(optionalAttr)
|
||||
|
||||
@ -11720,7 +11649,7 @@ func DepthwiseConv2dNativeBackpropFilterDataFormat(value string) DepthwiseConv2d
|
||||
// element on that dimension. The dimension order is determined by the value of
|
||||
// `data_format`, see above for details. Dilations in the batch and depth
|
||||
// dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func DepthwiseConv2dNativeBackpropFilterDilations(value []int64) DepthwiseConv2dNativeBackpropFilterAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -11977,7 +11906,7 @@ func SampleDistortedBoundingBoxV2Seed2(value int64) SampleDistortedBoundingBoxV2
|
||||
//
|
||||
// value: The cropped area of the image must have an aspect ratio =
|
||||
// width / height within this range.
|
||||
// If not specified, defaults to {f:0.75 f:1.33}
|
||||
// If not specified, defaults to {f:0.75 f:1.33}
|
||||
func SampleDistortedBoundingBoxV2AspectRatioRange(value []float32) SampleDistortedBoundingBoxV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["aspect_ratio_range"] = value
|
||||
@ -11988,7 +11917,7 @@ func SampleDistortedBoundingBoxV2AspectRatioRange(value []float32) SampleDistort
|
||||
//
|
||||
// value: The cropped area of the image must contain a fraction of the
|
||||
// supplied image within this range.
|
||||
// If not specified, defaults to {f:0.05 f:1}
|
||||
// If not specified, defaults to {f:0.05 f:1}
|
||||
func SampleDistortedBoundingBoxV2AreaRange(value []float32) SampleDistortedBoundingBoxV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["area_range"] = value
|
||||
@ -12194,7 +12123,7 @@ func SampleDistortedBoundingBoxMinObjectCovered(value float32) SampleDistortedBo
|
||||
//
|
||||
// value: The cropped area of the image must have an aspect ratio =
|
||||
// width / height within this range.
|
||||
// If not specified, defaults to {f:0.75 f:1.33}
|
||||
// If not specified, defaults to {f:0.75 f:1.33}
|
||||
func SampleDistortedBoundingBoxAspectRatioRange(value []float32) SampleDistortedBoundingBoxAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["aspect_ratio_range"] = value
|
||||
@ -12205,7 +12134,7 @@ func SampleDistortedBoundingBoxAspectRatioRange(value []float32) SampleDistorted
|
||||
//
|
||||
// value: The cropped area of the image must contain a fraction of the
|
||||
// supplied image within this range.
|
||||
// If not specified, defaults to {f:0.05 f:1}
|
||||
// If not specified, defaults to {f:0.05 f:1}
|
||||
func SampleDistortedBoundingBoxAreaRange(value []float32) SampleDistortedBoundingBoxAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["area_range"] = value
|
||||
@ -13545,58 +13474,6 @@ func FixedLengthRecordReaderV2(scope *Scope, record_bytes int64, optional ...Fix
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// RestoreSliceAttr is an optional argument to RestoreSlice.
|
||||
type RestoreSliceAttr func(optionalAttr)
|
||||
|
||||
// RestoreSlicePreferredShard sets the optional preferred_shard attribute to value.
|
||||
//
|
||||
// value: Index of file to open first if multiple files match
|
||||
// `file_pattern`. See the documentation for `Restore`.
|
||||
// If not specified, defaults to -1
|
||||
func RestoreSlicePreferredShard(value int64) RestoreSliceAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["preferred_shard"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Restores a tensor from checkpoint files.
|
||||
//
|
||||
// This is like `Restore` except that restored tensor can be listed as filling
|
||||
// only a slice of a larger tensor. `shape_and_slice` specifies the shape of the
|
||||
// larger tensor and the slice that the restored tensor covers.
|
||||
//
|
||||
// The `shape_and_slice` input has the same format as the
|
||||
// elements of the `shapes_and_slices` input of the `SaveSlices` op.
|
||||
//
|
||||
// Arguments:
|
||||
// file_pattern: Must have a single element. The pattern of the files from
|
||||
// which we read the tensor.
|
||||
// tensor_name: Must have a single element. The name of the tensor to be
|
||||
// restored.
|
||||
// shape_and_slice: Scalar. The shapes and slice specifications to use when
|
||||
// restoring a tensors.
|
||||
// dt: The type of the tensor to be restored.
|
||||
//
|
||||
// Returns The restored tensor.
