refactor gradient_check
to use unified_api_testutil
This commit is contained in:
parent
2234086df0
commit
c18a4cade5
@ -389,6 +389,7 @@ cc_library(
|
||||
|
||||
cc_library(
|
||||
name = "gradient_checker",
|
||||
testonly = 1,
|
||||
srcs = [
|
||||
"gradient_checker.cc",
|
||||
],
|
||||
@ -399,28 +400,11 @@ cc_library(
|
||||
"//tensorflow:internal",
|
||||
],
|
||||
deps = [
|
||||
":abstract_tensor_handle",
|
||||
":c_api_experimental",
|
||||
":c_api_unified_internal",
|
||||
":gradients_internal",
|
||||
":gradients_util",
|
||||
"@com_google_absl//absl/strings",
|
||||
"@com_google_absl//absl/types:span",
|
||||
"//tensorflow/c:c_api",
|
||||
"//tensorflow/c:tf_status_helper",
|
||||
"//tensorflow/c/experimental/gradients:math_grad",
|
||||
"//tensorflow/c/experimental/gradients:nn_grad",
|
||||
"//tensorflow/c/experimental/ops:array_ops",
|
||||
":unified_api_testutil",
|
||||
"//tensorflow/c/eager:abstract_tensor_handle",
|
||||
"//tensorflow/c/experimental/ops:math_ops",
|
||||
"//tensorflow/c/experimental/ops:nn_ops",
|
||||
"//tensorflow/cc/profiler",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core/lib/llvm_rtti",
|
||||
] + if_libtpu(
|
||||
if_false = ["//tensorflow/compiler/mlir/tensorflow/c:mlir_c_api_registration"],
|
||||
if_true = [],
|
||||
),
|
||||
"@com_google_absl//absl/types:span",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cuda_cc_test(
|
||||
@ -432,36 +416,17 @@ tf_cuda_cc_test(
|
||||
args = ["--heap_check=local"],
|
||||
linkstatic = tf_kernel_tests_linkstatic(),
|
||||
tags = tf_cuda_tests_tags() + [
|
||||
"nomac",
|
||||
"no_cuda_asan", # b/175330074
|
||||
"notap", # b/175330074
|
||||
],
|
||||
deps = [
|
||||
":abstract_tensor_handle",
|
||||
":c_api_experimental",
|
||||
":c_api_test_util",
|
||||
":c_api_unified_internal",
|
||||
":gradient_checker",
|
||||
":gradients_internal",
|
||||
":gradients_util",
|
||||
":mnist_gradients_testutil",
|
||||
"//tensorflow/c:c_api",
|
||||
"//tensorflow/c:c_test_util",
|
||||
":unified_api_testutil",
|
||||
"//tensorflow/c:tf_status_helper",
|
||||
"//tensorflow/c/experimental/gradients:math_grad",
|
||||
"//tensorflow/c/experimental/gradients:nn_grad",
|
||||
"//tensorflow/c/experimental/ops:array_ops",
|
||||
"//tensorflow/c/experimental/ops:math_ops",
|
||||
"//tensorflow/c/experimental/ops:nn_ops",
|
||||
"//tensorflow/cc/profiler",
|
||||
"//tensorflow/compiler/mlir/tensorflow/c:mlir_c_api_registration",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/c/eager:abstract_tensor_handle",
|
||||
"//tensorflow/c/eager:c_api_experimental",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core/lib/llvm_rtti",
|
||||
"//tensorflow/core/platform:tensor_float_32_utils",
|
||||
"@com_google_absl//absl/strings",
|
||||
"@com_google_absl//absl/types:span",
|
||||
],
|
||||
)
|
||||
|
@ -18,18 +18,8 @@ limitations under the License.
|
||||
|
||||
#include "absl/types/span.h"
|
||||
#include "tensorflow/c/eager/abstract_tensor_handle.h"
|
||||
#include "tensorflow/c/eager/c_api_experimental.h"
|
||||
#include "tensorflow/c/eager/c_api_unified_experimental.h"
|
||||
#include "tensorflow/c/eager/c_api_unified_experimental_internal.h"
|
||||
#include "tensorflow/c/eager/gradients.h"
|
||||
#include "tensorflow/c/eager/gradients_internal.h"
|
||||
#include "tensorflow/c/experimental/gradients/math_grad.h"
|
||||
#include "tensorflow/c/experimental/gradients/nn_grad.h"
|
||||
#include "tensorflow/c/experimental/ops/array_ops.h"
|
||||
#include "tensorflow/c/tf_status_helper.h"
|
||||
#include "tensorflow/c/experimental/ops/math_ops.h"
|
||||
#include "tensorflow/c/tf_tensor.h"
|
||||
#include "tensorflow/core/lib/llvm_rtti/llvm_rtti.h"
|
||||
#include "tensorflow/core/platform/errors.h"
|
||||
|
||||
namespace tensorflow {
|
||||
namespace gradients {
|
||||
@ -45,16 +35,6 @@ void Range(vector<int>* data, int start, int end, int step = 1) {
|
||||
}
|
||||
}
|
||||
|
||||
// Returns AbstractTensorHandlePtr containing [0, ..., n-1].
