Use tf.io instead of os for checking if paths exist in Keras applications.
PiperOrigin-RevId: 312468401 Change-Id: Ibe9c4a9719be5bb8b72f6db84036791031e26760
This commit is contained in:
parent
72b5db4b1f
commit
bd57e264f8
|
@ -35,10 +35,16 @@ py_library(
|
|||
srcs_version = "PY2AND3",
|
||||
visibility = ["//visibility:public"],
|
||||
deps = [
|
||||
"//tensorflow/python:util",
|
||||
"//tensorflow/python:lib",
|
||||
"//tensorflow/python:platform",
|
||||
"//tensorflow/python:tf_export",
|
||||
"//tensorflow/python/keras:activations",
|
||||
"//tensorflow/python/keras:backend",
|
||||
"//tensorflow/python/keras:engine",
|
||||
"//tensorflow/python/keras/engine",
|
||||
"//tensorflow/python/keras/layers",
|
||||
"//tensorflow/python/keras/utils:data_utils",
|
||||
"//tensorflow/python/keras/utils:layer_utils",
|
||||
"//third_party/py/numpy",
|
||||
],
|
||||
)
|
||||
|
||||
|
|
|
@ -23,14 +23,13 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras.applications import imagenet_utils
|
||||
from tensorflow.python.keras.engine import training
|
||||
from tensorflow.python.keras.layers import VersionAwareLayers
|
||||
from tensorflow.python.keras.utils import data_utils
|
||||
from tensorflow.python.keras.utils import layer_utils
|
||||
from tensorflow.python.lib.io import file_io
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
||||
|
@ -193,7 +192,7 @@ def DenseNet(
|
|||
ValueError: if `classifier_activation` is not `softmax` or `None` when
|
||||
using a pretrained top layer.
|
||||
"""
|
||||
if not (weights in {'imagenet', None} or os.path.exists(weights)):
|
||||
if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
|
||||
raise ValueError('The `weights` argument should be either '
|
||||
'`None` (random initialization), `imagenet` '
|
||||
'(pre-training on ImageNet), '
|
||||
|
|
|
@ -26,7 +26,6 @@ from __future__ import print_function
|
|||
|
||||
import copy
|
||||
import math
|
||||
import os
|
||||
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras.applications import imagenet_utils
|
||||
|
@ -34,6 +33,7 @@ from tensorflow.python.keras.engine import training
|
|||
from tensorflow.python.keras.layers import VersionAwareLayers
|
||||
from tensorflow.python.keras.utils import data_utils
|
||||
from tensorflow.python.keras.utils import layer_utils
|
||||
from tensorflow.python.lib.io import file_io
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
||||
|
@ -269,7 +269,7 @@ def EfficientNet(
|
|||
if blocks_args == 'default':
|
||||
blocks_args = DEFAULT_BLOCKS_ARGS
|
||||
|
||||
if not (weights in {'imagenet', None} or os.path.exists(weights)):
|
||||
if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
|
||||
raise ValueError('The `weights` argument should be either '
|
||||
'`None` (random initialization), `imagenet` '
|
||||
'(pre-training on ImageNet), '
|
||||
|
|
|
@ -25,14 +25,13 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras.applications import imagenet_utils
|
||||
from tensorflow.python.keras.engine import training
|
||||
from tensorflow.python.keras.layers import VersionAwareLayers
|
||||
from tensorflow.python.keras.utils import data_utils
|
||||
from tensorflow.python.keras.utils import layer_utils
|
||||
from tensorflow.python.lib.io import file_io
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
||||
|
@ -113,7 +112,7 @@ def InceptionResNetV2(include_top=True,
|
|||
layers = VersionAwareLayers()
|
||||
if kwargs:
|
||||
raise ValueError('Unknown argument(s): %s' % (kwargs,))
|
||||
if not (weights in {'imagenet', None} or os.path.exists(weights)):
|
||||
if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
|
||||
raise ValueError('The `weights` argument should be either '
|
||||
'`None` (random initialization), `imagenet` '
|
||||
'(pre-training on ImageNet), '
|
||||
|
|
|
@ -23,14 +23,13 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras.applications import imagenet_utils
|
||||
from tensorflow.python.keras.engine import training
|
||||
from tensorflow.python.keras.layers import VersionAwareLayers
|
||||
from tensorflow.python.keras.utils import data_utils
|
||||
from tensorflow.python.keras.utils import layer_utils
|
||||
from tensorflow.python.lib.io import file_io
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
||||
|
@ -109,7 +108,7 @@ def InceptionV3(
|
|||
ValueError: if `classifier_activation` is not `softmax` or `None` when
|
||||
using a pretrained top layer.