|
||||
func RestoreSlice(scope *Scope, file_pattern tf.Output, tensor_name tf.Output, shape_and_slice tf.Output, dt tf.DataType, optional ...RestoreSliceAttr) (tensor tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{"dt": dt}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "RestoreSlice",
|
||||
Input: []tf.Input{
|
||||
file_pattern, tensor_name, shape_and_slice,
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// Saves the input tensors to disk.
|
||||
//
|
||||
// The size of `tensor_names` must match the number of tensors in `data`. `data[i]`
|
||||
@ -16590,6 +16467,174 @@ func Roll(scope *Scope, input tf.Output, shift tf.Output, axis tf.Output) (outpu
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// RestoreSliceAttr is an optional argument to RestoreSlice.
|
||||
type RestoreSliceAttr func(optionalAttr)
|
||||
|
||||
// RestoreSlicePreferredShard sets the optional preferred_shard attribute to value.
|
||||
//
|
||||
// value: Index of file to open first if multiple files match
|
||||
// `file_pattern`. See the documentation for `Restore`.
|
||||
// If not specified, defaults to -1
|
||||
func RestoreSlicePreferredShard(value int64) RestoreSliceAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["preferred_shard"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Restores a tensor from checkpoint files.
|
||||
//
|
||||
// This is like `Restore` except that restored tensor can be listed as filling
|
||||
// only a slice of a larger tensor. `shape_and_slice` specifies the shape of the
|
||||
// larger tensor and the slice that the restored tensor covers.
|
||||
//
|
||||
// The `shape_and_slice` input has the same format as the
|
||||
// elements of the `shapes_and_slices` input of the `SaveSlices` op.
|
||||
//
|
||||
// Arguments:
|
||||
// file_pattern: Must have a single element. The pattern of the files from
|
||||
// which we read the tensor.
|
||||
// tensor_name: Must have a single element. The name of the tensor to be
|
||||
// restored.
|
||||
// shape_and_slice: Scalar. The shapes and slice specifications to use when
|
||||
// restoring a tensors.
|
||||
// dt: The type of the tensor to be restored.
|
||||
//
|
||||
// Returns The restored tensor.
|
||||
func RestoreSlice(scope *Scope, file_pattern tf.Output, tensor_name tf.Output, shape_and_slice tf.Output, dt tf.DataType, optional ...RestoreSliceAttr) (tensor tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{"dt": dt}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "RestoreSlice",
|
||||
Input: []tf.Input{
|
||||
file_pattern, tensor_name, shape_and_slice,
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// OrderedMapUnstageAttr is an optional argument to OrderedMapUnstage.
|
||||
type OrderedMapUnstageAttr func(optionalAttr)
|
||||
|
||||
// OrderedMapUnstageCapacity sets the optional capacity attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
//
|
||||
// REQUIRES: value >= 0
|
||||
func OrderedMapUnstageCapacity(value int64) OrderedMapUnstageAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["capacity"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// OrderedMapUnstageMemoryLimit sets the optional memory_limit attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
//
|
||||
// REQUIRES: value >= 0
|
||||
func OrderedMapUnstageMemoryLimit(value int64) OrderedMapUnstageAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["memory_limit"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// OrderedMapUnstageContainer sets the optional container attribute to value.
|
||||
// If not specified, defaults to ""
|
||||
func OrderedMapUnstageContainer(value string) OrderedMapUnstageAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["container"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// OrderedMapUnstageSharedName sets the optional shared_name attribute to value.
|
||||
// If not specified, defaults to ""
|
||||
func OrderedMapUnstageSharedName(value string) OrderedMapUnstageAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["shared_name"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Op removes and returns the values associated with the key
|
||||
//
|
||||
// from the underlying container. If the underlying container
|
||||
// does not contain this key, the op will block until it does.
|
||||
func OrderedMapUnstage(scope *Scope, key tf.Output, indices tf.Output, dtypes []tf.DataType, optional ...OrderedMapUnstageAttr) (values []tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{"dtypes": dtypes}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "OrderedMapUnstage",
|
||||
Input: []tf.Input{
|
||||
key, indices,
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
var idx int
|
||||
var err error
|
||||
if values, idx, err = makeOutputList(op, idx, "values"); err != nil {
|
||||
scope.UpdateErr("OrderedMapUnstage", err)
|
||||
return
|
||||
}
|
||||
return values
|
||||
}
|
||||
|
||||
// SobolSampleAttr is an optional argument to SobolSample.
