Automated rollback of commit 114762ab9e

PiperOrigin-RevId: 294358681
Change-Id: Ia808a4c3ebbb9095785f23030c60c5b460733ae6
This commit is contained in:
A. Unique TensorFlower 2020-02-10 19:35:53 -08:00 committed by TensorFlower Gardener
parent 7063272f84
commit be9b6c66eb
4 changed files with 18 additions and 53 deletions

View File

@ -104,25 +104,15 @@ class Layer(module.Module, version_utils.LayerVersionSelector):
We recommend that descendants of `Layer` implement the following methods:
* `__init__()`: Defines custom layer attributes, and creates layer state
variables that do not depend on input shapes, using `add_weight()`.
* `build(self, input_shape)`: This method can be used to create weights that
depend on the shape(s) of the input(s), using `add_weight()`. `__call__()`
will automatically build the layer (if it has not been built yet) by
calling `build()`.
* `call(self, *args, **kwargs)`: Called in `__call__` after making sure
`build()` has been called. `call()` performs the logic of applying the
layer to the input tensors (which should be passed in as argument).
Two reserved keyword arguments you can optionally use in `call()` are:
- `training` (boolean, whether the call is in
inference mode or training mode)
- `mask` (boolean tensor encoding masked timesteps in the input, used
in RNN layers)
* `get_config(self)`: Returns a dictionary containing the configuration used
to initialize this layer. If the keys differ from the arguments
in `__init__`, then override `from_config(self)` as well.
This method is used when saving
the layer or a model that contains this layer.
* `__init__()`: Save configuration in member variables
* `build()`: Called once from `__call__`, when we know the shapes of inputs
and `dtype`. Should have the calls to `add_weight()`, and then
call the super's `build()` (which sets `self.built = True`, which is
nice in case the user wants to call `build()` manually before the
first `__call__`).
* `call()`: Called in `__call__` after making sure `build()` has been called
once. Should actually perform the logic of applying the layer to the
input tensors (which should be passed in as the first argument).
Arguments:
trainable: Boolean, whether the layer's variables should be trainable.
@ -205,10 +195,6 @@ class Layer(module.Module, version_utils.LayerVersionSelector):
# Indicates whether `build` needs to be called upon layer call, to create
# the layer's weights.
self.built = False
# Record the build input shape for loading purposes.
# TODO(kathywu): Move this to Layer._set_save_spec once cl/290121460 is
# submitted.
self._build_input_shape = None
# Provides information about which inputs are compatible with the layer.
self._input_spec = None
self.supports_masking = False
@ -290,7 +276,6 @@ class Layer(module.Module, version_utils.LayerVersionSelector):
`TensorShape` if the layer expects a list of inputs
(one instance per input).
"""
self._build_input_shape = input_shape
self.built = True
@doc_controls.for_subclass_implementers
@ -2215,11 +2200,10 @@ class Layer(module.Module, version_utils.LayerVersionSelector):
# to avoid creating symbolic Tensors that will later pollute any eager
# operations.
with tf_utils.maybe_init_scope(self):
self.build(input_shapes) # pylint:disable=not-callable
# We must set also ensure that the layer is marked as built, and the build
# shape is stored since user defined build functions may not be calling
# `super.build()`
Layer.build(self, input_shapes)
self.build(input_shapes)
# We must set self.built since user defined build functions are not
# constrained to set self.built.
self.built = True
# Optionally load weight values specified at layer instantiation.
if self._initial_weights is not None:

View File

@ -630,25 +630,6 @@ class BaseLayerTest(keras_parameterized.TestCase):
out = self.evaluate(layer(x=x, y=y))
self.assertAllClose(out, 2 * np.ones((10, 1)))
def test_build_input_shape(self):
class CustomLayer(keras.layers.Layer):
def build(self, input_shape):
self.add_weight('w', shape=input_shape[1:])
super(CustomLayer, self).build(input_shape)
layer = CustomLayer()
self.assertFalse(layer.built)
layer.build([None, 1, 2, 3])
self.assertTrue(layer.built)
self.assertEqual([None, 1, 2, 3], layer._build_input_shape)
layer = CustomLayer()
layer(keras.Input((3,)))
self.assertTrue(layer.built)
self.assertEqual([None, 3], layer._build_input_shape.as_list())
class SymbolicSupportTest(test.TestCase):

View File

@ -244,7 +244,6 @@ class Network(base_layer.Layer):
# A Network does not create weights of its own, thus it is already
# built.
self.built = True
self._build_input_shape = nest.map_structure(lambda x: x.shape, inputs)
self._compute_output_and_mask_jointly = True
self._is_graph_network = True
# `_expects_training_arg` is True since the `training` argument is always
@ -357,7 +356,6 @@ class Network(base_layer.Layer):
self.outputs = []
self.inputs = []
self.built = False
self._build_input_shape = None
@property
@trackable_layer_utils.cache_recursive_attribute('dynamic')
@ -621,7 +619,7 @@ class Network(base_layer.Layer):
on real tensor data.
"""
if self._is_graph_network:
super(Network, self).build(input_shape)
self.built = True
return
# If subclass network
@ -686,7 +684,7 @@ class Network(base_layer.Layer):
'model, `call` your model on real tensor data (of '
'the correct dtype).')
super(Network, self).build(input_shape)
self.built = True
def call(self, inputs, training=None, mask=None):
"""Calls the model on new inputs.

View File

@ -110,6 +110,7 @@ class Sequential(training.Model):
"""
super(Sequential, self).__init__(name=name, autocast=False)
self.supports_masking = True
self._build_input_shape = None
self._compute_output_and_mask_jointly = True
self._layer_call_argspecs = {}
@ -262,7 +263,8 @@ class Sequential(training.Model):
if input_shape is None:
raise ValueError('You must provide an `input_shape` argument.')
input_shape = tuple(input_shape)
super(Sequential, self).build(input_shape)
self._build_input_shape = input_shape
super(Sequential, self).build(input_shape)
self.built = True
def call(self, inputs, training=None, mask=None): # pylint: disable=redefined-outer-name