matmul,qmatmul and fusedops support for threadpool api.
This commit is contained in:
parent
735bb0fc23
commit
bcd0f459a1
@ -62,11 +62,11 @@ class MklMatMulOp : public OpKernel {
|
||||
dim_pair[0].first = transpose_a_ ? 0 : 1;
|
||||
dim_pair[0].second = transpose_b_ ? 1 : 0;
|
||||
|
||||
OP_REQUIRES(
|
||||
ctx, a.dim_size(dim_pair[0].first) == b.dim_size(dim_pair[0].second),
|
||||
errors::InvalidArgument(
|
||||
"Matrix size-incompatible: In[0]: ", a.shape().DebugString(),
|
||||
", In[1]: ", b.shape().DebugString()));
|
||||
OP_REQUIRES(ctx,
|
||||
a.dim_size(dim_pair[0].first) == b.dim_size(dim_pair[0].second),
|
||||
errors::InvalidArgument("Matrix size-incompatible: In[0]: ",
|
||||
a.shape().DebugString(), ", In[1]: ",
|
||||
b.shape().DebugString()));
|
||||
int a_dim_remaining = 1 - dim_pair[0].first;
|
||||
int b_dim_remaining = 1 - dim_pair[0].second;
|
||||
TensorShape out_shape(
|
||||
@ -158,9 +158,17 @@ class MklMatMulOp : public OpKernel {
|
||||
#ifdef ENABLE_MKLDNN_V1
|
||||
char char_transa = transa ? 'T' : 'N';
|
||||
char char_transb = transb ? 'T' : 'N';
|
||||
VLOG(2) << "MKL DNN SGEMM CALLED";
|
||||
VLOG(2) << "MKL DNN SGEMM called";
|
||||
#ifdef ENABLE_MKLDNN_THREADPOOL
|
||||
auto eigen_tp =
|
||||
MklDnnThreadPoolWrapper::GetInstance().CreateThreadPoolPtr(ctx);
|
||||
|
||||
dnnl_sgemm_tp(char_transa, char_transb, m, n, k, alpha, a, lda, b, ldb,
|
||||
beta, c, ldc, eigen_tp);
|
||||
#else
|
||||
dnnl_sgemm(char_transa, char_transb, m, n, k, alpha, a, lda, b, ldb, beta,
|
||||
c, ldc);
|
||||
#endif // ENABLE_MKLDNN_THREADPOOL
|
||||
#else
|
||||
// TODO(intel-tf): Remove this after TF2.3 fork.
|
||||
cblas_sgemm(CblasRowMajor, transa ? CblasTrans : CblasNoTrans,
|
||||
@ -182,7 +190,7 @@ class MklMatMulOp : public OpKernel {
|
||||
#ifdef ENABLE_MKLDNN_V1
|
||||
const char ftrans[] = {'N', 'T', 'C'};
|
||||
dnnl_gemm<bfloat16>(ftrans[index_transa], ftrans[index_transb], m, n, k,
|
||||
alpha, a, lda, b, ldb, beta, c, ldc);
|
||||
alpha, a, lda, b, ldb, beta, c, ldc, ctx);
|
||||
#else
|
||||
Tensor c_float;
|
||||
OP_REQUIRES_OK(ctx, ctx->allocate_temp(DT_FLOAT, {m, n}, &c_float));
|
||||
|
@ -86,11 +86,10 @@ class MklFusedMatMulOp : public MklDnnMatMulOpBase<T, T> {
|
||||
const int k = src_tf_shape.dim_size(dim_pair[0]);
|
||||
const int channel = weight_tf_shape.dim_size(1 - dim_pair[1]);
|
||||
|
||||
OP_REQUIRES(
|
||||
ctx, k == weight_tf_shape.dim_size(dim_pair[1]),