|
||||
"""
|
||||
if not (weights in {'imagenet', None} or os.path.exists(weights)):
|
||||
if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
|
||||
raise ValueError('The `weights` argument should be either '
|
||||
'`None` (random initialization), `imagenet` '
|
||||
'(pre-training on ImageNet), '
|
||||
|
|
|
@ -64,14 +64,13 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras.applications import imagenet_utils
|
||||
from tensorflow.python.keras.engine import training
|
||||
from tensorflow.python.keras.layers import VersionAwareLayers
|
||||
from tensorflow.python.keras.utils import data_utils
|
||||
from tensorflow.python.keras.utils import layer_utils
|
||||
from tensorflow.python.lib.io import file_io
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
@ -164,7 +163,7 @@ def MobileNet(input_shape=None,
|
|||
layers = VersionAwareLayers()
|
||||
if kwargs:
|
||||
raise ValueError('Unknown argument(s): %s' % (kwargs,))
|
||||
if not (weights in {'imagenet', None} or os.path.exists(weights)):
|
||||
if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
|
||||
raise ValueError('The `weights` argument should be either '
|
||||
'`None` (random initialization), `imagenet` '
|
||||
'(pre-training on ImageNet), '
|
||||
|
|
|
@ -77,14 +77,13 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras.applications import imagenet_utils
|
||||
from tensorflow.python.keras.engine import training
|
||||
from tensorflow.python.keras.layers import VersionAwareLayers
|
||||
from tensorflow.python.keras.utils import data_utils
|
||||
from tensorflow.python.keras.utils import layer_utils
|
||||
from tensorflow.python.lib.io import file_io
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
@ -181,7 +180,7 @@ def MobileNetV2(input_shape=None,
|
|||
layers = VersionAwareLayers()
|
||||
if kwargs:
|
||||
raise ValueError('Unknown argument(s): %s' % (kwargs,))
|
||||
if not (weights in {'imagenet', None} or os.path.exists(weights)):
|
||||
if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
|
||||
raise ValueError('The `weights` argument should be either '
|
||||
'`None` (random initialization), `imagenet` '
|
||||
'(pre-training on ImageNet), '
|
||||
|
|
|
@ -41,14 +41,13 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras.applications import imagenet_utils
|
||||
from tensorflow.python.keras.engine import training
|
||||
from tensorflow.python.keras.layers import VersionAwareLayers
|
||||
from tensorflow.python.keras.utils import data_utils
|
||||
from tensorflow.python.keras.utils import layer_utils
|
||||
from tensorflow.python.lib.io import file_io
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
@ -151,7 +150,7 @@ def NASNet(
|
|||
ValueError: if `classifier_activation` is not `softmax` or `None` when
|
||||
using a pretrained top layer.
|
||||
"""
|
||||
if not (weights in {'imagenet', None} or os.path.exists(weights)):
|
||||
if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
|
||||
raise ValueError('The `weights` argument should be either '
|
||||
'`None` (random initialization), `imagenet` '
|
||||
'(pre-training on ImageNet), '
|
||||
|
|
|
@ -23,14 +23,13 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras.applications import imagenet_utils
|
||||
from tensorflow.python.keras.engine import training
|
||||
from tensorflow.python.keras.layers import VersionAwareLayers
|
||||
from tensorflow.python.keras.utils import data_utils
|
||||
from tensorflow.python.keras.utils import layer_utils
|
||||
from tensorflow.python.lib.io import file_io
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
||||
|
@ -138,7 +137,7 @@ def ResNet(stack_fn,
|
|||
layers = VersionAwareLayers()
|
||||
if kwargs:
|
||||
raise ValueError('Unknown argument(s): %s' % (kwargs,))
|
||||
if not (weights in {'imagenet', None} or os.path.exists(weights)):
|
||||
if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
|
||||
raise ValueError('The `weights` argument should be either '
|
||||
'`None` (random initialization), `imagenet` '
|
||||
'(pre-training on ImageNet), '
|
||||
|
|
|
@ -23,14 +23,13 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras.applications import imagenet_utils
|
||||
from tensorflow.python.keras.engine import training
|
||||
from tensorflow.python.keras.layers import VersionAwareLayers
|
||||
from tensorflow.python.keras.utils import data_utils
|
||||
from tensorflow.python.keras.utils import layer_utils
|
||||
from tensorflow.python.lib.io import file_io
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
||||
|
@ -114,7 +113,7 @@ def VGG16(
|
|||
ValueError: if `classifier_activation` is not `softmax` or `None` when
|
||||
using a pretrained top layer.
|
||||
"""
|
||||
if not (weights in {'imagenet', None} or os.path.exists(weights)):
|
||||
if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
|
||||
raise ValueError('The `weights` argument should be either '
|
||||
'`None` (random initialization), `imagenet` '
|
||||
'(pre-training on ImageNet), '
|
||||
|
|
|
@ -23,14 +23,13 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras.applications import imagenet_utils
|
||||
from tensorflow.python.keras.engine import training
|
||||
from tensorflow.python.keras.layers import VersionAwareLayers
|
||||
from tensorflow.python.keras.utils import data_utils
|
||||
from tensorflow.python.keras.utils import layer_utils
|
||||
from tensorflow.python.lib.io import file_io
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
||||
|
@ -114,7 +113,7 @@ def VGG19(
|
|||
ValueError: if `classifier_activation` is not `softmax` or `None` when
|
||||
using a pretrained top layer.
|
||||
"""
|
||||
if not (weights in {'imagenet', None} or os.path.exists(weights)):
|
||||
if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
|
||||
raise ValueError('The `weights` argument should be either '
|
||||
'`None` (random initialization), `imagenet` '
|
||||
'(pre-training on ImageNet), '
|
||||
|
|
|
@ -27,14 +27,13 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras.applications import imagenet_utils
|
||||
from tensorflow.python.keras.engine import training
|
||||
from tensorflow.python.keras.layers import VersionAwareLayers
|
||||
from tensorflow.python.keras.utils import data_utils
|
||||
from tensorflow.python.keras.utils import layer_utils
|
||||
from tensorflow.python.lib.io import file_io
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
|
||||
|
@ -114,7 +113,7 @@ def Xception(
|
|||
ValueError: if `classifier_activation` is not `softmax` or `None` when
|
||||
using a pretrained top layer.
|
||||
"""
|
||||
if not (weights in {'imagenet', None} or os.path.exists(weights)):
|
||||
if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
|
||||
raise ValueError('The `weights` argument should be either '
|
||||
'`None` (random initialization), `imagenet` '
|
||||
'(pre-training on ImageNet), '
|
||||
|
|
Loading…
Reference in New Issue