TFLite: reduced redundant calculation in uint8/float conv.h
This commit is contained in:
parent
c979f5a424
commit
c06408c37d
@ -59,28 +59,31 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
|
|||||||
const int output_width = output_shape.Dims(2);
|
const int output_width = output_shape.Dims(2);
|
||||||
for (int batch = 0; batch < batches; ++batch) {
|
for (int batch = 0; batch < batches; ++batch) {
|
||||||
for (int out_y = 0; out_y < output_height; ++out_y) {
|
for (int out_y = 0; out_y < output_height; ++out_y) {
|
||||||
for (int out_x = 0; out_x < output_width; ++out_x) {
|
|
||||||
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
|
|
||||||
const int in_x_origin = (out_x * stride_width) - pad_width;
|
|
||||||
const int in_y_origin = (out_y * stride_height) - pad_height;
|
const int in_y_origin = (out_y * stride_height) - pad_height;
|
||||||
|
for (int out_x = 0; out_x < output_width; ++out_x) {
|
||||||
|
const int in_x_origin = (out_x * stride_width) - pad_width;
|
||||||
|
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
|
||||||
float total = 0.f;
|
float total = 0.f;
|
||||||
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
|
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
|
||||||
|
const int in_y = in_y_origin + dilation_height_factor * filter_y;
|
||||||
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
|
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
|
||||||
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
|
|
||||||
const int in_x = in_x_origin + dilation_width_factor * filter_x;
|
const int in_x = in_x_origin + dilation_width_factor * filter_x;
|
||||||
const int in_y =
|
|
||||||
in_y_origin + dilation_height_factor * filter_y;
|
// Zero padding by omitting the areas outside the image.
|
||||||
// If the location is outside the bounds of the input image,
|
const bool is_point_inside_image =
|
||||||
// use zero as a default value.
|
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
|
||||||
if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
|
(in_y < input_height);
|
||||||
(in_y < input_height)) {
|
|
||||||
float input_value = input_data[Offset(
|
if (!is_point_inside_image) {
|
||||||
input_shape, batch, in_y, in_x, in_channel)];
|
continue;
|
||||||
float filter_value =
|
|
||||||
filter_data[Offset(filter_shape, out_channel, filter_y,
|
|
||||||
filter_x, in_channel)];
|
|
||||||
total += (input_value * filter_value);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
|
||||||
|
float input_value = input_data[Offset(input_shape, batch, in_y,
|
||||||
|
in_x, in_channel)];
|
||||||
|
float filter_value = filter_data[Offset(
|
||||||
|
filter_shape, out_channel, filter_y, filter_x, in_channel)];
|
||||||
|
total += (input_value * filter_value);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -139,32 +142,35 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
|
|||||||
const int output_width = output_shape.Dims(2);
|
const int output_width = output_shape.Dims(2);
|
||||||
for (int batch = 0; batch < batches; ++batch) {
|
for (int batch = 0; batch < batches; ++batch) {
|
||||||
for (int out_y = 0; out_y < output_height; ++out_y) {
|
for (int out_y = 0; out_y < output_height; ++out_y) {
|
||||||
for (int out_x = 0; out_x < output_width; ++out_x) {
|
|
||||||
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
|
|
||||||
const int in_x_origin = (out_x * stride_width) - pad_width;
|
|
||||||
const int in_y_origin = (out_y * stride_height) - pad_height;
|
const int in_y_origin = (out_y * stride_height) - pad_height;
|
||||||
|
for (int out_x = 0; out_x < output_width; ++out_x) {
|
||||||
|
const int in_x_origin = (out_x * stride_width) - pad_width;
|
||||||
|
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
|
||||||
int32_t acc = 0;
|
int32_t acc = 0;
|
||||||
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
|
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
|
||||||
|
const int in_y = in_y_origin + dilation_height_factor * filter_y;
|
||||||
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
|
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
|
||||||
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
|
|
||||||
const int in_x = in_x_origin + dilation_width_factor * filter_x;
|
const int in_x = in_x_origin + dilation_width_factor * filter_x;
|
||||||
const int in_y =
|
|
||||||
in_y_origin + dilation_height_factor * filter_y;
|
// Zero padding by omitting the areas outside the image.
|
||||||
// If the location is outside the bounds of the input image,
|
const bool is_point_inside_image =
|
||||||
// use zero as a default value.
|
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
|
||||||
if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
|
(in_y < input_height);
|
||||||
(in_y < input_height)) {
|
|
||||||
int32_t input_val = input_data[Offset(
|
if (!is_point_inside_image) {
|
||||||
input_shape, batch, in_y, in_x, in_channel)];
|
continue;
|
||||||
int32_t filter_val =
|
}
|
||||||
filter_data[Offset(filter_shape, out_channel, filter_y,
|
|
||||||
filter_x, in_channel)];
|
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
|
||||||
|
int32_t input_val = input_data[Offset(input_shape, batch, in_y,
|
||||||
|
in_x, in_channel)];
|
||||||
|
int32_t filter_val = filter_data[Offset(
|
||||||
|
filter_shape, out_channel, filter_y, filter_x, in_channel)];
|
||||||
acc +=
|
acc +=
|
||||||
(filter_val + filter_offset) * (input_val + input_offset);
|
(filter_val + filter_offset) * (input_val + input_offset);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
if (bias_data) {
|
if (bias_data) {
|
||||||
acc += bias_data[out_channel];
|
acc += bias_data[out_channel];
|
||||||
}
|
}
|
||||||
@ -258,5 +264,4 @@ inline void HybridConvPerChannel(
|
|||||||
} // namespace reference_ops
|
} // namespace reference_ops
|
||||||
} // namespace tflite
|
} // namespace tflite
|
||||||
|
|
||||||
|
|
||||||
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_
|
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_
|
||||||
|
Loading…
Reference in New Issue
Block a user