matmul,qmatmul and fusedops support for threadpool api.

This commit is contained in:
Srinivasan Narayanamoorthy 2020-06-07 15:48:07 -07:00
parent 735bb0fc23
commit bcd0f459a1
4 changed files with 97 additions and 59 deletions

View File

@ -62,11 +62,11 @@ class MklMatMulOp : public OpKernel {
dim_pair[0].first = transpose_a_ ? 0 : 1; dim_pair[0].first = transpose_a_ ? 0 : 1;
dim_pair[0].second = transpose_b_ ? 1 : 0; dim_pair[0].second = transpose_b_ ? 1 : 0;
OP_REQUIRES( OP_REQUIRES(ctx,
ctx, a.dim_size(dim_pair[0].first) == b.dim_size(dim_pair[0].second), a.dim_size(dim_pair[0].first) == b.dim_size(dim_pair[0].second),
errors::InvalidArgument( errors::InvalidArgument("Matrix size-incompatible: In[0]: ",
"Matrix size-incompatible: In[0]: ", a.shape().DebugString(), a.shape().DebugString(), ", In[1]: ",
", In[1]: ", b.shape().DebugString())); b.shape().DebugString()));
int a_dim_remaining = 1 - dim_pair[0].first; int a_dim_remaining = 1 - dim_pair[0].first;
int b_dim_remaining = 1 - dim_pair[0].second; int b_dim_remaining = 1 - dim_pair[0].second;
TensorShape out_shape( TensorShape out_shape(
@ -158,9 +158,17 @@ class MklMatMulOp : public OpKernel {
#ifdef ENABLE_MKLDNN_V1 #ifdef ENABLE_MKLDNN_V1
char char_transa = transa ? 'T' : 'N'; char char_transa = transa ? 'T' : 'N';
char char_transb = transb ? 'T' : 'N'; char char_transb = transb ? 'T' : 'N';
VLOG(2) << "MKL DNN SGEMM CALLED"; VLOG(2) << "MKL DNN SGEMM called";
#ifdef ENABLE_MKLDNN_THREADPOOL
auto eigen_tp =
MklDnnThreadPoolWrapper::GetInstance().CreateThreadPoolPtr(ctx);
dnnl_sgemm_tp(char_transa, char_transb, m, n, k, alpha, a, lda, b, ldb,
beta, c, ldc, eigen_tp);
#else
dnnl_sgemm(char_transa, char_transb, m, n, k, alpha, a, lda, b, ldb, beta, dnnl_sgemm(char_transa, char_transb, m, n, k, alpha, a, lda, b, ldb, beta,
c, ldc); c, ldc);
#endif // ENABLE_MKLDNN_THREADPOOL
#else #else
// TODO(intel-tf): Remove this after TF2.3 fork. // TODO(intel-tf): Remove this after TF2.3 fork.
cblas_sgemm(CblasRowMajor, transa ? CblasTrans : CblasNoTrans, cblas_sgemm(CblasRowMajor, transa ? CblasTrans : CblasNoTrans,
@ -182,7 +190,7 @@ class MklMatMulOp : public OpKernel {
#ifdef ENABLE_MKLDNN_V1 #ifdef ENABLE_MKLDNN_V1
const char ftrans[] = {'N', 'T', 'C'}; const char ftrans[] = {'N', 'T', 'C'};
dnnl_gemm<bfloat16>(ftrans[index_transa], ftrans[index_transb], m, n, k, dnnl_gemm<bfloat16>(ftrans[index_transa], ftrans[index_transb], m, n, k,
alpha, a, lda, b, ldb, beta, c, ldc); alpha, a, lda, b, ldb, beta, c, ldc, ctx);
#else #else
Tensor c_float; Tensor c_float;