|
||||
errors::InvalidArgument(
|
||||
"Matrix size-incompatible: In[0]: ", src_tf_shape.DebugString(),
|
||||
", In[1]: ", weight_tf_shape.DebugString()));
|
||||
OP_REQUIRES(ctx, k == weight_tf_shape.dim_size(dim_pair[1]),
|
||||
errors::InvalidArgument("Matrix size-incompatible: In[0]: ",
|
||||
src_tf_shape.DebugString(), ", In[1]: ",
|
||||
weight_tf_shape.DebugString()));
|
||||
OP_REQUIRES(ctx, bias_tensor.shape().dim_size(0) == channel,
|
||||
errors::InvalidArgument(
|
||||
"Must provide as many biases as the channel size: ",
|
||||
@ -159,8 +158,10 @@ class MklFusedMatMulOp : public MklDnnMatMulOpBase<T, T> {
|
||||
|
||||
if (IS_SRC_REORDER_NEEDED(src_md, matmul_pd, matmul_prim)) {
|
||||
src_mkl.SetUsrMem(src_md, src_data);
|
||||
src_mkl.CheckReorderToOpMem(MEMORY_PD_WITHOUT_DATA(
|
||||
matmul_pd.get()->PRIMITIVE_DESC_SRC, this->cpu_engine_));
|
||||
src_mkl.CheckReorderToOpMem(
|
||||
MEMORY_PD_WITHOUT_DATA(matmul_pd.get()->PRIMITIVE_DESC_SRC,
|
||||
this->cpu_engine_),
|
||||
ctx);
|
||||
src_data = reinterpret_cast<T*>(src_mkl.GetOpMem().get_data_handle());
|
||||
}
|
||||
|
||||
@ -191,19 +192,23 @@ class MklFusedMatMulOp : public MklDnnMatMulOpBase<T, T> {
|
||||
weight_data = cached_weight_data;
|
||||
} else {
|
||||
weight_mkl.SetUsrMem(weight_md, weight_data);
|
||||
weight_mkl.CheckReorderToOpMem(MEMORY_PD_WITHOUT_DATA(
|
||||
matmul_pd.get()->PRIMITIVE_DESC_WEIGHTS, this->cpu_engine_));
|
||||
weight_mkl.CheckReorderToOpMem(
|
||||
MEMORY_PD_WITHOUT_DATA(matmul_pd.get()->PRIMITIVE_DESC_WEIGHTS,
|
||||
this->cpu_engine_),
|
||||
ctx);
|
||||
weight_data =
|
||||
reinterpret_cast<T*>(weight_mkl.GetOpMem().get_data_handle());
|
||||
}
|
||||
}
|
||||
|
||||
std::shared_ptr<stream> cpu_stream;
|
||||
cpu_stream.reset(CreateStream(ctx, matmul_prim->GetEngine()));
|
||||
// Execute fused matmul op.
|
||||
matmul_prim->Execute(src_data, weight_data, bias_data, dst_data);
|
||||
matmul_prim->Execute(src_data, weight_data, bias_data, dst_data,
|
||||
cpu_stream);
|
||||
} catch (mkldnn::error& e) {
|
||||
string error_msg = "Status: " + std::to_string(e.status) +
|
||||
", message: " + string(e.message) + ", in file " +
|
||||
string(__FILE__) + ":" + std::to_string(__LINE__);
|
||||
string error_msg = "Status: " + std::to_string(e.status) + ", message: " +
|
||||
string(e.message) + ", in file " + string(__FILE__) +
|
||||
":" + std::to_string(__LINE__);
|
