diff --git a/tensorflow/cc/BUILD b/tensorflow/cc/BUILD index 42fa139282a..8810b8731ae 100644 --- a/tensorflow/cc/BUILD +++ b/tensorflow/cc/BUILD @@ -388,6 +388,16 @@ tf_gen_op_wrappers_cc( visibility = ["//tensorflow:internal"], ) +tf_gen_op_wrappers_cc( + name = "functional_ops", + include_internal_ops = 1, + op_lib_names = [ + "functional_ops", + ], + pkg = "//tensorflow/core", + visibility = ["//tensorflow:internal"], +) + tf_gen_op_wrappers_cc( name = "resource_variable_ops", include_internal_ops = 1, diff --git a/tensorflow/compiler/xla/literal_util.h b/tensorflow/compiler/xla/literal_util.h index ae3d43e56c7..3a6d21979e7 100644 --- a/tensorflow/compiler/xla/literal_util.h +++ b/tensorflow/compiler/xla/literal_util.h @@ -33,6 +33,7 @@ limitations under the License. #include "tensorflow/compiler/xla/primitive_util.h" #include "tensorflow/compiler/xla/ptr_util.h" #include "tensorflow/compiler/xla/shape_util.h" +#include "tensorflow/compiler/xla/status_macros.h" #include "tensorflow/compiler/xla/types.h" #include "tensorflow/compiler/xla/util.h" #include "tensorflow/compiler/xla/xla_data.pb.h" @@ -339,6 +340,14 @@ class LiteralUtil { const Layout& layout, Literal* literal); + // Populates literal values by calling the generator function for every cell + // in the literal object. + template + static Status Populate( + Literal* literal, + const std::function indexes)>& + generator); + // Creates a Literal of the given dimensions with all elements set to the // given value. template @@ -992,6 +1001,43 @@ template literal); } +template +/* static */ Status LiteralUtil::Populate( + Literal* literal, + const std::function indexes)>& + generator) { + const Shape& shape = literal->shape(); + int64 rank = ShapeUtil::Rank(shape); + TF_RET_CHECK(shape.element_type() == + primitive_util::NativeToPrimitiveType()); + tensorflow::protobuf::RepeatedField* data = + GetMutableRepeatedField(literal); + if (rank > 0) { + std::vector base(rank, 0); + std::vector step(rank, 1); + std::vector minor_scan_indexes(rank, 0); + int64 minor_dimension = shape.layout().minor_to_major()[0]; + int64 minor_dimension_size = + ShapeUtil::GetDimension(shape, minor_dimension); + + step[minor_dimension] = minor_dimension_size; + auto init_function = [&](const std::vector& indexes) { + int64 index = LinearIndex(*literal, indexes); + std::copy(indexes.begin(), indexes.end(), minor_scan_indexes.begin()); + for (int64 i = 0; i < minor_dimension_size; ++i) { + minor_scan_indexes[minor_dimension] = i; + data->Set(index + i, generator(minor_scan_indexes)); + } + return true; + }; + ShapeUtil::ForEachIndex(shape, base, AsInt64Slice(shape.dimensions()), step, + init_function); + } else { + data->Set(0, generator({})); + } + return Status::OK(); +} + template /* static */ void LiteralUtil::PopulateWithValue( NativeT value, tensorflow::gtl::ArraySlice dimensions, diff --git a/tensorflow/compiler/xla/reference_util.h b/tensorflow/compiler/xla/reference_util.h index 03276121294..f58f0bdc9f5 100644 --- a/tensorflow/compiler/xla/reference_util.h +++ b/tensorflow/compiler/xla/reference_util.h @@ -422,7 +422,7 @@ class ReferenceUtil { static std::unique_ptr> ApplyElementwise2D( F&& f, const Array2D& array1, const Array2D&... arrays) { AssertSameSize2D(array1, arrays...); - auto result = MakeUnique>(array1.n1(), array1.n1()); + auto result = MakeUnique>(array1.n1(), array1.n2()); for (int64 i = 0; i < array1.n1(); ++i) { for (int64 j = 0; j < array1.n2(); ++j) { (*result)(i, j) = f(array1(i, j), arrays(i, j)...); diff --git a/tensorflow/compiler/xla/service/BUILD b/tensorflow/compiler/xla/service/BUILD index bdb69b6e55e..65b49d99cca 100644 --- a/tensorflow/compiler/xla/service/BUILD +++ b/tensorflow/compiler/xla/service/BUILD @@ -80,8 +80,6 @@ cc_library( ":hlo_query", "//tensorflow/compiler/xla:literal_util", "//tensorflow/compiler/xla:shape_util", - "//tensorflow/compiler/xla:status", - "//tensorflow/compiler/xla:status_macros", "//tensorflow/compiler/xla:statusor", "//tensorflow/compiler/xla:types", "//tensorflow/compiler/xla:util", @@ -666,8 +664,8 @@ cc_library( ], deps = [ ":buffer_liveness", - ":heap_simulator", ":hlo", + ":hlo_ordering", ":logical_buffer", ":tuple_points_to_analysis", "//tensorflow/compiler/xla:shape_util", @@ -707,51 +705,38 @@ cc_test( ], ) -cc_library( - name = "heap_simulator", - srcs = [ - "heap_simulator.cc", - ], - hdrs = [ - "heap_simulator.h", - ], - deps = [ - ":hlo", - ":liveness_util", - ":logical_buffer", - ":tuple_points_to_analysis", - "//tensorflow/compiler/xla:statusor", - "//tensorflow/compiler/xla:util", - "//tensorflow/core:lib", - ], -) - cc_test( name = "heap_simulator_test", srcs = ["heap_simulator_test.cc"], deps = [ - ":heap_simulator", ":hlo", + ":hlo_ordering", ":logical_buffer", ":tuple_points_to_analysis", + "//tensorflow/compiler/xla:literal_util", "//tensorflow/compiler/xla:status_macros", "//tensorflow/compiler/xla/tests:hlo_test_base", + "//tensorflow/core:lib", "//tensorflow/core:test_main", ], ) +# The hlo_ordering library contains both hlo_ordering and heap_simulator because +# they are mutually dependent. cc_library( name = "hlo_ordering", srcs = [ + "heap_simulator.cc", "hlo_ordering.cc", ], hdrs = [ + "heap_simulator.h", "hlo_ordering.h", ], deps = [ ":call_graph", - ":heap_simulator", ":hlo", + ":liveness_util", ":logical_buffer", ":tuple_points_to_analysis", "//tensorflow/compiler/xla:shape_util", @@ -1436,6 +1421,7 @@ cc_test( "//tensorflow/compiler/xla:util", "//tensorflow/compiler/xla:xla_data_proto", "//tensorflow/compiler/xla/tests:hlo_test_base", + "//tensorflow/compiler/xla/tests:literal_test_util", "//tensorflow/core:lib", "//tensorflow/core:test_main", ], diff --git a/tensorflow/compiler/xla/service/buffer_assignment.cc b/tensorflow/compiler/xla/service/buffer_assignment.cc index 3cdbf892f7a..a79468f939f 100644 --- a/tensorflow/compiler/xla/service/buffer_assignment.cc +++ b/tensorflow/compiler/xla/service/buffer_assignment.cc @@ -548,6 +548,8 @@ Status BufferAssigner::AssignBuffersForComputation( const FlatSet* hlos_to_allocate, const FlatSet& colocated_buffers, const FlatSet& colocated_allocations, + FlatMap>* + buffers_to_assign_sequentially, BufferAssignment* assignment) { // Buffers are sorted and assigned to BufferAllocations in decreasing order of // size. @@ -578,9 +580,16 @@ Status BufferAssigner::AssignBuffersForComputation( // If there is a sequential instruction ordering, we'll delay assignment of // temp buffers until after the main assignment loop. const BufferLiveness& liveness = assignment->liveness(); - const std::vector* sequential_order = - liveness.hlo_ordering().SequentialOrder(*computation); - FlatSet unassigned_temp_buffers; + const bool has_sequential_order = + liveness.hlo_ordering().SequentialOrder(*computation) != nullptr; + if (has_sequential_order && buffers_to_assign_sequentially != nullptr) { + // Every sequential computation must get an entry in the + // buffers_to_assign_sequentially map, even if we end up with an empty set + // of buffers. This ensures we can correctly determine whether to run + // whole-module heap simulation. + buffers_to_assign_sequentially->emplace(computation, + FlatSet()); + } // Sort the LogicalBuffers first by size. We assign the larger LogicalBuffers // first for simplicity. This means any previously created BufferAllocation is @@ -599,7 +608,7 @@ Status BufferAssigner::AssignBuffersForComputation( // important reuse case where an elementwise instruction reuses one of its // operand's buffer. This improves locality. std::sort(sorted_buffers.begin(), sorted_buffers.end(), - [this, sequential_order, &liveness, &post_order_position]( + [this, has_sequential_order, &liveness, &post_order_position]( const LogicalBuffer* a, const LogicalBuffer* b) { // Primary sort is by decreasing buffer size. const int64 a_size = buffer_size_(*a); @@ -609,7 +618,7 @@ Status BufferAssigner::AssignBuffersForComputation( } // Otherwise live out buffers come before others, if the // instructions are sequentially ordered. - if (sequential_order != nullptr) { + if (has_sequential_order) { const bool a_live_out = liveness.MaybeLiveOut(*a); const bool b_live_out = liveness.MaybeLiveOut(*b); if (a_live_out != b_live_out) { @@ -746,7 +755,7 @@ Status BufferAssigner::AssignBuffersForComputation( } } - if (!assignment->HasAllocation(*buffer) && sequential_order != nullptr && + if (!assignment->HasAllocation(*buffer) && has_sequential_order && !liveness.MaybeLiveOut(*buffer)) { // There is a sequential instruction ordering, so we delay assignment of // temp buffers until after the loop. We do this right before we decide to @@ -758,7 +767,7 @@ Status BufferAssigner::AssignBuffersForComputation( // for the definition of temp buffers. CHECK(!is_entry_parameter) << *buffer; CHECK(!is_thread_local) << *buffer; - unassigned_temp_buffers.insert(buffer); + (*buffers_to_assign_sequentially)[computation].insert(buffer); VLOG(3) << "Delaying assignment of temp buffer: " << *buffer; continue; } @@ -772,27 +781,68 @@ Status BufferAssigner::AssignBuffersForComputation( } } - if (!unassigned_temp_buffers.empty()) { - TF_RETURN_IF_ERROR(AssignBuffersWithSequentialOrdering( - *sequential_order, unassigned_temp_buffers, *computation, assignment)); - } return Status::OK(); } Status BufferAssigner::AssignBuffersWithSequentialOrdering( - const std::vector& sequence, - const FlatSet& buffers_to_assign, - const HloComputation& computation, BufferAssignment* assignment) { + const FlatMap>& + buffers_to_assign_sequentially, + bool run_whole_module_heap_simulation, BufferAssignment* assignment) { // Run the sequence of instructions through the heap simulator. The heuristic // that seems to give the best results is lazy-best-fit, with all runs of // alloc / free calls sorted in decreasing size order. - TF_ASSIGN_OR_RETURN( - HeapSimulator::Result result, - HeapSimulator::Run(MakeUnique( - MakeUnique(alignment_)), - sequence, computation, - assignment->points_to_analysis(), buffer_size_, - &buffers_to_assign)); + const HloOrdering& hlo_ordering = assignment->liveness().hlo_ordering(); + if (run_whole_module_heap_simulation) { + // Run the heap simulation over the whole module. This reduces memory usage, + // since buffers for kCall and kWhile sub-computations are only live for the + // duration of their calling instructions. + VLOG(1) << "Running whole-module heap simulation"; + SequentialHloOrdering::HloModuleSequence module_sequence; + FlatSet all_buffers_to_assign; + for (const auto& pair : buffers_to_assign_sequentially) { + const HloComputation* computation = pair.first; + const FlatSet& buffers_to_assign = pair.second; + const std::vector* instruction_sequence = + hlo_ordering.SequentialOrder(*computation); + CHECK(instruction_sequence != nullptr) << computation->name(); + module_sequence[computation] = *instruction_sequence; + all_buffers_to_assign.insert(buffers_to_assign.begin(), + buffers_to_assign.end()); + } + TF_ASSIGN_OR_RETURN( + const HeapSimulator::Result result, + HeapSimulator::Run(MakeUnique( + MakeUnique(alignment_)), + assignment->module(), module_sequence, + assignment->points_to_analysis(), buffer_size_, + &all_buffers_to_assign)); + AssignBuffersFromHeapSimulator(result, assignment); + } else { + // Run the heap-simulation on a per-computation basis. Buffers for + // sub-computations are assigned disjoint BufferAllocations, assuming the + // worst-case that they may all be live concurrently. + VLOG(1) << "Running per-computation heap simulation"; + for (const auto& pair : buffers_to_assign_sequentially) { + const HloComputation* computation = pair.first; + const FlatSet& buffers_to_assign = pair.second; + const std::vector* instruction_sequence = + hlo_ordering.SequentialOrder(*computation); + CHECK(instruction_sequence != nullptr) << computation->name(); + TF_ASSIGN_OR_RETURN( + const HeapSimulator::Result result, + HeapSimulator::Run(MakeUnique( + MakeUnique(alignment_)), + *computation, *instruction_sequence, + assignment->points_to_analysis(), buffer_size_, + &buffers_to_assign)); + AssignBuffersFromHeapSimulator(result, assignment); + } + } + return Status::OK(); +} + +void BufferAssigner::AssignBuffersFromHeapSimulator( + const HeapSimulator::Result& result, BufferAssignment* assignment) { if (assignment->stats_.preallocated_temp_fragmentation_bytes == -1) { assignment->stats_.preallocated_temp_fragmentation_bytes = result.fragmentation_size; @@ -801,8 +851,6 @@ Status BufferAssigner::AssignBuffersWithSequentialOrdering( result.fragmentation_size; } - // Use the results of the heap