|
||||
AbstractTensorHandlePtr GetRangeTensorHandleUtil(AbstractContext* ctx, int n) {
|
||||
vector<int> vals(n);
|
||||
int64_t vals_shape[] = {n};
|
||||
Range(&vals, 0, n);
|
||||
AbstractTensorHandlePtr r =
|
||||
GetTensorHandleUtilInt(ctx, vals.data(), vals_shape, 1);
|
||||
return r;
|
||||
}
|
||||
|
||||
// Fills out_dims with the dimensions of the given tensor.
|
||||
void GetDims(const TF_Tensor* t, int64_t* out_dims) {
|
||||
int num_dims = TF_NumDims(t);
|
||||
@ -69,13 +49,11 @@ Status RunAndMaybeSum(AbstractContext* ctx, Model forward,
|
||||
absl::Span<AbstractTensorHandle* const> inputs,
|
||||
absl::Span<AbstractTensorHandle*> outputs,
|
||||
bool use_function) {
|
||||
GradientRegistry registry;
|
||||
std::vector<AbstractTensorHandle*> model_outputs(1);
|
||||
|
||||
// Run the model.
|
||||
TF_RETURN_IF_ERROR(RunModel(forward, ctx, inputs,
|
||||
absl::MakeSpan(model_outputs), use_function,
|
||||
registry));
|
||||
absl::MakeSpan(model_outputs), use_function));
|
||||
AbstractTensorHandle* model_out = model_outputs[0];
|
||||
|
||||
TF_Tensor* model_out_tensor;
|
||||
@ -91,8 +69,16 @@ Status RunAndMaybeSum(AbstractContext* ctx, Model forward,
|
||||
// Else, reduce sum the output to get a scalar
|
||||
|
||||
// Will sum all dimensions, so get a Tensor containing [0,...,num_dims_out-1].
|
||||
AbstractTensorHandlePtr sum_dims =
|
||||
GetRangeTensorHandleUtil(ctx, num_dims_out);
|
||||
AbstractTensorHandlePtr sum_dims;
|
||||
{
|
||||
vector<int> vals(num_dims_out);
|
||||
int64_t vals_shape[] = {num_dims_out};
|
||||
Range(&vals, 0, num_dims_out);
|
||||
AbstractTensorHandle* sum_dims_raw = nullptr;
|
||||
TF_RETURN_IF_ERROR(TestTensorHandleWithDimsInt(ctx, vals.data(), vals_shape,
|
||||
1, &sum_dims_raw));
|
||||
sum_dims.reset(sum_dims_raw);
|
||||
}
|
||||
|
||||
// Reduce sum the output on all dimensions.
|
||||
std::vector<AbstractTensorHandle*> sum_inputs(2);
|
||||
@ -145,22 +131,39 @@ Status CalcNumericalGrad(AbstractContext* ctx, Model forward,
|
||||
for (int i = 0; i < num_elems; i++) {
|
||||
// Get relative epsilon value
|
||||
float epsilon = theta_data[i] == 0 ? 1e-4 : std::abs(theta_data[i] * 1e-4);
|
||||
AbstractTensorHandlePtr two_eps =
|
||||
GetScalarTensorHandleUtil(ctx, 2 * epsilon);
|
||||
AbstractTensorHandlePtr two_eps;
|
||||
{
|
||||
AbstractTensorHandle* two_eps_raw = nullptr;
|
||||
TF_RETURN_IF_ERROR(
|
||||
TestScalarTensorHandle(ctx, 2 * epsilon, &two_eps_raw));
|
||||
two_eps.reset(two_eps_raw);
|
||||
}
|
||||
|
||||
// Initialize theta[i] + epsilon.
|
||||
memcpy(thetaPlus_data.data(), TF_TensorData(theta_tensor),
|
||||
TF_TensorByteSize(theta_tensor));
|
||||
thetaPlus_data[i] += epsilon;
|
||||
AbstractTensorHandlePtr thetaPlus = GetTensorHandleUtilFloat(
|
||||
ctx, thetaPlus_data.data(), theta_dims.data(), num_dims);
|
||||
AbstractTensorHandlePtr thetaPlus;
|
||||
{
|
||||
AbstractTensorHandle* thetaPlus_raw = nullptr;
|
||||
TF_RETURN_IF_ERROR(TestTensorHandleWithDimsFloat(
|
||||
ctx, thetaPlus_data.data(), theta_dims.data(), num_dims,
|
||||
&thetaPlus_raw));
|
||||
thetaPlus.reset(thetaPlus_raw);
|
||||
}
|
||||
|
||||
// Initialize theta[i] - epsilon.