||||
OP_REQUIRES_OK(
|
||||
ctx, errors::Aborted("Operation received an exception:", error_msg));
|
||||
}
|
||||
|
@ -75,8 +75,7 @@ class MklDnnMatMulFwdPrimitive : public MklPrimitive {
|
||||
public:
|
||||
explicit MklDnnMatMulFwdPrimitive(
|
||||
const MklDnnMatMulFwdParams& matmulFwdParams)
|
||||
: cpu_engine_(ENGINE_CPU, 0) {
|
||||
context_.fwd_stream.reset(new CPU_STREAM(cpu_engine_));
|
||||
: MklPrimitive(engine(ENGINE_CPU, 0)) {
|
||||
// Create matmul primitive
|
||||
if (context_.matmul_fwd == nullptr) {
|
||||
Setup(matmulFwdParams);
|
||||
@ -91,7 +90,18 @@ class MklDnnMatMulFwdPrimitive : public MklPrimitive {
|
||||
// - bias_data: input data buffer of bias
|
||||
// - dst_data: output data buffer of dst
|
||||
void Execute(const Tinput* src_data, const Tweight* weight_data,
|
||||
const Tbias* bias_data, Toutput* dst_data) {
|
||||
const Tbias* bias_data, Toutput* dst_data,
|
||||
std::shared_ptr<stream> fwd_stream) {
|
||||
#ifdef ENABLE_MKLDNN_THREADPOOL
|
||||
context_.src_mem->set_data_handle(
|
||||
static_cast<void*>(const_cast<Tinput*>(src_data)), *fwd_stream);
|
||||
context_.weight_mem->set_data_handle(
|
||||
static_cast<void*>(const_cast<Tweight*>(weight_data)), *fwd_stream);
|
||||
context_.bias_mem->set_data_handle(
|
||||
static_cast<void*>(const_cast<Tbias*>(bias_data)));
|
||||
context_.dst_mem->set_data_handle(static_cast<void*>(dst_data),
|
||||
*fwd_stream);
|
||||
#else
|
||||
context_.src_mem->set_data_handle(
|
||||
static_cast<void*>(const_cast<Tinput*>(src_data)));
|
||||
context_.weight_mem->set_data_handle(
|
||||
@ -99,12 +109,12 @@ class MklDnnMatMulFwdPrimitive : public MklPrimitive {
|
||||
context_.bias_mem->set_data_handle(
|
||||
static_cast<void*>(const_cast<Tbias*>(bias_data)));
|
||||
context_.dst_mem->set_data_handle(static_cast<void*>(dst_data));
|
||||
#endif // ENABLE_MKLDNN_THREADPOOL
|
||||
|
||||
#ifdef ENABLE_MKLDNN_V1
|
||||
execute_primitives(context_.fwd_primitives, context_.fwd_stream,
|
||||
context_.net_args);
|
||||
execute_primitives(context_.fwd_primitives, fwd_stream, context_.net_args);
|
||||
#else
|
||||
context_.fwd_stream->submit(context_.fwd_primitives);
|
||||
fwd_stream->submit(context_.fwd_primitives);
|
||||
#endif // ENABLE_MKLDNN_V1
|
||||
|
||||
// After execution, set data handle back
|
||||
@ -153,7 +163,6 @@ class MklDnnMatMulFwdPrimitive : public MklPrimitive {
|
||||
|
||||
// Inner-product primitive.