simulator to create one allocation per - // computation, with LogicalBuffers packed to specific offsets. BufferAllocation* allocation = assignment->NewEmptyAllocation( result.heap_size, /*is_thread_local=*/false, /*is_reusable=*/true); for (const auto& buffer_chunk : result.chunk_map) { @@ -810,7 +858,6 @@ Status BufferAssigner::AssignBuffersWithSequentialOrdering( const HeapSimulator::Chunk& chunk = buffer_chunk.second; assignment->AddAssignment(allocation, buffer, chunk.offset, chunk.size); } - return Status::OK(); } // Adds the 'colocated_set' of buffers to 'colocated_buffer_sets', maintaining @@ -1108,8 +1155,6 @@ StatusOr> BufferAssigner::CreateAssignment( TF_ASSIGN_OR_RETURN(std::unique_ptr liveness, BufferLiveness::Run(module, std::move(hlo_ordering))); - std::vector thread_local_computations; - std::vector global_computations; VLOG(1) << "Assigning buffers to module " << module->name(); if (hlos_to_allocate != nullptr) { VLOG(3) << "LogicalBuffer assignment restricted to hlos: "; @@ -1121,9 +1166,6 @@ StatusOr> BufferAssigner::CreateAssignment( XLA_VLOG_LINES(3, liveness->ToString()); XLA_VLOG_LINES(3, liveness->points_to_analysis().ToString()); - TF_RETURN_IF_ERROR(GatherComputationsByAllocationType( - module, &thread_local_computations, &global_computations)); - // Set of HLO's to allocate if hlos_to_allocate is given. Passed as a set to // AssignBuffersForComputation for fast membership testing. std::unique_ptr> hlo_set; @@ -1148,16 +1190,38 @@ StatusOr> BufferAssigner::CreateAssignment( AssignColocatedBufferSets(colocated_buffer_sets, assignment.get(), &colocated_buffers, &colocated_allocations); + std::vector thread_local_computations; + std::vector global_computations; + TF_RETURN_IF_ERROR(GatherComputationsByAllocationType( + module, &thread_local_computations, &global_computations)); + + // First assign buffers for global computatations. Temporary buffers for + // sequential computations are collected in 'buffers_to_assign_sequentially'. + FlatMap> + buffers_to_assign_sequentially; for (auto* computation : global_computations) { TF_RETURN_IF_ERROR(AssignBuffersForComputation( computation, /*is_thread_local=*/false, hlo_set.get(), - colocated_buffers, colocated_allocations, assignment.get())); + colocated_buffers, colocated_allocations, + &buffers_to_assign_sequentially, assignment.get())); } + // Assign buffers with sequential ordering, if any. If all global computations + // are sequential, we can run heap simuation on the whole module, which + // reduces memory usage. + const bool run_whole_module_heap_simulation = + buffers_to_assign_sequentially.size() == global_computations.size(); + TF_RETURN_IF_ERROR(AssignBuffersWithSequentialOrdering( + buffers_to_assign_sequentially, run_whole_module_heap_simulation, + assignment.get())); + + // Now assign buffers for thread-local computations. All LogicalBuffers get + // their own BufferAllocation. for (auto* computation : thread_local_computations) { TF_RET_CHECK(computation != module->entry_computation()); TF_RETURN_IF_ERROR(AssignBuffersForComputation( computation, /*is_thread_local=*/true, hlo_set.get(), colocated_buffers, - colocated_allocations, assignment.get())); + colocated_allocations, /*buffers_to_assign_sequentially=*/nullptr, + assignment.get())); } // Mark all buffers which may be live out of the entry computation as diff --git a/tensorflow/compiler/xla/service/buffer_assignment.h b/tensorflow/compiler/xla/service/buffer_assignment.h index 34667c435d5..7e96caf0f4e 100644 --- a/tensorflow/compiler/xla/service/buffer_assignment.h +++ b/tensorflow/compiler/xla/service/buffer_assignment.h @@ -23,6 +23,7 @@ limitations under the License. #include #include "tensorflow/compiler/xla/service/buffer_liveness.h" +#include "tensorflow/compiler/xla/service/heap_simulator.h" #include "tensorflow/compiler/xla/service/hlo_computation.h" #include "tensorflow/compiler/xla/service/hlo_instruction.h" #include "tensorflow/compiler/xla/service/hlo_module.h" @@ -354,6 +355,9 @@ class BufferAssignment { void AddAssignment(BufferAllocation* allocation, const LogicalBuffer& buffer, int64 offset, int64 size); + // Returns the HloModule used to construct this