|
||||
memcpy(&thetaMinus_data[0], TF_TensorData(theta_tensor),
|
||||
TF_TensorByteSize(theta_tensor));
|
||||
thetaMinus_data[i] -= epsilon;
|
||||
AbstractTensorHandlePtr thetaMinus = GetTensorHandleUtilFloat(
|
||||
ctx, thetaMinus_data.data(), theta_dims.data(), num_dims);
|
||||
AbstractTensorHandlePtr thetaMinus;
|
||||
{
|
||||
AbstractTensorHandle* thetaMinus_raw = nullptr;
|
||||
TF_RETURN_IF_ERROR(TestTensorHandleWithDimsFloat(
|
||||
ctx, thetaMinus_data.data(), theta_dims.data(), num_dims,
|
||||
&thetaMinus_raw));
|
||||
thetaMinus.reset(thetaMinus_raw);
|
||||
}
|
||||
|
||||
// Get f(theta + eps):
|
||||
theta_inputs[input_index] = thetaPlus.get();
|
||||
@ -195,7 +198,7 @@ Status CalcNumericalGrad(AbstractContext* ctx, Model forward,
|
||||
}
|
||||
|
||||
// Populate *numerical_grad with the data from dtheta_approx.
|
||||
TF_RETURN_IF_ERROR(TensorHandleWithDimsFloat(
|
||||
TF_RETURN_IF_ERROR(TestTensorHandleWithDimsFloat(
|
||||
ctx, dtheta_approx.data(), theta_dims.data(), num_dims, numerical_grad));
|
||||
return Status::OK();
|
||||
}
|
||||
|
@ -12,23 +12,14 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_C_EAGER_GRADIENT_CHECKER_H_
|
||||
#define TENSORFLOW_C_EAGER_GRADIENT_CHECKER_H_
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "absl/types/span.h"
|
||||
#include "tensorflow/c/eager/abstract_tensor_handle.h"
|
||||
#include "tensorflow/c/eager/c_api_experimental.h"
|
||||
#include "tensorflow/c/eager/c_api_unified_experimental.h"
|
||||
#include "tensorflow/c/eager/c_api_unified_experimental_internal.h"
|
||||
#include "tensorflow/c/eager/gradients.h"
|
||||
#include "tensorflow/c/eager/gradients_internal.h"
|
||||
#include "tensorflow/c/eager/gradients_util.h"
|
||||
#include "tensorflow/c/experimental/gradients/math_grad.h"
|
||||
#include "tensorflow/c/experimental/gradients/nn_grad.h"
|
||||
#include "tensorflow/c/experimental/ops/array_ops.h"
|
||||
#include "tensorflow/c/tf_status_helper.h"
|
||||
#include "tensorflow/c/tf_tensor.h"
|
||||
#include "tensorflow/core/lib/llvm_rtti/llvm_rtti.h"
|
||||
#include "tensorflow/core/platform/errors.h"
|
||||
#include "tensorflow/c/eager/unified_api_testutil.h"
|
||||
|
||||
namespace tensorflow {
|
||||
namespace gradients {
|
||||
@ -51,3 +42,5 @@ Status CalcNumericalGrad(AbstractContext* ctx, Model forward,
|
||||
|
||||
} // namespace gradients
|
||||
} // namespace tensorflow
|
||||
|
||||
#endif // TENSORFLOW_C_EAGER_GRADIENT_CHECKER_H_
|
||||
|
@ -15,21 +15,11 @@ limitations under the License.