OP_REQUIRES_OK(ctx, ctx->allocate_temp(DT_FLOAT, {m, n}, &c_float)); OP_REQUIRES_OK(ctx, ctx->allocate_temp(DT_FLOAT, {m, n}, &c_float));

View File

@ -86,11 +86,10 @@ class MklFusedMatMulOp : public MklDnnMatMulOpBase<T, T> {
const int k = src_tf_shape.dim_size(dim_pair[0]); const int k = src_tf_shape.dim_size(dim_pair[0]);
const int channel = weight_tf_shape.dim_size(1 - dim_pair[1]); const int channel = weight_tf_shape.dim_size(1 - dim_pair[1]);
OP_REQUIRES( OP_REQUIRES(ctx, k == weight_tf_shape.dim_size(dim_pair[1]),
ctx, k == weight_tf_shape.dim_size(dim_pair[1]), errors::InvalidArgument("Matrix size-incompatible: In[0]: ",
errors::InvalidArgument( src_tf_shape.DebugString(), ", In[1]: ",
"Matrix size-incompatible: In[0]: ", src_tf_shape.DebugString(), weight_tf_shape.DebugString()));
", In[1]: ", weight_tf_shape.DebugString()));
OP_REQUIRES(ctx, bias_tensor.shape().dim_size(0) == channel, OP_REQUIRES(ctx, bias_tensor.shape().dim_size(0) == channel,
errors::InvalidArgument( errors::InvalidArgument(
"Must provide as many biases as the channel size: ", "Must provide as many biases as the channel size: ",
@ -159,8 +158,10 @@ class MklFusedMatMulOp : public MklDnnMatMulOpBase<T, T> {
if (IS_SRC_REORDER_NEEDED(src_md, matmul_pd, matmul_prim)) { if (IS_SRC_REORDER_NEEDED(src_md, matmul_pd, matmul_prim)) {
src_mkl.SetUsrMem(src_md, src_data); src_mkl.SetUsrMem(src_md, src_data);
src_mkl.CheckReorderToOpMem(MEMORY_PD_WITHOUT_DATA( src_mkl.CheckReorderToOpMem(
matmul_pd.get()->PRIMITIVE_DESC_SRC, this->cpu_engine_)); MEMORY_PD_WITHOUT_DATA(matmul_pd.get()->PRIMITIVE_DESC_SRC,
this->cpu_engine_),
ctx);
src_data = reinterpret_cast<T*>(src_mkl.GetOpMem().get_data_handle()); src_data = reinterpret_cast<T*>(src_mkl.GetOpMem().get_data_handle());
} }
@ -191,19 +192,23 @@ class MklFusedMatMulOp : public MklDnnMatMulOpBase<T, T> {
weight_data = cached_weight_data; weight_data = cached_weight_data;
} else { } else {
weight_mkl.SetUsrMem(weight_md, weight_data); weight_mkl.SetUsrMem(weight_md, weight_data);
weight_mkl.CheckReorderToOpMem(MEMORY_PD_WITHOUT_DATA( weight_mkl.CheckReorderToOpMem(
matmul_pd.get()->PRIMITIVE_DESC_WEIGHTS, this->cpu_engine_)); MEMORY_PD_WITHOUT_DATA(matmul_pd.get()->PRIMITIVE_DESC_WEIGHTS,
this->cpu_engine_),
ctx);
weight_data = weight_data =
reinterpret_cast<T*>(weight_mkl.GetOpMem().get_data_handle()); reinterpret_cast<T*>(weight_mkl.GetOpMem().get_data_handle());
} }
} }
std::shared_ptr<stream> cpu_stream;
cpu_stream.reset(CreateStream(ctx, matmul_prim->GetEngine()));
// Execute fused matmul op. // Execute fused matmul op.
