Remove @test_util.run_deprecated_v1 in morphological_ops_test.py
PiperOrigin-RevId: 324093550 Change-Id: Ib909ed17fab6b6b4b17ad862d8118e5e805951fb
This commit is contained in:
parent
5f68356af4
commit
c111987612
@ -22,7 +22,7 @@ import numpy as np
|
|||||||
|
|
||||||
from tensorflow.python.framework import constant_op
|
from tensorflow.python.framework import constant_op
|
||||||
from tensorflow.python.framework import test_util
|
from tensorflow.python.framework import test_util
|
||||||
from tensorflow.python.ops import gradient_checker
|
from tensorflow.python.ops import gradient_checker_v2
|
||||||
from tensorflow.python.ops import nn_ops
|
from tensorflow.python.ops import nn_ops
|
||||||
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
|
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
|
||||||
from tensorflow.python.platform import test
|
from tensorflow.python.platform import test
|
||||||
@ -199,32 +199,33 @@ class DilationTest(test.TestCase):
|
|||||||
np.random.seed(1) # Make it reproducible.
|
np.random.seed(1) # Make it reproducible.
|
||||||
image = np.random.random_sample(image_shape).astype(np.float32)
|
image = np.random.random_sample(image_shape).astype(np.float32)
|
||||||
kernel = np.random.random_sample(kernel_shape).astype(np.float32)
|
kernel = np.random.random_sample(kernel_shape).astype(np.float32)
|
||||||
image_init = np.random.random_sample(image_shape).astype(np.float32)
|
|
||||||
kernel_init = np.random.random_sample(kernel_shape).astype(np.float32)
|
|
||||||
|
|
||||||
strides = [1] + strides + [1]
|
strides = [1] + strides + [1]
|
||||||
rates = [1] + rates + [1]
|
rates = [1] + rates + [1]
|
||||||
|
|
||||||
with self.cached_session(use_gpu=use_gpu):
|
image_tensor = constant_op.constant(image, shape=image_shape, name="input")
|
||||||
image_tensor = constant_op.constant(
|
kernel_tensor = constant_op.constant(
|
||||||
image, shape=image_shape, name="input")
|
kernel, shape=kernel_shape, name="filter")
|
||||||
kernel_tensor = constant_op.constant(
|
|
||||||
kernel, shape=kernel_shape, name="filter")
|
def compute_dilation2d(image_tensor, kernel_tensor):
|
||||||
out_tensor = nn_ops.dilation2d(
|
return nn_ops.dilation2d(
|
||||||
image_tensor,
|
image_tensor,
|
||||||
kernel_tensor,
|
kernel_tensor,
|
||||||
strides=strides,
|
strides=strides,
|
||||||
rates=rates,
|
rates=rates,
|
||||||
padding=padding,
|
padding=padding,
|
||||||
name="dilation2d")
|
name="dilation2d")
|
||||||
out_shape = self.evaluate(out_tensor).shape
|
|
||||||
|
|
||||||
# Small delta is necessary for argmax to remain the same.
|
with test_util.device(use_gpu=use_gpu):
|
||||||
err = gradient_checker.compute_gradient_error(
|
with self.cached_session():
|
||||||
[image_tensor, kernel_tensor], [image_shape, kernel_shape],
|
# Small delta is necessary for argmax to remain the same.
|
||||||
out_tensor,
|
err1 = gradient_checker_v2.max_error(
|
||||||
out_shape, [image_init, kernel_init],
|
*gradient_checker_v2.compute_gradient(
|
||||||
delta=1e-3)
|
lambda x: compute_dilation2d(x, kernel_tensor), [image_tensor]))
|
||||||
|
err2 = gradient_checker_v2.max_error(
|
||||||
|
*gradient_checker_v2.compute_gradient(
|
||||||
|
lambda x: compute_dilation2d(image_tensor, x), [kernel_tensor]))
|
||||||
|
err = max(err1, err2)
|
||||||
|
|
||||||
print("Dilation gradient error = %f" % err)
|
print("Dilation gradient error = %f" % err)
|
||||||
self.assertLess(err, 1e-4)
|
self.assertLess(err, 1e-4)
|
||||||
@ -292,7 +293,6 @@ class DilationTest(test.TestCase):
|
|||||||
padding="SAME",
|
padding="SAME",
|
||||||
use_gpu=use_gpu)
|
use_gpu=use_gpu)
|
||||||
|
|
||||||
@test_util.run_deprecated_v1
|
|
||||||
def testDilationGrad(self):
|
def testDilationGrad(self):
|
||||||
for use_gpu in True, False:
|
for use_gpu in True, False:
|
||||||
self._testDilationGradValidPadding_1x1x1(use_gpu)
|
self._testDilationGradValidPadding_1x1x1(use_gpu)
|
||||||
@ -475,32 +475,33 @@ class ErosionTest(test.TestCase):
|
|||||||
np.random.seed(1) # Make it reproducible.