|
||||
|
||||
#include "absl/types/span.h"
|
||||
#include "tensorflow/c/eager/abstract_tensor_handle.h"
|
||||
#include "tensorflow/c/eager/c_api_experimental.h"
|
||||
#include "tensorflow/c/eager/c_api_unified_experimental.h"
|
||||
#include "tensorflow/c/eager/c_api_unified_experimental_internal.h"
|
||||
#include "tensorflow/c/eager/gradients.h"
|
||||
#include "tensorflow/c/eager/gradients_internal.h"
|
||||
#include "tensorflow/c/eager/gradients_util.h"
|
||||
#include "tensorflow/c/eager/mnist_gradients_testutil.h"
|
||||
#include "tensorflow/c/experimental/gradients/math_grad.h"
|
||||
#include "tensorflow/c/experimental/gradients/nn_grad.h"
|
||||
#include "tensorflow/c/experimental/ops/array_ops.h"
|
||||
#include "tensorflow/c/eager/unified_api_testutil.h"
|
||||
#include "tensorflow/c/experimental/ops/math_ops.h"
|
||||
#include "tensorflow/c/tf_status_helper.h"
|
||||
#include "tensorflow/c/tf_tensor.h"
|
||||
#include "tensorflow/core/lib/llvm_rtti/llvm_rtti.h"
|
||||
#include "tensorflow/core/platform/errors.h"
|
||||
#include "tensorflow/core/platform/tensor_float_32_utils.h"
|
||||
#include "tensorflow/core/platform/test.h"
|
||||
|
||||
namespace tensorflow {
|
||||
@ -37,6 +27,54 @@ namespace gradients {
|
||||
namespace internal {
|
||||
namespace {
|
||||
|
||||
using tensorflow::TF_StatusPtr;
|
||||
|
||||
void CompareNumericalAndManualGradients(
|
||||
Model model, AbstractContext* ctx,
|
||||
absl::Span<AbstractTensorHandle* const> inputs, int input_index,
|
||||
float* expected_grad, int num_grad, bool use_function,
|
||||
double abs_error = 1e-2) {
|
||||
AbstractTensorHandle* numerical_grad;
|
||||
Status s = CalcNumericalGrad(ctx, model, inputs, input_index, use_function,
|
||||
&numerical_grad);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
|
||||
TF_Tensor* numerical_tensor;
|
||||
s = GetValue(numerical_grad, &numerical_tensor);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
auto num_elem_numerical = TF_TensorElementCount(numerical_tensor);
|
||||
ASSERT_EQ(num_elem_numerical, num_grad);
|
||||
|
||||
float* dnumerical = new float[num_elem_numerical]{0};
|
||||
memcpy(&dnumerical[0], TF_TensorData(numerical_tensor),
|
||||
TF_TensorByteSize(numerical_tensor));
|
||||
|
||||
for (int j = 0; j < num_grad; j++) {
|
||||
ASSERT_NEAR(dnumerical[j], expected_grad[j], abs_error);
|
||||
}
|
||||
delete dnumerical;
|
||||
TF_DeleteTensor(numerical_tensor);
|
||||
}
|
||||
|
||||
Status MatMulModel(AbstractContext* ctx,
|
||||
absl::Span<AbstractTensorHandle* const> inputs,
|
||||
absl::Span<AbstractTensorHandle*> outputs) {
|
||||
return ops::MatMul(ctx, inputs, outputs, "MatMul",
|
||||
/*transpose_a=*/false,
|
||||
/*transpose_b=*/false);
|
||||
}
|
||||
|
||||
Status MulModel(AbstractContext* ctx,
|
||||
absl::Span<AbstractTensorHandle* const> inputs,
|
||||
absl::Span<AbstractTensorHandle*> outputs) {
|
||||
return ops::Mul(ctx, inputs, outputs, "Mul");
|
||||
}
|
||||
|
||||
// TODO(vnvo2409): Add more tests from `python/ops/gradient_checker_v2_test.py`.
|
||||
// These tests should not be confused with `[*]_grad_test` which compare the
|
||||
// result of `gradient_checker` and `[*]_grad`. The tests here test the
|
||||
// functionality of `gradient_checker` by comparing the result with expected
|
||||
// manual user-provided gradients.
|
||||
class GradientCheckerTest
|
||||
: public ::testing::TestWithParam<std::tuple<const char*, bool, bool>> {
|
||||
protected:
|
||||
@ -45,84 +83,56 @@ class GradientCheckerTest
|
||||
TF_SetTracingImplementation(std::get<0>(GetParam()), status.get());
|
||||
Status s = StatusFromTF_Status(status.get());
|
||||
CHECK_EQ(errors::OK, s.code()) << s.error_message();
|
||||
|
||||
{
|
||||
AbstractContext* ctx_raw = nullptr;
|
||||
Status s =
|
||||
BuildImmediateExecutionContext(std::get<1>(GetParam()), &ctx_raw);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
ctx_.reset(ctx_raw);
|
||||
}
|
||||
}
|
||||
|
||||
AbstractContextPtr ctx_;
|
||||
|
||||
public:
|
||||
bool UseMlir() const { return strcmp(std::get<0>(GetParam()), "mlir") == 0; }
|
||||