matmul_prim->Execute(src_data, weight_data, bias_data, dst_data); matmul_prim->Execute(src_data, weight_data, bias_data, dst_data,
cpu_stream);
} catch (mkldnn::error& e) { } catch (mkldnn::error& e) {
string error_msg = "Status: " + std::to_string(e.status) + string error_msg = "Status: " + std::to_string(e.status) + ", message: " +
", message: " + string(e.message) + ", in file " + string(e.message) + ", in file " + string(__FILE__) +
string(__FILE__) + ":" + std::to_string(__LINE__); ":" + std::to_string(__LINE__);
OP_REQUIRES_OK( OP_REQUIRES_OK(
ctx, errors::Aborted("Operation received an exception:", error_msg)); ctx, errors::Aborted("Operation received an exception:", error_msg));
} }

View File

@ -75,8 +75,7 @@ class MklDnnMatMulFwdPrimitive : public MklPrimitive {
public: public:
explicit MklDnnMatMulFwdPrimitive( explicit MklDnnMatMulFwdPrimitive(
const MklDnnMatMulFwdParams& matmulFwdParams) const MklDnnMatMulFwdParams& matmulFwdParams)
: cpu_engine_(ENGINE_CPU, 0) { : MklPrimitive(engine(ENGINE_CPU, 0)) {
context_.fwd_stream.reset(new CPU_STREAM(cpu_engine_));
// Create matmul primitive // Create matmul primitive
if (context_.matmul_fwd == nullptr) { if (context_.matmul_fwd == nullptr) {
Setup(matmulFwdParams); Setup(matmulFwdParams);
@ -91,7 +90,18 @@ class MklDnnMatMulFwdPrimitive : public MklPrimitive {
// - bias_data: input data buffer of bias // - bias_data: input data buffer of bias
// - dst_data: output data buffer of dst // - dst_data: output data buffer of dst
void Execute(const Tinput* src_data, const Tweight* weight_data, void Execute(const Tinput* src_data, const Tweight* weight_data,
const Tbias* bias_data, Toutput* dst_data) { const Tbias* bias_data, Toutput* dst_data,
std::shared_ptr<stream> fwd_stream) {
#ifdef ENABLE_MKLDNN_THREADPOOL
context_.src_mem->set_data_handle(
static_cast<void*>(const_cast<Tinput*>(src_data)), *fwd_stream);
context_.weight_mem->set_data_handle(
static_cast<void*>(const_cast<Tweight*>(weight_data)), *fwd_stream);
context_.bias_mem->set_data_handle(
static_cast<void*>(const_cast<Tbias*>(bias_data)));
context_.dst_mem->set_data_handle(static_cast<void*>(dst_data),
*fwd_stream);
#else
context_.src_mem->set_data_handle( context_.src_mem->set_data_handle(
static_cast<void*>(const_cast<Tinput*>(src_data))); static_cast<void*>(const_cast<Tinput*>(src_data)));
context_.weight_mem->set_data_handle( context_.weight_mem->set_data_handle(
@ -99,12 +109,12 @@ class MklDnnMatMulFwdPrimitive : public MklPrimitive {
context_.bias_mem->set_data_handle( context_.bias_mem->set_data_handle(
static_cast<void*>(const_cast<Tbias*>(bias_data))); static_cast<void*>(const_cast<Tbias*>(bias_data)));
context_.dst_mem->set_data_handle(static_cast<void*>(dst_data)); context_.dst_mem->set_data_handle(static_cast<void*>(dst_data));
#endif // ENABLE_MKLDNN_THREADPOOL
#ifdef ENABLE_MKLDNN_V1 #ifdef ENABLE_MKLDNN_V1
execute_primitives(context_.fwd_primitives, context_.fwd_stream, execute_primitives(context_.fwd_primitives, fwd_stream, context_.net_args);
context_.net_args);
#else #else
context_.fwd_stream->submit(context_.fwd_primitives); fwd_stream->submit(context_.fwd_primitives);
#endif // ENABLE_MKLDNN_V1 #endif // ENABLE_MKLDNN_V1
// After execution, set data handle back // After execution, set data handle back
@ -153,7 +163,6 @@ class MklDnnMatMulFwdPrimitive : public MklPrimitive {
// Inner-product primitive. // Inner-product primitive.
std::shared_ptr<mkldnn::primitive> matmul_fwd; std::shared_ptr<mkldnn::primitive> matmul_fwd;