|
||||
std::shared_ptr<mkldnn::primitive> matmul_fwd;
|
||||
std::shared_ptr<mkldnn::stream> fwd_stream;
|
||||
std::vector<mkldnn::primitive> fwd_primitives;
|
||||
|
||||
#ifdef ENABLE_MKLDNN_V1
|
||||
@ -176,8 +185,7 @@ class MklDnnMatMulFwdPrimitive : public MklPrimitive {
|
||||
weight_md(nullptr),
|
||||
bias_md(nullptr),
|
||||
dst_md(nullptr),
|
||||
matmul_fwd(nullptr),
|
||||
fwd_stream(nullptr) {
|
||||
matmul_fwd(nullptr) {
|
||||
}
|
||||
};
|
||||
|
||||
@ -292,7 +300,6 @@ class MklDnnMatMulFwdPrimitive : public MklPrimitive {
|
||||
}
|
||||
|
||||
struct MklDnnMatMulFwdContext context_;
|
||||
engine cpu_engine_;
|
||||
};
|
||||
|
||||
template <typename T, typename Tinput, typename Tweight, typename Tbias,
|
||||
@ -439,8 +446,10 @@ class MklDnnMatMulOpBase : public OpKernel {
|
||||
|
||||
// reorder and cache the weight
|
||||
weight.SetUsrMem(weight_md, &weight_tensor);
|
||||
weight.CheckReorderToOpMem(MEMORY_PD_WITHOUT_DATA(
|
||||
matmul_fwd_pd.get()->PRIMITIVE_DESC_WEIGHTS, cpu_engine_));
|
||||
weight.CheckReorderToOpMem(
|
||||
MEMORY_PD_WITHOUT_DATA(matmul_fwd_pd.get()->PRIMITIVE_DESC_WEIGHTS,
|
||||
cpu_engine_),
|
||||
context);
|
||||
weight_data = static_cast<Tweight*>(weight.GetOpMem().get_data_handle());
|
||||
|
||||
Tensor* weight_tensor_ptr = nullptr;
|
||||
@ -544,21 +553,28 @@ template <typename T>
|
||||
class MklMatMulPrimitive : public MklPrimitive {
|
||||
public:
|
||||
explicit MklMatMulPrimitive(const MklMatMulParams& params)
|
||||
: cpu_engine_(ENGINE_CPU, 0) {
|
||||
context_.stream.reset(new CPU_STREAM(cpu_engine_));
|
||||
: MklPrimitive(engine(ENGINE_CPU, 0)) {
|
||||
// Create matmul primitive
|
||||
Setup(params);
|
||||
}
|
||||
|
||||
~MklMatMulPrimitive() {}
|
||||
|
||||
void Execute(const T* a_data, const T* b_data, T* c_data) {
|
||||
void Execute(const T* a_data, const T* b_data, T* c_data,
|
||||
std::shared_ptr<stream> stream) {
|
||||
#ifdef ENABLE_MKLDNN_THREADPOOL
|
||||
context_.a_mem->set_data_handle(static_cast<void*>(const_cast<T*>(a_data)),
|
||||
*stream);
|
||||
context_.b_mem->set_data_handle(static_cast<void*>(const_cast<T*>(b_data)),
|
||||
*stream);
|
||||
context_.c_mem->set_data_handle(static_cast<void*>(const_cast<T*>(c_data)),
|
||||
*stream);
|
||||
#else
|
||||
context_.a_mem->set_data_handle(static_cast<void*>(const_cast<T*>(a_data)));
|
||||
context_.b_mem->set_data_handle(static_cast<void*>(const_cast<T*>(b_data)));
|
||||
context_.c_mem->set_data_handle(static_cast<void*>(const_cast<T*>(c_data)));
|
||||
|
||||
execute_primitives(context_.matmul_primitives, context_.stream,
|
||||
context_.net_args);
|
||||
#endif // ENABLE_MKLDNN_THREADPOOL
|
||||
execute_primitives(context_.matmul_primitives, stream, context_.net_args);
|
||||
|
||||
// After execution, set data handle back
|
||||
context_.a_mem->set_data_handle(DummyData);
|
||||
@ -584,7 +600,6 @@ class MklMatMulPrimitive : public MklPrimitive {
|
||||
std::shared_ptr<mkldnn::memory::desc> c_md;
|
||||
|
||||
// MatMul primitive.
