added two api def files and solved some python format issues
This commit is contained in:
parent
df2b9b790e
commit
c0ea11b158
@ -208,16 +208,15 @@ def RunLSTM(sess,
|
||||
|
||||
if is_training:
|
||||
if num_proj:
|
||||
outputs, state_tuple, inp_grad, state_grad, wgrad, bgrad, pwgrad = \
|
||||
sess.run([
|
||||
outputs_op, state_tuple_op, inp_grad_op,
|
||||
(hgrad_op, cgrad_op), wgrad_op, bgrad_op, pwgrad_op
|
||||
])
|
||||
(outputs, state_tuple, inp_grad, state_grad, wgrad, bgrad,
|
||||
pwgrad) = sess.run([
|
||||
outputs_op, state_tuple_op, inp_grad_op,
|
||||
(hgrad_op, cgrad_op), wgrad_op, bgrad_op, pwgrad_op])
|
||||
(cu_outputs, cu_state_tuple, cu_inp_grad, cu_state_grad, cu_wgrad,
|
||||
cu_bgrad, cu_pwgrad) = sess.run([
|
||||
cu_outputs_op, cu_state_tuple_op, cu_inp_grad_op,
|
||||
(cu_hgrad_op, cu_cgrad_op), cu_wgrad_op, cu_bgrad_op, cu_pwgrad_op],
|
||||
feed_dict={inputs: inputs_np} if dynamic_shape_input else None)
|
||||
(cu_hgrad_op, cu_cgrad_op), cu_wgrad_op, cu_bgrad_op, cu_pwgrad_op
|
||||
], feed_dict={inputs: inputs_np} if dynamic_shape_input else None)
|
||||
else:
|
||||
outputs, state_tuple, inp_grad, state_grad, wgrad, bgrad = sess.run([
|
||||
outputs_op, state_tuple_op, inp_grad_op,
|
||||
@ -225,9 +224,9 @@ def RunLSTM(sess,
|
||||
(cu_outputs, cu_state_tuple, cu_inp_grad, cu_state_grad, cu_wgrad,
|
||||
cu_bgrad) = sess.run([
|
||||
cu_outputs_op, cu_state_tuple_op, cu_inp_grad_op,
|
||||
(cu_hgrad_op, cu_cgrad_op), cu_wgrad_op, cu_bgrad_op],
|
||||
feed_dict={inputs: inputs_np} if dynamic_shape_input else None)
|
||||
|
||||
(cu_hgrad_op, cu_cgrad_op), cu_wgrad_op, cu_bgrad_op
|
||||
], feed_dict={inputs: inputs_np} if dynamic_shape_input else None)
|
||||
|
||||
logging.vlog(1, "outputs: %s" % outputs)
|
||||
logging.vlog(1, "cu_outputs: %s" % cu_outputs)
|
||||
logging.vlog(1, "state_tuple: %s" % str(state_tuple))
|
||||
|
@ -0,0 +1,36 @@
|
||||
op {
|
||||
graph_op_name: "CudnnRNNCanonicalToParamsV2"
|
||||
summary: "Converts CudnnRNN params from canonical form to usable form. It supports the projection in LSTM."
|
||||
description: <<END
|
||||
Writes a set of weights into the opaque params buffer so they can be used in
|
||||
upcoming training or inferences.
|
||||
|
||||
Note that the params buffer may not be compatible across different GPUs. So any
|
||||
save and restoration should be converted to and from the canonical weights and
|
||||
biases.
|
||||
|
||||
num_layers: Specifies the number of layers in the RNN model.
|
||||
num_units: Specifies the size of the hidden state.
|
||||
input_size: Specifies the size of the input state.
|
||||
weights: the canonical form of weights that can be used for saving
|
||||
and restoration. They are more likely to be compatible across different
|
||||
generations.
|
||||
biases: the canonical form of biases that can be used for saving
|
||||
and restoration. They are more likely to be compatible across different
|
||||
generations.
|
||||
num_params_weigths: number of weight parameter matrix for all layers.
|
||||
num_params_biases: number of bias parameter vector for all layers.
|
||||
rnn_mode: Indicates the type of the RNN model.
|
||||
input_mode: Indicate whether there is a linear projection between the input and
|
||||
The actual computation before the first layer. 'skip_input' is only allowed
|
||||
when input_size == num_units; 'auto_select' implies 'skip_input' when
|
||||
input_size == num_units; otherwise, it implies 'linear_input'.
|
||||
direction: Indicates whether a bidirectional model will be used.
|
||||
dir = (direction == bidirectional) ? 2 : 1
|
||||
dropout: dropout probability. When set to 0., dropout is disabled.
|
||||
seed: the 1st part of a seed to initialize dropout.
|
||||
seed2: the 2nd part of a seed to initialize dropout.
|
||||
num_proj: The output dimensionality for the projection matrices. If None or 0,
|
||||
no projection is performed.
|
||||
END
|
||||
}
|
@ -0,0 +1,36 @@
|
||||
op {
|
||||
graph_op_name: "CudnnRNNParamsToCanonicalV2"
|
||||
summary: "Retrieves CudnnRNN params in canonical form. It supports the projection in LSTM."
|
||||
description: <<END
|
||||
Retrieves a set of weights from the opaque params buffer that can be saved and
|
||||
restored in a way compatible with future runs.
|
||||
|
||||
Note that the params buffer may not be compatible across different GPUs. So any
|
||||
save and restoration should be converted to and from the canonical weights and
|
||||
biases.
|
||||
|
||||
num_layers: Specifies the number of layers in the RNN model.
|
||||
num_units: Specifies the size of the hidden state.
|
||||
input_size: Specifies the size of the input state.
|
||||
num_params_weigths: number of weight parameter matrix for all layers.
|
||||
num_params_biases: number of bias parameter vector for all layers.
|
||||
weights: the canonical form of weights that can be used for saving
|
||||
and restoration. They are more likely to be compatible across different
|
||||
generations.
|
||||
biases: the canonical form of biases that can be used for saving
|
||||
and restoration. They are more likely to be compatible across different
|
||||
generations.
|
||||
rnn_mode: Indicates the type of the RNN model.
|
||||
input_mode: Indicate whether there is a linear projection between the input and
|
||||
The actual computation before the first layer. 'skip_input' is only allowed
|
||||
when input_size == num_units; 'auto_select' implies 'skip_input' when
|
||||
input_size == num_units; otherwise, it implies 'linear_input'.
|
||||
direction: Indicates whether a bidirectional model will be used.
|
||||
dir = (direction == bidirectional) ? 2 : 1
|
||||
dropout: dropout probability. When set to 0., dropout is disabled.
|
||||
seed: the 1st part of a seed to initialize dropout.
|
||||
seed2: the 2nd part of a seed to initialize dropout.
|
||||
num_proj: The output dimensionality for the projection matrices. If None or 0,
|
||||
no projection is performed.
|
||||
END
|
||||
}
|
Loading…
Reference in New Issue
Block a user