bool UseFunction() const { return std::get<2>(GetParam()); }
|
||||
};
|
||||
|
||||
Status RegisterGradients(GradientRegistry* registry) {
|
||||
TF_RETURN_IF_ERROR(registry->Register("MatMul", MatMulRegisterer));
|
||||
TF_RETURN_IF_ERROR(
|
||||
registry->Register("SparseSoftmaxCrossEntropyWithLogits",
|
||||
SparseSoftmaxCrossEntropyWithLogitsRegisterer));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
TEST_P(GradientCheckerTest, TestGradCheckMatMul) {
|
||||
// Computing numerical gradients with TensorFloat-32 is numerically unstable
|
||||
enable_tensor_float_32_execution(false);
|
||||
|
||||
std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
|
||||
TF_NewStatus(), TF_DeleteStatus);
|
||||
AbstractContextPtr ctx;
|
||||
{
|
||||
AbstractContext* ctx_raw = nullptr;
|
||||
Status s =
|
||||
BuildImmediateExecutionContext(std::get<1>(GetParam()), &ctx_raw);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
ctx.reset(ctx_raw);
|
||||
}
|
||||
|
||||
TEST_P(GradientCheckerTest, TestMatMul) {
|
||||
float A_vals[] = {1.0f, 2.0f, 3.0f, 4.0f};
|
||||
int64_t A_dims[] = {2, 2};
|
||||
AbstractTensorHandlePtr A;
|
||||
{
|
||||
AbstractTensorHandle* A_raw;
|
||||
Status s =
|
||||
TestTensorHandleWithDimsFloat(ctx_.get(), A_vals, A_dims, 2, &A_raw);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
A.reset(A_raw);
|
||||
}
|
||||
float B_vals[] = {.5f, -1.0f, 1.0f, 1.0f};
|
||||
int64_t B_dims[] = {2, 2};
|
||||
int num_dims = 2;
|
||||
|
||||
AbstractTensorHandlePtr A =
|
||||
GetTensorHandleUtilFloat(ctx.get(), A_vals, A_dims, num_dims);
|
||||
AbstractTensorHandlePtr B =
|
||||
GetTensorHandleUtilFloat(ctx.get(), B_vals, B_dims, num_dims);
|
||||
|
||||
std::vector<AbstractTensorHandle*> inputs;
|
||||
inputs.push_back(A.get());
|
||||
inputs.push_back(B.get());
|
||||
|
||||
AbstractTensorHandle* grad_approx;
|
||||
Status s = CalcNumericalGrad(
|
||||
ctx.get(), MatMulModel, absl::MakeSpan(inputs), /*input_index=*/0,
|
||||
/*use_function=*/!std::get<2>(GetParam()), &grad_approx);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
|
||||
TF_Tensor* gt;
|
||||
s = GetValue(grad_approx, >);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
float result_data[4] = {0};
|
||||
memcpy(&result_data[0], TF_TensorData(gt), TF_TensorByteSize(gt));
|
||||
AbstractTensorHandlePtr B;
|
||||
{
|
||||
AbstractTensorHandle* B_raw;
|
||||
Status s =
|
||||
TestTensorHandleWithDimsFloat(ctx_.get(), B_vals, B_dims, 2, &B_raw);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
B.reset(B_raw);
|
||||
}
|
||||
|
||||
float expected_dA[4] = {-.5f, 2.0f, -.5f, 2.0f};
|
||||
float tolerance = 1e-2;
|
||||
for (int j = 0; j < 4; j++) {
|
||||
ASSERT_NEAR(expected_dA[j], result_data[j], tolerance);
|
||||
}
|
||||
TF_DeleteTensor(gt);
|
||||
ASSERT_NO_FATAL_FAILURE(CompareNumericalAndManualGradients(
|
||||
MatMulModel, ctx_.get(), {A.get(), B.get()}, 0, expected_dA, 4,
|
||||
UseFunction()));
|
||||
}
|
||||
|
||||
TEST_P(GradientCheckerTest, TestGradCheckMul) {
|
||||
std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
|
||||
TF_NewStatus(), TF_DeleteStatus);
|
||||
|
||||
AbstractContextPtr ctx;
|
||||
{
|
||||
AbstractContext* ctx_raw = nullptr;
|
||||
Status s =
|
||||
BuildImmediateExecutionContext(std::get<1>(GetParam()), &ctx_raw);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
ctx.reset(ctx_raw);
|
||||
}
|
||||
|
||||
TEST_P(GradientCheckerTest, TestMul) {
|
||||
AbstractTensorHandlePtr x;
|
||||
{
|
||||
AbstractTensorHandle* x_raw = nullptr;
|
||||
Status s = ScalarTensorHandle(ctx.get(), 2.0f, &x_raw);
|
||||
Status s = TestScalarTensorHandle(ctx_.get(), 2.0f, &x_raw);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
x.reset(x_raw);
|
||||
}
|
||||
@ -130,32 +140,15 @@ TEST_P(GradientCheckerTest, TestGradCheckMul) {
|
||||
AbstractTensorHandlePtr y;
|
||||
{
|
||||
AbstractTensorHandle* y_raw = nullptr;
|
||||
Status s = ScalarTensorHandle(ctx.get(), 7.0f, &y_raw);
|
||||
Status s = TestScalarTensorHandle(ctx_.get(), 7.0f, &y_raw);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
y.reset(y_raw);
|
||||
}
|
||||
|
||||
// Will perform z = x*y.