|
||||
type SobolSampleAttr func(optionalAttr)
|
||||
|
||||
// SobolSampleDtype sets the optional dtype attribute to value.
|
||||
//
|
||||
// value: The type of the sample. One of: `float32` or `float64`.
|
||||
// If not specified, defaults to DT_DOUBLE
|
||||
func SobolSampleDtype(value tf.DataType) SobolSampleAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dtype"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Generates points from the Sobol sequence.
|
||||
//
|
||||
// Creates a Sobol sequence with `num_results` samples. Each sample has dimension
|
||||
// `dim`. Skips the first `skip` samples.
|
||||
//
|
||||
// Arguments:
|
||||
// dim: Positive scalar `Tensor` representing each sample's dimension.
|
||||
// num_results: Positive scalar `Tensor` of dtype int32. The number of Sobol points to return
|
||||
// in the output.
|
||||
// skip: Positive scalar `Tensor` of dtype int32. The number of initial points of the
|
||||
// Sobol sequence to skip.
|
||||
//
|
||||
// Returns `Tensor` of samples from Sobol sequence with `shape` [num_results, dim].
|
||||
func SobolSample(scope *Scope, dim tf.Output, num_results tf.Output, skip tf.Output, optional ...SobolSampleAttr) (samples tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "SobolSample",
|
||||
Input: []tf.Input{
|
||||
dim, num_results, skip,
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// QuantizedReluAttr is an optional argument to QuantizedRelu.
|
||||
type QuantizedReluAttr func(optionalAttr)
|
||||
|
||||
@ -18895,7 +18940,7 @@ func ImageSummaryMaxImages(value int64) ImageSummaryAttr {
|
||||
// ImageSummaryBadColor sets the optional bad_color attribute to value.
|
||||
//
|
||||
// value: Color to use for pixels with non-finite values.
|
||||
// If not specified, defaults to {dtype:DT_UINT8 tensor_shape:{dim:{size:4}} int_val:255 int_val:0 int_val:0 int_val:255}
|
||||
// If not specified, defaults to {dtype:DT_UINT8 tensor_shape:{dim:{size:4}} int_val:255 int_val:0 int_val:0 int_val:255}
|
||||
func ImageSummaryBadColor(value tf.Tensor) ImageSummaryAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["bad_color"] = value
|
||||
@ -19890,7 +19935,7 @@ func Conv3DBackpropFilterV2DataFormat(value string) Conv3DBackpropFilterV2Attr {
|
||||
// filter element on that dimension. The dimension order is determined by the
|
||||
// value of `data_format`, see above for details. Dilations in the batch and
|
||||
// depth dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
func Conv3DBackpropFilterV2Dilations(value []int64) Conv3DBackpropFilterV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -21187,7 +21232,7 @@ func Conv2DBackpropInputDataFormat(value string) Conv2DBackpropInputAttr {
|
||||
// element on that dimension. The dimension order is determined by the value of
|
||||
// `data_format`, see above for details. Dilations in the batch and depth
|
||||
// dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func Conv2DBackpropInputDilations(value []int64) Conv2DBackpropInputAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -21895,7 +21940,7 @@ func Conv2DDataFormat(value string) Conv2DAttr {
|
||||
// filter element on that dimension. The dimension order is determined by the
|
||||
// value of `data_format`, see above for details. Dilations in the batch and
|
||||
// depth dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func Conv2DDilations(value []int64) Conv2DAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -22091,7 +22136,7 @@ func QuantizedDepthwiseConv2DWithBiasAndReluAndRequantizeOutType(value tf.DataTy
|
||||
// QuantizedDepthwiseConv2DWithBiasAndReluAndRequantizeDilations sets the optional dilations attribute to value.
|
||||
//
|
||||
// value: List of dilation values.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func QuantizedDepthwiseConv2DWithBiasAndReluAndRequantizeDilations(value []int64) QuantizedDepthwiseConv2DWithBiasAndReluAndRequantizeAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -22160,7 +22205,7 @@ func QuantizedDepthwiseConv2DWithBiasAndReluOutType(value tf.DataType) Quantized
|
||||
// QuantizedDepthwiseConv2DWithBiasAndReluDilations sets the optional dilations attribute to value.