assignment. + const HloModule& module() { return *module_; } + // Returns the BufferLiveness object used to construct this assignment. const BufferLiveness& liveness() { return *liveness_; } @@ -427,14 +431,27 @@ class BufferAssigner { const tensorflow::gtl::FlatSet& colocated_buffers, const tensorflow::gtl::FlatSet& colocated_allocations, + tensorflow::gtl::FlatMap>* + buffers_to_assign_sequentially, BufferAssignment* assignment); - // Assigns 'buffers_to_assign' assuming the HLO instructions will be executed - // in the given 'sequential_order'. + // Assigns 'buffers_to_assign_sequentially' using heap simulation, assuming + // the HLO instructions will be executed in the sequential order given by + // assignment->liveness().hlo_ordering().SequentialOrder. If + // 'run_whole_module_heap_simulation' is true, the heap simulation will be run + // assuming all global computations are sequentially ordered. Status AssignBuffersWithSequentialOrdering( - const std::vector& sequential_order, - const tensorflow::gtl::FlatSet& buffers_to_assign, - const HloComputation& computation, BufferAssignment* assignment); + const tensorflow::gtl::FlatMap< + const HloComputation*, + tensorflow::gtl::FlatSet>& + buffers_to_assign_sequentially, + bool run_whole_module_heap_simulation, BufferAssignment* assignment); + + // Uses the results of the heap simulator to create a single allocation, with + // LogicalBuffers packed to specific offsets. + void AssignBuffersFromHeapSimulator(const HeapSimulator::Result& result, + BufferAssignment* assignment); // Tries to assign the given instruction to the given buffer. Returns if the // assignment was successful. @@ -477,8 +494,6 @@ class BufferAssigner { const HloComputation& computation, const BufferLiveness& buffer_liveness, std::vector* colocated_buffer_sets); - const HloModule* module_; - // Function which returns the buffer size for a given logical buffer (shape). LogicalBuffer::SizeFunction buffer_size_; diff --git a/tensorflow/compiler/xla/service/cpu/cpu_instruction_fusion.cc b/tensorflow/compiler/xla/service/cpu/cpu_instruction_fusion.cc index 240da35ef19..dc002846e9e 100644 --- a/tensorflow/compiler/xla/service/cpu/cpu_instruction_fusion.cc +++ b/tensorflow/compiler/xla/service/cpu/cpu_instruction_fusion.cc @@ -24,6 +24,11 @@ bool CpuInstructionFusion::ShouldFuse(HloInstruction* consumer, int64 operand_index) { HloInstruction* producer = consumer->mutable_operand(operand_index); + // Output fusion is not currently supported on CPUs. + if (producer->opcode() == HloOpcode::kFusion) { + return false; + } + // Condition for consumer: must be elementwise or a fusion op // (which necessarily only contains elementwise operations) if (!(consumer->opcode() == HloOpcode::kFusion || diff --git a/tensorflow/compiler/xla/service/gpu/instruction_fusion.cc b/tensorflow/compiler/xla/service/gpu/instruction_fusion.cc index 34a44ad4054..a36dcbbd2fa 100644 --- a/tensorflow/compiler/xla/service/gpu/instruction_fusion.cc +++ b/tensorflow/compiler/xla/service/gpu/instruction_fusion.cc @@ -46,6 +46,11 @@ bool GpuInstructionFusion::ShouldFuse(HloInstruction* consumer, int64 operand_index) { HloInstruction* producer = consumer->mutable_operand(operand_index); + // Output fusion is not currently supported on GPUs. + if (producer->opcode() == HloOpcode::kFusion) { + return false; + } + // RNG operations are not currently parallel-friendly on GPU. if (producer->opcode() == HloOpcode::kRng) { return false; diff --git a/tensorflow/compiler/xla/service/heap_simulator.cc b/tensorflow/compiler/xla/service/heap_simulator.cc index 9c4899a67de..d7aa5664df4 100644 --- a/tensorflow/compiler/xla/service/heap_simulator.cc +++ b/tensorflow/compiler/xla/service/heap_simulator.cc @@ -53,12 +53,44 @@ std::vector UniqueOperandSourceBuffers( /*static*/ StatusOr HeapSimulator::Run( - std::unique_ptr algorithm, - const std::vector& instruction_sequence, - const HloComputation& computation, + std::unique_ptr algorithm, const HloModule& module, + const SequentialHloOrdering::HloModuleSequence& module_sequence, const TuplePointsToAnalysis& points_to_analysis, const LogicalBuffer::SizeFunction& size_fn, const FlatSet* buffers_to_assign) { + HeapSimulator