|
||||
// dz/dx = y
|
||||
|
||||
std::vector<AbstractTensorHandle*> inputs;
|
||||
inputs.push_back(x.get());
|
||||
inputs.push_back(y.get());
|
||||
AbstractTensorHandle* g;
|
||||
|
||||
Status s = CalcNumericalGrad(ctx.get(), MulModel, absl::MakeSpan(inputs),
|
||||
/*input_index=*/0,
|
||||
/*use_function=*/!std::get<2>(GetParam()), &g);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
|
||||
TF_Tensor* gt;
|
||||
s = GetValue(g, >);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
float result_data[1] = {0};
|
||||
memcpy(&result_data[0], TF_TensorData(gt), TF_TensorByteSize(gt));
|
||||
|
||||
ASSERT_NEAR(result_data[0], 7.0f, /*abs_error=*/1e-2);
|
||||
TF_DeleteTensor(gt);
|
||||
float expected_dx[1] = {7.0f};
|
||||
ASSERT_NO_FATAL_FAILURE(CompareNumericalAndManualGradients(
|
||||
MulModel, ctx_.get(), {x.get(), y.get()}, 0, expected_dx, 1,
|
||||
UseFunction()));
|
||||
}
|
||||
|
||||
#ifdef PLATFORM_GOOGLE
|
||||
@ -163,13 +156,13 @@ INSTANTIATE_TEST_SUITE_P(
|
||||
UnifiedCAPI, GradientCheckerTest,
|
||||
::testing::Combine(::testing::Values("graphdef"),
|
||||
/*tfrt*/ ::testing::Values(false),
|
||||
/*executing_eagerly*/ ::testing::Values(true, false)));
|
||||
/*use_function*/ ::testing::Values(true, false)));
|
||||
#else
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
UnifiedCAPI, GradientCheckerTest,
|
||||
::testing::Combine(::testing::Values("graphdef"),
|
||||
/*tfrt*/ ::testing::Values(false),
|
||||
/*executing_eagerly*/ ::testing::Values(true, false)));
|
||||
/*use_function*/ ::testing::Values(true, false)));
|
||||
#endif
|
||||
} // namespace
|
||||
} // namespace internal
|
||||
|
@ -4,6 +4,7 @@ load("//tensorflow/core/platform:rules_cc.bzl", "cc_library")
|
||||
# buildifier: disable=same-origin-load
|
||||
load(
|
||||
"//tensorflow:tensorflow.bzl",
|
||||
"if_libtpu",
|
||||
"tf_cuda_cc_test",
|
||||
)
|
||||
load(
|
||||
@ -165,7 +166,7 @@ cc_library(
|
||||
],
|
||||
deps = [
|
||||
"//tensorflow/c/eager:gradient_checker",
|
||||
"//tensorflow/c/eager:gradients_util",
|
||||
"//tensorflow/c/eager:unified_api_testutil",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
],
|
||||
@ -183,9 +184,14 @@ tf_cuda_cc_test(
|
||||
deps = [
|
||||
":grad_test_helper",
|
||||
":nn_grad",
|
||||
"//tensorflow/c:tf_status_helper",
|
||||
"//tensorflow/c/eager:c_api_test_util",
|
||||
"//tensorflow/c/experimental/gradients/tape:tape_context",
|
||||
"//tensorflow/c/experimental/ops:nn_ops",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
],
|
||||
] + if_libtpu(
|
||||
if_false = ["//tensorflow/compiler/mlir/tensorflow/c:mlir_c_api_registration"],
|
||||
if_true = [],
|
||||
),
|
||||
)
|
||||
|
@ -24,11 +24,11 @@ namespace internal {
|
||||
void CompareNumericalAndAutodiffGradients(
|
||||
Model model, Model grad_model, AbstractContext* ctx,
|
||||
absl::Span<AbstractTensorHandle* const> inputs, bool use_function,
|
||||
const GradientRegistry& registry, double abs_error) {
|
||||
double abs_error) {
|
||||
auto num_inputs = inputs.size();
|
||||
std::vector<AbstractTensorHandle*> outputs(num_inputs);
|
||||
auto s = RunModel(grad_model, ctx, inputs, absl::MakeSpan(outputs),
|
||||
/*use_function=*/use_function, registry);
|
||||
/*use_function=*/use_function);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
|
||||
for (int i = 0; i < num_inputs; ++i) {
|
||||
|
@ -15,7 +15,7 @@ limitations under the License.