std::shared_ptr<mkldnn::stream> fwd_stream;
std::vector<mkldnn::primitive> fwd_primitives; std::vector<mkldnn::primitive> fwd_primitives;
#ifdef ENABLE_MKLDNN_V1 #ifdef ENABLE_MKLDNN_V1
@ -176,8 +185,7 @@ class MklDnnMatMulFwdPrimitive : public MklPrimitive {
weight_md(nullptr), weight_md(nullptr),
bias_md(nullptr), bias_md(nullptr),
dst_md(nullptr), dst_md(nullptr),
matmul_fwd(nullptr), matmul_fwd(nullptr) {
fwd_stream(nullptr) {
} }
}; };
@ -292,7 +300,6 @@ class MklDnnMatMulFwdPrimitive : public MklPrimitive {
} }
struct MklDnnMatMulFwdContext context_; struct MklDnnMatMulFwdContext context_;
engine cpu_engine_;
}; };
template <typename T, typename Tinput, typename Tweight, typename Tbias, template <typename T, typename Tinput, typename Tweight, typename Tbias,
@ -439,8 +446,10 @@ class MklDnnMatMulOpBase : public OpKernel {
// reorder and cache the weight // reorder and cache the weight
weight.SetUsrMem(weight_md, &weight_tensor); weight.SetUsrMem(weight_md, &weight_tensor);
weight.CheckReorderToOpMem(MEMORY_PD_WITHOUT_DATA( weight.CheckReorderToOpMem(
matmul_fwd_pd.get()->PRIMITIVE_DESC_WEIGHTS, cpu_engine_)); MEMORY_PD_WITHOUT_DATA(matmul_fwd_pd.get()->PRIMITIVE_DESC_WEIGHTS,
cpu_engine_),
context);
weight_data = static_cast<Tweight*>(weight.GetOpMem().get_data_handle()); weight_data = static_cast<Tweight*>(weight.GetOpMem().get_data_handle());
Tensor* weight_tensor_ptr = nullptr; Tensor* weight_tensor_ptr = nullptr;
@ -544,21 +553,28 @@ template <typename T>
class MklMatMulPrimitive : public MklPrimitive { class MklMatMulPrimitive : public MklPrimitive {
public: public:
explicit MklMatMulPrimitive(const MklMatMulParams& params) explicit MklMatMulPrimitive(const MklMatMulParams& params)
: cpu_engine_(ENGINE_CPU, 0) { : MklPrimitive(engine(ENGINE_CPU, 0)) {
context_.stream.reset(new CPU_STREAM(cpu_engine_));
// Create matmul primitive // Create matmul primitive
Setup(params); Setup(params);
} }
~MklMatMulPrimitive() {} ~MklMatMulPrimitive() {}
void Execute(const T* a_data, const T* b_data, T* c_data) { void Execute(const T* a_data, const T* b_data, T* c_data,
std::shared_ptr<stream> stream) {
#ifdef ENABLE_MKLDNN_THREADPOOL
context_.a_mem->set_data_handle(static_cast<void*>(const_cast<T*>(a_data)),
*stream);
context_.b_mem->set_data_handle(static_cast<void*>(const_cast<T*>(b_data)),
*stream);
context_.c_mem->set_data_handle(static_cast<void*>(const_cast<T*>(c_data)),
*stream);
#else
context_.a_mem->set_data_handle(static_cast<void*>(const_cast<T*>(a_data))); context_.a_mem->set_data_handle(static_cast<void*>(const_cast<T*>(a_data)));
context_.b_mem->set_data_handle(static_cast<void*>(const_cast<T*>(b_data))); context_.b_mem->set_data_handle(static_cast<void*>(const_cast<T*>(b_data)));
context_.c_mem->set_data_handle(static_cast<void*>(const_cast<T*>(c_data))); context_.c_mem->set_data_handle(static_cast<void*>(const_cast<T*>(c_data)));
#endif // ENABLE_MKLDNN_THREADPOOL
execute_primitives(context_.matmul_primitives, context_.stream, execute_primitives(context_.matmul_primitives, stream, context_.net_args);
context_.net_args);
// After execution, set data handle back // After execution, set data handle back
context_.a_mem->set_data_handle(DummyData); context_.a_mem->set_data_handle(DummyData);
@ -584,7 +600,6 @@ class MklMatMulPrimitive : public MklPrimitive {
std::shared_ptr<mkldnn::memory::desc> c_md; std::shared_ptr<mkldnn::memory::desc> c_md;
// MatMul primitive. // MatMul primitive.