heap(std::move(algorithm), size_fn, buffers_to_assign); + const HloComputation* entry_computation = module.entry_computation(); + const std::vector& instruction_sequence = + FindOrDie(module_sequence, entry_computation); + TF_RETURN_IF_ERROR(heap.RunComputation(*entry_computation, + instruction_sequence, + points_to_analysis, &module_sequence)); + return heap.Finish(); +} + +/*static*/ +StatusOr HeapSimulator::Run( + std::unique_ptr algorithm, const HloComputation& computation, + const std::vector& instruction_sequence, + const TuplePointsToAnalysis& points_to_analysis, + const LogicalBuffer::SizeFunction& size_fn, + const FlatSet* buffers_to_assign) { + HeapSimulator heap(std::move(algorithm), size_fn, buffers_to_assign); + TF_RETURN_IF_ERROR(heap.RunComputation(computation, instruction_sequence, + points_to_analysis, + /*module_sequence=*/nullptr)); + return heap.Finish(); +} + +// Runs a heap simulation for the given 'computation', assuming the given +// 'instruction_sequence'. If 'module_sequence' is non-null, it is used to find +// kCall and kWhile sub-computations, and the heap simulation for those +// sub-computations will be run recursively. +Status HeapSimulator::RunComputation( + const HloComputation& computation, + const std::vector& instruction_sequence, + const TuplePointsToAnalysis& points_to_analysis, + const SequentialHloOrdering::HloModuleSequence* module_sequence) { // The goal here is to minimize memory usage, assuming the given sequential // ordering of instructions. The strategy is to walk through the instruction // sequence, calling Alloc and Free on the underlying heap algorithm. The @@ -67,7 +99,6 @@ StatusOr HeapSimulator::Run( // 'live_buffers' tracks the liveness of each buffer that we assign, by // associating it with a set of HloInstructions that need to be visited. When // the set becomes empty, the buffer is no longer used, and can be freed. - HeapSimulator heap(std::move(algorithm), size_fn, buffers_to_assign); FlatMap> live_buffers; const HloInstruction* root = computation.root_instruction(); @@ -90,7 +121,7 @@ StatusOr HeapSimulator::Run( // lifetime of buffers that aren't already connected by a data dependency. std::vector dead_buffers_to_free; for (const LogicalBuffer* buffer : buffers_defined_by_instruction) { - if (heap.IgnoreBuffer(buffer)) { + if (IgnoreBuffer(buffer)) { continue; } for (const BufferAlias& alias : @@ -127,7 +158,7 @@ StatusOr HeapSimulator::Run( std::vector operand_buffers_to_free; for (const LogicalBuffer* operand_buffer : UniqueOperandSourceBuffers(instruction, points_to_analysis)) { - if (heap.IgnoreBuffer(operand_buffer)) { + if (IgnoreBuffer(operand_buffer)) { continue; } live_buffers[operand_buffer].erase(instruction); @@ -142,10 +173,10 @@ StatusOr HeapSimulator::Run( // happen before dead or operand buffers are freed; the instruction reads // the operand buffers to produce its output. // - // INVARIANT: Either heap.Alloc or heap.ShareBuffer will be called for each - // buffer that we should assign. + // INVARIANT: Either Alloc or ShareBuffer will be called for each buffer + // that we should assign. for (const LogicalBuffer* buffer : buffers_defined_by_instruction) { - if (heap.IgnoreBuffer(buffer)) { + if (IgnoreBuffer(buffer)) { continue; } @@ -159,24 +190,50 @@ StatusOr HeapSimulator::Run( CanShareOperandBufferWithUser( operand_buffer->instruction(), operand_buffer->index(), buffer->instruction(), buffer->index(), points_to_analysis)) { - heap.ShareBuffer(buffer, operand_buffer); + ShareBuffer(buffer, operand_buffer); shared = true; break; } } if (!shared) { - heap.Alloc(buffer); + Alloc(buffer); } } + // If the whole module is sequential, we can save memory by running the + // heap-simulation for sub-computations inline. E.g. the buffers for the + // condition and body of a kWhile instruction are only live for the duration + // of the instruction itself. + // + // The order that the sub-computations are simulated does not affect + // correctness; since the whole module is sequential, we know that the + // sub-computations will never be run concurrently. + if (module_sequence != nullptr) { + if (instruction->opcode() == HloOpcode::kCall || + instruction->opcode() == HloOpcode::kWhile) { + for (const HloComputation* called_computation : + instruction->called_computations()) { + const std::vector& called_sequence = + FindOrDie(*module_sequence, called_computation); + TF_RETURN_IF_ERROR(RunComputation(*called_computation, + called_sequence, points_to_analysis, + module_sequence)); + } + } + + // Other sub-computations (e.g. Map, Reduce, ...) are skipped; they are + // assigned "thread-local" allocations, meaning their buffers are not + // allocated up-front at the beginning of the computation. + } + // Free buffers that are no longer live. This is the earliest point that we // can de-allocate; right after the last use of the buffer. for (const LogicalBuffer* buffer : dead_buffers_to_free) { - heap.Free(buffer); + Free(buffer); } for (const LogicalBuffer* buffer : operand_buffers_to_free) { - heap.Free(buffer); + Free(buffer); } } @@ -187,10 +244,10 @@ StatusOr HeapSimulator::Run( const FlatSet& pending = buffer_pending.second; CHECK_EQ(pending.size(), 1) << *buffer; CHECK(*pending.begin() == nullptr) << *buffer; - heap.Free(buffer); + Free(buffer); } - return heap.Finish(); + return Status::OK(); } HeapSimulator::HeapSimulator( @@ -309,6 +366,11 @@ HeapSimulator::Result HeapSimulator::Finish() { result.chunk_map.emplace(buffer, chunk); } } + // If we were told to assign specific buffers, make sure we've assigned + // exactly that many buffers. + if (buffers_to_assign_ != nullptr) { + CHECK_EQ(buffers_to_assign_->size(), result.chunk_map.size()); + } } // Fragmentation is the difference between the actual and ideal sizes. diff --git a/tensorflow/compiler/xla/service/heap_simulator.h b/tensorflow/compiler/xla/service/heap_simulator.h index 0ce29067678..3d980462619 100644 --- a/tensorflow/compiler/xla/service/heap_simulator.h +++ b/tensorflow/compiler/xla/service/heap_simulator.h @@ -23,6 +23,7 @@ limitations under the License. #include "tensorflow/compiler/xla/service/hlo_computation.h" #include "tensorflow/compiler/xla/service/hlo_instruction.h" +#include "tensorflow/compiler/xla/service/hlo_ordering.h" #include "tensorflow/compiler/xla/service/logical_buffer.h" #include "tensorflow/compiler/xla/service/tuple_points_to_analysis.h" #include "tensorflow/compiler/xla/statusor.h" @@ -63,17 +64,32 @@ class HeapSimulator { }; // Run the heap simulation with the given algorithm, assuming the given - // sequential ordering of instructions. The 'instruction_sequence' must - // contain a topologically-consistent total ordering of all instructions in - // the computation. The result is invalid if instructions are not run in - // exactly this sequence. + // module_sequence, which must contain a topologically-consistent total + // ordering of all instructions within each computation. The result is invalid + // if instructions are not run in exactly this sequence. + // + // Running heap simulation on the whole module tends to save memory, compared + // to running on a per-computation basis, since we can re-use buffer space for + // called sub-computations. // // If 'buffers_to_assign' is provided, only those buffers are assigned // offsets, otherwise all buffers defined by the instructions are assigned. + static StatusOr Run( + std::unique_ptr algorithm, const HloModule& module, + const SequentialHloOrdering::HloModuleSequence& module_sequence, + const TuplePointsToAnalysis& points_to_analysis, + const LogicalBuffer::SizeFunction& size_fn, + const tensorflow::gtl::FlatSet* buffers_to_assign = + nullptr); + + // Same as above, but runs on a single computation. The 'instruction_sequence' + // must contain a topologically-consistent total ordering of all instructions + // in the computation. The result is invalid if instructions are not run in + // exactly this sequence. static StatusOr Run( std::unique_ptr algorithm, - const std::vector& instruction_sequence, const HloComputation& computation, + const std::vector& instruction_sequence, const TuplePointsToAnalysis& points_to_analysis, const LogicalBuffer::SizeFunction& size_fn, const tensorflow::gtl::FlatSet* buffers_to_assign = @@ -86,6 +102,12 @@ class HeapSimulator { const tensorflow::gtl::FlatSet* buffers_to_assign); ~HeapSimulator(); + Status