|
np.random.seed(1) # Make it reproducible.
|
||||||
image = np.random.random_sample(image_shape).astype(np.float32)
|
image = np.random.random_sample(image_shape).astype(np.float32)
|
||||||
kernel = np.random.random_sample(kernel_shape).astype(np.float32)
|
kernel = np.random.random_sample(kernel_shape).astype(np.float32)
|
||||||
image_init = np.random.random_sample(image_shape).astype(np.float32)
|
|
||||||
kernel_init = np.random.random_sample(kernel_shape).astype(np.float32)
|
|
||||||
|
|
||||||
strides = [1] + strides + [1]
|
strides = [1] + strides + [1]
|
||||||
rates = [1] + rates + [1]
|
rates = [1] + rates + [1]
|
||||||
|
|
||||||
with self.cached_session(use_gpu=use_gpu):
|
image_tensor = constant_op.constant(image, shape=image_shape, name="input")
|
||||||
image_tensor = constant_op.constant(
|
kernel_tensor = constant_op.constant(
|
||||||
image, shape=image_shape, name="input")
|
kernel, shape=kernel_shape, name="filter")
|
||||||
kernel_tensor = constant_op.constant(
|
|
||||||
kernel, shape=kernel_shape, name="filter")
|
def compute_erosion2d(image_tensor, kernel_tensor):
|
||||||
out_tensor = nn_ops.erosion2d(
|
return nn_ops.erosion2d(
|
||||||
image_tensor,
|
image_tensor,
|
||||||
kernel_tensor,
|
kernel_tensor,
|
||||||
strides=strides,
|
strides=strides,
|
||||||
rates=rates,
|
rates=rates,
|
||||||
padding=padding,
|
padding=padding,
|
||||||
name="erosion2d")
|
name="erosion2d")
|
||||||
out_shape = self.evaluate(out_tensor).shape
|
|
||||||
|
|
||||||
# Small delta is necessary for argmax to remain the same.
|
with test_util.device(use_gpu=use_gpu):
|
||||||
err = gradient_checker.compute_gradient_error(
|
with self.cached_session():
|
||||||
[image_tensor, kernel_tensor], [image_shape, kernel_shape],
|
# Small delta is necessary for argmax to remain the same.
|
||||||
out_tensor,
|
err1 = gradient_checker_v2.max_error(
|
||||||
out_shape, [image_init, kernel_init],
|
*gradient_checker_v2.compute_gradient(
|
||||||
delta=1e-3)
|
lambda x: compute_erosion2d(x, kernel_tensor), [image_tensor]))
|
||||||
|
err2 = gradient_checker_v2.max_error(
|
||||||
|
*gradient_checker_v2.compute_gradient(
|
||||||
|
lambda x: compute_erosion2d(image_tensor, x), [kernel_tensor]))
|
||||||
|
err = max(err1, err2)
|
||||||
|
|
||||||
print("Erosion gradient error = %f" % err)
|
print("Erosion gradient error = %f" % err)
|
||||||
self.assertLess(err, 1e-4)
|
self.assertLess(err, 1e-4)
|
||||||
@ -568,7 +569,6 @@ class ErosionTest(test.TestCase):
|
|||||||
padding="SAME",
|
padding="SAME",
|
||||||
use_gpu=use_gpu)
|
use_gpu=use_gpu)
|
||||||
|
|
||||||
@test_util.run_deprecated_v1
|
|
||||||
def testErosionGrad(self):
|
def testErosionGrad(self):
|
||||||
for use_gpu in True, False:
|
for use_gpu in True, False:
|
||||||
self._testErosionGradValidPadding_1x1x1(use_gpu)
|
self._testErosionGradValidPadding_1x1x1(use_gpu)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user