|
||||
std::shared_ptr<mkldnn::stream> stream;
|
||||
std::vector<mkldnn::primitive> matmul_primitives;
|
||||
std::vector<std::unordered_map<int, memory>> net_args;
|
||||
|
||||
@ -596,8 +611,7 @@ class MklMatMulPrimitive : public MklPrimitive {
|
||||
prim_desc(nullptr),
|
||||
a_md(nullptr),
|
||||
b_md(nullptr),
|
||||
c_md(nullptr),
|
||||
stream(nullptr) {}
|
||||
c_md(nullptr) {}
|
||||
};
|
||||
|
||||
void Setup(const MklMatMulParams& params) {
|
||||
@ -639,7 +653,6 @@ class MklMatMulPrimitive : public MklPrimitive {
|
||||
}
|
||||
|
||||
struct MklMatMulContext context_;
|
||||
engine cpu_engine_;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
@ -707,8 +720,8 @@ void dnnl_gemm_batch(const std::vector<bool>& transa,
|
||||
const std::vector<int>& n, const std::vector<int>& k,
|
||||
const std::vector<float>& alpha, const T* a, const T* b,
|
||||
const std::vector<float>& beta, T* c,
|
||||
const int group_count,
|
||||
const std::vector<int>& group_size) {
|
||||
const int group_count, const std::vector<int>& group_size,
|
||||
OpKernelContext* ctx = nullptr) {
|
||||
// Current BatchMatMul support in Tensorflow is narrower than the one offered
|
||||
// by MKL and MKL-DNN. Current BatchMatMul support in Tensorflow uses only 1
|
||||
// group of size equal to batch_size, and all MatMul parameters (m, n, k,
|
||||
@ -757,13 +770,15 @@ void dnnl_gemm_batch(const std::vector<bool>& transa,
|
||||
MklMatMulPrimitiveFactory<T>::Get(params, 0);
|
||||
|
||||
// Execute matmul primitive.
|
||||
matmul_prim->Execute(a, b, c);
|
||||
std::shared_ptr<stream> cpu_stream;
|
||||
cpu_stream.reset(CreateStream(ctx, matmul_prim->GetEngine()));
|
||||
matmul_prim->Execute(a, b, c, cpu_stream);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void dnnl_gemm(char transa, char transb, int64_t m, int64_t n, int64_t k,
|
||||
float alpha, const T* a, int64_t lda, const T* b, int64_t ldb,
|
||||
float beta, T* c, int64_t ldc) {
|
||||
float beta, T* c, int64_t ldc, OpKernelContext* ctx = nullptr) {
|
||||
using dims = mkldnn::memory::dims;
|
||||
|
||||
// Prepare strides based on the transa and transb flags: transposed
|
||||
@ -786,7 +801,9 @@ void dnnl_gemm(char transa, char transb, int64_t m, int64_t n, int64_t k,
|
||||
MklMatMulPrimitiveFactory<T>::Get(params, 0);
|
||||
|
||||
// Execute matmul primitive.
|
||||
matmul_prim->Execute(a, b, c);
|
||||
std::shared_ptr<stream> cpu_stream;
|
||||
cpu_stream.reset(CreateStream(ctx, matmul_prim->GetEngine()));
|
||||
matmul_prim->Execute(a, b, c, cpu_stream);
|
||||
}
|
||||
|
||||
} // anonymous namespace
|
||||
|
@ -245,8 +245,10 @@ class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Toutput> {
|
||||
Tinput* src_data = nullptr;
|
||||
if (IS_SRC_REORDER_NEEDED(src_md, matmul_fwd_pd, matmul_fwd)) {
|
||||
src.SetUsrMem(src_md, &src_tensor);
|
||||
src.CheckReorderToOpMem(MEMORY_PD_WITHOUT_DATA(
|
||||
matmul_fwd_pd.get()->PRIMITIVE_DESC_SRC, this->cpu_engine_));
|
||||
src.CheckReorderToOpMem(
|
||||
MEMORY_PD_WITHOUT_DATA(matmul_fwd_pd.get()->PRIMITIVE_DESC_SRC,
|
||||
this->cpu_engine_),
|
||||
context);
|
||||
src_data = static_cast<Tinput*>(src.GetOpMem().get_data_handle());
|
||||
} else {
|
||||
src_data = static_cast<Tinput*>(