std::shared_ptr<mkldnn::stream> stream;
std::vector<mkldnn::primitive> matmul_primitives; std::vector<mkldnn::primitive> matmul_primitives;
std::vector<std::unordered_map<int, memory>> net_args; std::vector<std::unordered_map<int, memory>> net_args;
@ -596,8 +611,7 @@ class MklMatMulPrimitive : public MklPrimitive {
prim_desc(nullptr), prim_desc(nullptr),
a_md(nullptr), a_md(nullptr),
b_md(nullptr), b_md(nullptr),
c_md(nullptr), c_md(nullptr) {}
stream(nullptr) {}
}; };
void Setup(const MklMatMulParams& params) { void Setup(const MklMatMulParams& params) {
@ -639,7 +653,6 @@ class MklMatMulPrimitive : public MklPrimitive {
} }
struct MklMatMulContext context_; struct MklMatMulContext context_;
engine cpu_engine_;
}; };
template <typename T> template <typename T>
@ -707,8 +720,8 @@ void dnnl_gemm_batch(const std::vector<bool>& transa,
const std::vector<int>& n, const std::vector<int>& k, const std::vector<int>& n, const std::vector<int>& k,
const std::vector<float>& alpha, const T* a, const T* b, const std::vector<float>& alpha, const T* a, const T* b,
const std::vector<float>& beta, T* c, const std::vector<float>& beta, T* c,
const int group_count, const int group_count, const std::vector<int>& group_size,
const std::vector<int>& group_size) { OpKernelContext* ctx = nullptr) {
// Current BatchMatMul support in Tensorflow is narrower than the one offered // Current BatchMatMul support in Tensorflow is narrower than the one offered
// by MKL and MKL-DNN. Current BatchMatMul support in Tensorflow uses only 1 // by MKL and MKL-DNN. Current BatchMatMul support in Tensorflow uses only 1
// group of size equal to batch_size, and all MatMul parameters (m, n, k, // group of size equal to batch_size, and all MatMul parameters (m, n, k,
@ -757,13 +770,15 @@ void dnnl_gemm_batch(const std::vector<bool>& transa,
MklMatMulPrimitiveFactory<T>::Get(params, 0); MklMatMulPrimitiveFactory<T>::Get(params, 0);
// Execute matmul primitive. // Execute matmul primitive.
matmul_prim->Execute(a, b, c); std::shared_ptr<stream> cpu_stream;
cpu_stream.reset(CreateStream(ctx, matmul_prim->GetEngine()));
matmul_prim->Execute(a, b, c, cpu_stream);
} }
template <typename T> template <typename T>
void dnnl_gemm(char transa, char transb, int64_t m, int64_t n, int64_t k, void dnnl_gemm(char transa, char transb, int64_t m, int64_t n, int64_t k,
float alpha, const T* a, int64_t lda, const T* b, int64_t ldb, float alpha, const T* a, int64_t lda, const T* b, int64_t ldb,
float beta, T* c, int64_t ldc) { float beta, T* c, int64_t ldc, OpKernelContext* ctx = nullptr) {
using dims = mkldnn::memory::dims; using dims = mkldnn::memory::dims;
// Prepare strides based on the transa and transb flags: transposed // Prepare strides based on the transa and transb flags: transposed
@ -786,7 +801,9 @@ void dnnl_gemm(char transa, char transb, int64_t m, int64_t n, int64_t k,
MklMatMulPrimitiveFactory<T>::Get(params, 0); MklMatMulPrimitiveFactory<T>::Get(params, 0);
// Execute matmul primitive. // Execute matmul primitive.
matmul_prim->Execute(a, b, c); std::shared_ptr<stream> cpu_stream;
cpu_stream.reset(CreateStream(ctx, matmul_prim->GetEngine()));
matmul_prim->Execute(a, b, c, cpu_stream);
} }
} // anonymous namespace } // anonymous namespace

View File

@ -245,8 +245,10 @@ class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Toutput> {
Tinput* src_data = nullptr; Tinput* src_data = nullptr;
if (IS_SRC_REORDER_NEEDED(src_md, matmul_fwd_pd, matmul_fwd)) { if (IS_SRC_REORDER_NEEDED(src_md, matmul_fwd_pd, matmul_fwd)) {
src.SetUsrMem(src_md, &src_tensor); src.SetUsrMem(src_md, &src_tensor);
src.CheckReorderToOpMem(MEMORY_PD_WITHOUT_DATA( src.CheckReorderToOpMem(
matmul_fwd_pd.get()->PRIMITIVE_DESC_SRC, this->cpu_engine_)); MEMORY_PD_WITHOUT_DATA(matmul_fwd_pd.get()->PRIMITIVE_DESC_SRC,
this->cpu_engine_),
context);
src_data = static_cast<Tinput*>(src.GetOpMem().get_data_handle()); src_data = static_cast<Tinput*>(src.GetOpMem().get_data_handle());
} else { } else {