|
||||
#ifndef TENSORFLOW_C_EXPERIMENTAL_GRADIENTS_GRAD_TEST_HELPER_H_
|
||||
#define TENSORFLOW_C_EXPERIMENTAL_GRADIENTS_GRAD_TEST_HELPER_H_
|
||||
|
||||
#include "tensorflow/c/eager/gradients_util.h"
|
||||
#include "tensorflow/c/eager/unified_api_testutil.h"
|
||||
|
||||
namespace tensorflow {
|
||||
namespace gradients {
|
||||
@ -24,7 +24,7 @@ namespace internal {
|
||||
void CompareNumericalAndAutodiffGradients(
|
||||
Model model, Model grad_model, AbstractContext* ctx,
|
||||
absl::Span<AbstractTensorHandle* const> inputs, bool use_function,
|
||||
const GradientRegistry& registry, double abs_error = 1e-2);
|
||||
double abs_error = 1e-2);
|
||||
|
||||
} // namespace internal
|
||||
} // namespace gradients
|
||||
|
@ -15,8 +15,11 @@ limitations under the License.
|
||||
#include "tensorflow/c/experimental/gradients/nn_grad.h"
|
||||
|
||||
#include "tensorflow/c/eager/c_api_test_util.h"
|
||||
#include "tensorflow/c/eager/unified_api_testutil.h"
|
||||
#include "tensorflow/c/experimental/gradients/grad_test_helper.h"
|
||||
#include "tensorflow/c/experimental/gradients/tape/tape_context.h"
|
||||
#include "tensorflow/c/experimental/ops/nn_ops.h"
|
||||
#include "tensorflow/c/tf_status_helper.h"
|
||||
#include "tensorflow/core/platform/test.h"
|
||||
|
||||
namespace tensorflow {
|
||||
@ -28,16 +31,19 @@ using tensorflow::TF_StatusPtr;
|
||||
|
||||
Status SparseSoftmaxCrossEntropyWithLogitsModel(
|
||||
AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs,
|
||||
absl::Span<AbstractTensorHandle*> outputs,
|
||||
const GradientRegistry& registry) {
|
||||
absl::Span<AbstractTensorHandle*> outputs) {
|
||||
return ops::SparseSoftmaxCrossEntropyWithLogits(
|
||||
ctx, inputs, outputs, "SparseSoftmaxCrossEntropyWithLogits");
|
||||
}
|
||||
|
||||
Status SparseSoftmaxCrossEntropyWithLogitsGradModel(
|
||||
AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs,
|
||||
absl::Span<AbstractTensorHandle*> outputs,
|
||||
const GradientRegistry& registry) {
|
||||
absl::Span<AbstractTensorHandle*> outputs) {
|
||||
GradientRegistry registry;
|
||||
TF_RETURN_IF_ERROR(
|
||||
registry.Register("SparseSoftmaxCrossEntropyWithLogits",
|
||||
SparseSoftmaxCrossEntropyWithLogitsRegisterer));
|
||||
|
||||
Tape tape(/*persistent=*/false);
|
||||
tape.Watch(inputs[0]); // Watch score.
|
||||
tape.Watch(inputs[1]); // Watch label.
|
||||
@ -58,15 +64,16 @@ Status SparseSoftmaxCrossEntropyWithLogitsGradModel(
|
||||
|
||||
Status BiasAddModel(AbstractContext* ctx,
|
||||
absl::Span<AbstractTensorHandle* const> inputs,
|
||||
absl::Span<AbstractTensorHandle*> outputs,
|
||||
const GradientRegistry& registry) {
|
||||
absl::Span<AbstractTensorHandle*> outputs) {
|
||||
return ops::BiasAdd(ctx, inputs, outputs, "BiasAdd");
|
||||
}
|
||||
|
||||
Status BiasAddGradModel(AbstractContext* ctx,
|
||||
absl::Span<AbstractTensorHandle* const> inputs,
|
||||
absl::Span<AbstractTensorHandle*> outputs,
|
||||
const GradientRegistry& registry) {
|
||||
absl::Span<AbstractTensorHandle*> outputs) {
|
||||
GradientRegistry registry;
|
||||
TF_RETURN_IF_ERROR(registry.Register("BiasAdd", BiasAddRegisterer));
|
||||
|
||||
Tape tape(/*persistent=*/false);
|
||||
tape.Watch(inputs[0]); // Watch A.
|
||||
tape.Watch(inputs[1]); // Watch Bias.