|
||||
//
|
||||
// value: List of dilation values.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func QuantizedDepthwiseConv2DWithBiasAndReluDilations(value []int64) QuantizedDepthwiseConv2DWithBiasAndReluAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -22275,7 +22320,7 @@ func QuantizedDepthwiseConv2DWithBiasOutType(value tf.DataType) QuantizedDepthwi
|
||||
// QuantizedDepthwiseConv2DWithBiasDilations sets the optional dilations attribute to value.
|
||||
//
|
||||
// value: List of dilation values.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func QuantizedDepthwiseConv2DWithBiasDilations(value []int64) QuantizedDepthwiseConv2DWithBiasAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -22334,7 +22379,7 @@ func QuantizedDepthwiseConv2DOutType(value tf.DataType) QuantizedDepthwiseConv2D
|
||||
// QuantizedDepthwiseConv2DDilations sets the optional dilations attribute to value.
|
||||
//
|
||||
// value: List of dilation values.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func QuantizedDepthwiseConv2DDilations(value []int64) QuantizedDepthwiseConv2DAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -22508,7 +22553,7 @@ func QuantizedConv2DPerChannelOutType(value tf.DataType) QuantizedConv2DPerChann
|
||||
// QuantizedConv2DPerChannelDilations sets the optional dilations attribute to value.
|
||||
//
|
||||
// value: list of dilation values.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func QuantizedConv2DPerChannelDilations(value []int64) QuantizedConv2DPerChannelAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -22699,7 +22744,7 @@ func Conv3DBackpropInputV2DataFormat(value string) Conv3DBackpropInputV2Attr {
|
||||
// filter element on that dimension. The dimension order is determined by the
|
||||
// value of `data_format`, see above for details. Dilations in the batch and
|
||||
// depth dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
func Conv3DBackpropInputV2Dilations(value []int64) Conv3DBackpropInputV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -25273,7 +25318,7 @@ func DepthwiseConv2dNativeDataFormat(value string) DepthwiseConv2dNativeAttr {
|
||||
// element on that dimension. The dimension order is determined by the value of
|
||||
// `data_format`, see above for details. Dilations in the batch and depth
|
||||
// dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func DepthwiseConv2dNativeDilations(value []int64) DepthwiseConv2dNativeAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -25330,7 +25375,7 @@ func DepthwiseConv2dNative(scope *Scope, input tf.Output, filter tf.Output, stri
|
||||
type Conv3DBackpropInputAttr func(optionalAttr)
|
||||
|
||||
// Conv3DBackpropInputDilations sets the optional dilations attribute to value.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
func Conv3DBackpropInputDilations(value []int64) Conv3DBackpropInputAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -25662,7 +25707,7 @@ func DepthwiseConv2dNativeBackpropInputDataFormat(value string) DepthwiseConv2dN
|
||||
// element on that dimension. The dimension order is determined by the value of
|
||||
// `data_format`, see above for details. Dilations in the batch and depth
|
||||
// dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func DepthwiseConv2dNativeBackpropInputDilations(value []int64) DepthwiseConv2dNativeBackpropInputAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -26285,7 +26330,7 @@ func QuantizedConv2DOutType(value tf.DataType) QuantizedConv2DAttr {
|
||||
// filter element on that dimension. The dimension order is determined by the
|
||||
// value of `data_format`, see above for details. Dilations in the batch and
|
||||
// depth dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func QuantizedConv2DDilations(value []int64) QuantizedConv2DAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -27306,7 +27351,7 @@ func Conv3DDataFormat(value string) Conv3DAttr {
|
||||
// filter element on that dimension. The dimension order is determined by the
|
||||
// value of `data_format`, see above for details. Dilations in the batch and
|
||||
// depth dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
func Conv3DDilations(value []int64) Conv3DAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -33684,7 +33729,7 @@ func SparseReduceMax(scope *Scope, input_indices tf.Output, input_values tf.Outp
|
||||
type Conv3DBackpropFilterAttr func(optionalAttr)
|
||||
|
||||
// Conv3DBackpropFilterDilations sets the optional dilations attribute to value.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
func Conv3DBackpropFilterDilations(value []int64) Conv3DBackpropFilterAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -45111,7 +45156,7 @@ func Conv2DBackpropFilterDataFormat(value string) Conv2DBackpropFilterAttr {
|
||||
// element on that dimension. The dimension order is determined by the value of
|
||||
// `data_format`, see above for details. Dilations in the batch and depth
|
||||
// dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func Conv2DBackpropFilterDilations(value []int64) Conv2DBackpropFilterAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
|
Loading…
x
Reference in New Issue
Block a user