src_data = static_cast<Tinput*>( src_data = static_cast<Tinput*>(
@ -279,8 +281,11 @@ class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Toutput> {
if (!is_weight_cached) { if (!is_weight_cached) {
weight.SetUsrMem(weight_md, &weight_tensor); weight.SetUsrMem(weight_md, &weight_tensor);
weight.CheckReorderToOpMem(MEMORY_PD_WITHOUT_DATA( weight.CheckReorderToOpMem(
matmul_fwd_pd.get()->PRIMITIVE_DESC_WEIGHTS, this->cpu_engine_)); MEMORY_PD_WITHOUT_DATA(
matmul_fwd_pd.get()->PRIMITIVE_DESC_WEIGHTS,
this->cpu_engine_),
context);
weight_data = weight_data =
static_cast<Tweight*>(weight.GetOpMem().get_data_handle()); static_cast<Tweight*>(weight.GetOpMem().get_data_handle());
} }
@ -290,10 +295,13 @@ class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Toutput> {
const_cast<Tweight*>(weight_tensor.flat<Tweight>().data())); const_cast<Tweight*>(weight_tensor.flat<Tweight>().data()));
} }
std::shared_ptr<stream> cpu_stream;
cpu_stream.reset(CreateStream(context, matmul_fwd->GetEngine()));
// Execute inner-product // Execute inner-product
Tbias* bias_data = this->GetBiasHandle(context, matmul_fwd_pd, Tbias* bias_data = this->GetBiasHandle(
bias_tensor, weight_tensor); context, matmul_fwd_pd, bias_tensor, weight_tensor, cpu_stream);
matmul_fwd->Execute(src_data, weight_data, bias_data, dst_data); matmul_fwd->Execute(src_data, weight_data, bias_data, dst_data,
cpu_stream);
} catch (mkldnn::error& e) { } catch (mkldnn::error& e) {
string error_msg = tensorflow::strings::StrCat( string error_msg = tensorflow::strings::StrCat(
"Status: ", e.status, ", message: ", string(e.message), ", in file ", "Status: ", e.status, ", message: ", string(e.message), ", in file ",
@ -393,7 +401,8 @@ class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Toutput> {
OpKernelContext* context, OpKernelContext* context,
std::shared_ptr<mkldnn::inner_product_forward::primitive_desc>& std::shared_ptr<mkldnn::inner_product_forward::primitive_desc>&
mkldnn_matmul_fwd_pd, mkldnn_matmul_fwd_pd,
const Tensor& bias_tensor, const Tensor& weight_tensor) { const Tensor& bias_tensor, const Tensor& weight_tensor,
std::shared_ptr<stream> reorder_stream) {
// If the bias is qint32, it means the bias is already converted offline. // If the bias is qint32, it means the bias is already converted offline.
// and it can be added to matmul output directly. // and it can be added to matmul output directly.
if (std::is_same<Tbias, qint32>::value) { if (std::is_same<Tbias, qint32>::value) {
@ -449,7 +458,6 @@ class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Toutput> {
std::vector<float> scales; std::vector<float> scales;
scales.push_back(out_scale); scales.push_back(out_scale);
mkldnn::primitive_attr bias_attr; mkldnn::primitive_attr bias_attr;
stream reorder_stream = CPU_STREAM(this->cpu_engine_);
bias_attr.set_output_scales(0, scales); bias_attr.set_output_scales(0, scales);
void* bias_buf = static_cast<void*>( void* bias_buf = static_cast<void*>(
@ -468,14 +476,14 @@ class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Toutput> {
{MKLDNN_ARG_FROM, *input_bias_}, {MKLDNN_ARG_FROM, *input_bias_},
{ MKLDNN_ARG_TO, { MKLDNN_ARG_TO,
*scaled_bias_ }}; *scaled_bias_ }};
net.at(0).execute(reorder_stream, reorder_net_args); net.at(0).execute(*reorder_stream, reorder_net_args);
#else #else
auto reorder_desc = mkldnn::reorder::primitive_desc( auto reorder_desc = mkldnn::reorder::primitive_desc(
input_bias_->get_primitive_desc(), input_bias_->get_primitive_desc(),
scaled_bias_->get_primitive_desc(), bias_attr); scaled_bias_->get_primitive_desc(), bias_attr);
net.push_back( net.push_back(
mkldnn::reorder(reorder_desc, *input_bias_, *scaled_bias_)); mkldnn::reorder(reorder_desc, *input_bias_, *scaled_bias_));
reorder_stream.submit(net).wait(); reorder_stream->submit(net).wait();
#endif // ENABLE_MKLDNN_V1 #endif // ENABLE_MKLDNN_V1
return reinterpret_cast<Tbias*>(scaled_bias_->get_data_handle()); return reinterpret_cast<Tbias*>(scaled_bias_->get_data_handle());