|
||||
@ -84,14 +91,6 @@ Status BiasAddGradModel(AbstractContext* ctx,
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status RegisterGradients(GradientRegistry* registry) {
|
||||
TF_RETURN_IF_ERROR(registry->Register("BiasAdd", BiasAddRegisterer));
|
||||
TF_RETURN_IF_ERROR(
|
||||
registry->Register("SparseSoftmaxCrossEntropyWithLogits",
|
||||
SparseSoftmaxCrossEntropyWithLogitsRegisterer));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
class CppGradients
|
||||
: public ::testing::TestWithParam<std::tuple<const char*, bool, bool>> {
|
||||
protected:
|
||||
@ -99,7 +98,7 @@ class CppGradients
|
||||
TF_StatusPtr status(TF_NewStatus());
|
||||
TF_SetTracingImplementation(std::get<0>(GetParam()), status.get());
|
||||
Status s = StatusFromTF_Status(status.get());
|
||||
CHECK_EQ(errors::OK, s.code()) << s.error_message();
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
|
||||
{
|
||||
AbstractContext* ctx_raw = nullptr;
|
||||
@ -108,12 +107,8 @@ class CppGradients
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
ctx_.reset(ctx_raw);
|
||||
}
|
||||
|
||||
s = RegisterGradients(®istry_);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
}
|
||||
|
||||
GradientRegistry registry_;
|
||||
AbstractContextPtr ctx_;
|
||||
|
||||
public:
|
||||
@ -131,19 +126,31 @@ TEST_P(CppGradients, TestSparseSoftmaxCrossEntropyWithLogitsGrad) {
|
||||
// Score
|
||||
float X_vals[] = {1.0f, 2.0f, 3.0f, -5.0f, -4.0f, -3.0f, 2.0f, 0.0f, -1.0f};
|
||||
int64_t X_dims[] = {3, 3};
|
||||
AbstractTensorHandlePtr X =
|
||||
GetTensorHandleUtilFloat(ctx_.get(), X_vals, X_dims, 2);
|
||||
AbstractTensorHandlePtr X;
|
||||
{
|
||||
AbstractTensorHandle* X_raw;
|
||||
Status s =
|
||||
TestTensorHandleWithDimsFloat(ctx_.get(), X_vals, X_dims, 2, &X_raw);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
X.reset(X_raw);
|
||||
}
|
||||
// Label
|
||||
int Y_vals[] = {1, 0, 1};
|
||||
int64_t Y_dims[] = {3};
|
||||
AbstractTensorHandlePtr Y =
|
||||
GetTensorHandleUtilInt(ctx_.get(), Y_vals, Y_dims, 1);
|
||||
AbstractTensorHandlePtr Y;
|
||||
{
|
||||
AbstractTensorHandle* Y_raw;
|
||||
Status s =
|
||||
TestTensorHandleWithDimsInt(ctx_.get(), Y_vals, Y_dims, 1, &Y_raw);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
Y.reset(Y_raw);
|
||||
}
|
||||
|
||||
ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients(
|
||||
SparseSoftmaxCrossEntropyWithLogitsModel,
|
||||
SparseSoftmaxCrossEntropyWithLogitsGradModel, ctx_.get(),
|
||||
{X.get(), Y.get()},
|
||||
/*use_function=*/UseFunction(), registry_));
|
||||
/*use_function=*/UseFunction()));
|
||||
}
|
||||
|
||||
TEST_P(CppGradients, TestBiasAddGrad) {
|
||||
@ -154,17 +161,29 @@ TEST_P(CppGradients, TestBiasAddGrad) {
|
||||
// A
|
||||
float A_vals[] = {1.0f, 2.0f, 3.0f, 4.0f};
|
||||
int64_t A_dims[] = {2, 2};
|
||||
AbstractTensorHandlePtr A =
|
||||
GetTensorHandleUtilFloat(ctx_.get(), A_vals, A_dims, 2);
|
||||
AbstractTensorHandlePtr A;
|
||||
{
|
||||
AbstractTensorHandle* A_raw;
|
||||
Status s =
|
||||
TestTensorHandleWithDimsFloat(ctx_.get(), A_vals, A_dims, 2, &A_raw);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
A.reset(A_raw);
|
||||
}
|
||||
// Bias
|
||||
float Bias_vals[] = {2.0f, 3.0f};
|
||||
int64_t Bias_dims[] = {2};
|
||||
AbstractTensorHandlePtr Bias =
|
||||
GetTensorHandleUtilFloat(ctx_.get(), Bias_vals, Bias_dims, 1);
|
||||
AbstractTensorHandlePtr Bias;
|
||||
{
|
||||
AbstractTensorHandle* Bias_raw;
|
||||
Status s = TestTensorHandleWithDimsFloat(ctx_.get(), Bias_vals, Bias_dims,
|
||||
1, &Bias_raw);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
Bias.reset(Bias_raw);
|
||||
}
|
||||
|
||||
ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients(
|
||||
BiasAddModel, BiasAddGradModel, ctx_.get(), {A.get(), Bias.get()},
|
||||
/*use_function=*/UseFunction(), registry_));
|
||||
/*use_function=*/UseFunction()));
|
||||
}
|
||||
|
||||
#ifdef PLATFORM_GOOGLE
|
||||
|
Loading…
Reference in New Issue
Block a user