|
||||
@ -279,8 +281,11 @@ class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Toutput> {
|
||||
|
||||
if (!is_weight_cached) {
|
||||
weight.SetUsrMem(weight_md, &weight_tensor);
|
||||
weight.CheckReorderToOpMem(MEMORY_PD_WITHOUT_DATA(
|
||||
matmul_fwd_pd.get()->PRIMITIVE_DESC_WEIGHTS, this->cpu_engine_));
|
||||
weight.CheckReorderToOpMem(
|
||||
MEMORY_PD_WITHOUT_DATA(
|
||||
matmul_fwd_pd.get()->PRIMITIVE_DESC_WEIGHTS,
|
||||
this->cpu_engine_),
|
||||
context);
|
||||
weight_data =
|
||||
static_cast<Tweight*>(weight.GetOpMem().get_data_handle());
|
||||
}
|
||||
@ -290,10 +295,13 @@ class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Toutput> {
|
||||
const_cast<Tweight*>(weight_tensor.flat<Tweight>().data()));
|
||||
}
|
||||
|
||||
std::shared_ptr<stream> cpu_stream;
|
||||
cpu_stream.reset(CreateStream(context, matmul_fwd->GetEngine()));
|
||||
// Execute inner-product
|
||||
Tbias* bias_data = this->GetBiasHandle(context, matmul_fwd_pd,
|
||||
bias_tensor, weight_tensor);
|
||||
matmul_fwd->Execute(src_data, weight_data, bias_data, dst_data);
|
||||
Tbias* bias_data = this->GetBiasHandle(
|
||||
context, matmul_fwd_pd, bias_tensor, weight_tensor, cpu_stream);
|
||||
matmul_fwd->Execute(src_data, weight_data, bias_data, dst_data,
|
||||
cpu_stream);
|
||||
} catch (mkldnn::error& e) {
|
||||
string error_msg = tensorflow::strings::StrCat(
|
||||
"Status: ", e.status, ", message: ", string(e.message), ", in file ",
|
||||
@ -393,7 +401,8 @@ class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Toutput> {
|
||||
OpKernelContext* context,
|
||||
std::shared_ptr<mkldnn::inner_product_forward::primitive_desc>&
|
||||
mkldnn_matmul_fwd_pd,
|
||||
const Tensor& bias_tensor, const Tensor& weight_tensor) {
|
||||
const Tensor& bias_tensor, const Tensor& weight_tensor,
|
||||
std::shared_ptr<stream> reorder_stream) {
|
||||
// If the bias is qint32, it means the bias is already converted offline.
|
||||
// and it can be added to matmul output directly.
|
||||
if (std::is_same<Tbias, qint32>::value) {
|
||||
@ -449,7 +458,6 @@ class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Toutput> {
|
||||
std::vector<float> scales;
|
||||
scales.push_back(out_scale);
|
||||
mkldnn::primitive_attr bias_attr;
|
||||
stream reorder_stream = CPU_STREAM(this->cpu_engine_);
|
||||
bias_attr.set_output_scales(0, scales);
|
||||
|
||||
void* bias_buf = static_cast<void*>(
|
||||
@ -468,14 +476,14 @@ class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Toutput> {
|
||||
{MKLDNN_ARG_FROM, *input_bias_},
|
||||
{ MKLDNN_ARG_TO,
|
||||
*scaled_bias_ }};
|
||||
net.at(0).execute(reorder_stream, reorder_net_args);
|
||||
net.at(0).execute(*reorder_stream, reorder_net_args);
|
||||
#else
|
||||
auto reorder_desc = mkldnn::reorder::primitive_desc(
|
||||
input_bias_->get_primitive_desc(),
|
||||
scaled_bias_->get_primitive_desc(), bias_attr);
|
||||
net.push_back(
|
||||
mkldnn::reorder(reorder_desc, *input_bias_, *scaled_bias_));
|
||||
reorder_stream.submit(net).wait();
|
||||
reorder_stream->submit(net).wait();
|
||||
#endif // ENABLE_MKLDNN_V1
|
||||
|
||||
return reinterpret_cast<Tbias*>(scaled_bias_->get_data_handle());
|
||||
|
Loading…
Reference in New Issue
Block a user