RunComputation( + const HloComputation& computation, + const std::vector& instruction_sequence, + const TuplePointsToAnalysis& points_to_analysis, + const SequentialHloOrdering::HloModuleSequence* module_sequence); + bool IgnoreBuffer(const LogicalBuffer* buffer) const; void Alloc(const LogicalBuffer* buffer); void Free(const LogicalBuffer* buffer); diff --git a/tensorflow/compiler/xla/service/heap_simulator_test.cc b/tensorflow/compiler/xla/service/heap_simulator_test.cc index 874bd5f1060..0a6900f7330 100644 --- a/tensorflow/compiler/xla/service/heap_simulator_test.cc +++ b/tensorflow/compiler/xla/service/heap_simulator_test.cc @@ -19,13 +19,16 @@ limitations under the License. #include #include +#include "tensorflow/compiler/xla/literal_util.h" #include "tensorflow/compiler/xla/service/hlo_computation.h" #include "tensorflow/compiler/xla/service/hlo_instruction.h" #include "tensorflow/compiler/xla/service/hlo_module.h" +#include "tensorflow/compiler/xla/service/hlo_ordering.h" #include "tensorflow/compiler/xla/service/logical_buffer.h" #include "tensorflow/compiler/xla/service/tuple_points_to_analysis.h" #include "tensorflow/compiler/xla/status_macros.h" #include "tensorflow/compiler/xla/tests/hlo_test_base.h" +#include "tensorflow/core/lib/gtl/flatmap.h" namespace xla { namespace { @@ -69,6 +72,7 @@ class HeapCallRecorder : public HeapAlgorithm { // sequence against an expected sequence. class HeapSimulatorTracker { public: + // Constructor for testing a single entry computation. HeapSimulatorTracker( const string& name, std::unique_ptr computation, const std::vector& instruction_sequence) { @@ -83,12 +87,48 @@ class HeapSimulatorTracker { auto zero_size = [](const LogicalBuffer& buffer) { return 0; }; auto algorithm = MakeUnique( MakeUnique(&actual_calls_)); - result_ = HeapSimulator::Run(std::move(algorithm), instruction_sequence, - *module_->entry_computation(), - *points_to_analysis_, zero_size) + result_ = HeapSimulator::Run( + std::move(algorithm), *module_->entry_computation(), + instruction_sequence, *points_to_analysis_, zero_size) .ConsumeValueOrDie(); } + explicit HeapSimulatorTracker(const string& name) { + module_ = MakeUnique(name); + } + + // Similar to the single entry computation constructor above, but runs the + // simulation over the entire module. + void RunWholeModule( + const std::vector& full_module_sequence) { + points_to_analysis_ = + TuplePointsToAnalysis::Run(module_.get()).ConsumeValueOrDie(); + + // Construct the module sequence grouped by computation. + SequentialHloOrdering::HloModuleSequence module_sequence; + tensorflow::gtl::FlatMap reverse_position; + for (int i = 0; i < full_module_sequence.size(); ++i) { + const HloInstruction* instruction = full_module_sequence[i]; + module_sequence[instruction->parent()].push_back(instruction); + reverse_position[instruction] = full_module_sequence.size() - i; + } + + // Hack the size_fn so that it returns a decreasing value as we step through + // the sequence. This lets us ensure the Alloc calls are in the sequence + // order. The Free calls are sorted by LogicalBuffer.id, which is at least + // deterministic. + auto size_fn = [&reverse_position](const LogicalBuffer& buffer) { + return reverse_position[buffer.instruction()]; + }; + auto algorithm = MakeUnique( + MakeUnique(&actual_calls_)); + result_ = HeapSimulator::Run(std::move(algorithm), *module_, + module_sequence, *points_to_analysis_, size_fn) + .ConsumeValueOrDie(); + } + + HloModule* module() { return module_.get(); } + // Returns the buffer defined at the given instruction and index. const LogicalBuffer* BufferAt(const HloInstruction* instruction, const ShapeIndex& index) const { @@ -358,6 +398,86 @@ TEST_F(HeapSimulatorTest, MultiplyDotDotTuple) { }); } +TEST_F(HeapSimulatorTest, WholeModule) { + HeapSimulatorTracker tracker(TestName()); + + const Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); + const Shape tuple_shape = + ShapeUtil::MakeTupleShape({scalar_shape, scalar_shape}); + + auto cond_builder = HloComputation::Builder("WhileCond"); + HloInstruction* cond_param = cond_builder.AddInstruction( + HloInstruction::CreateParameter(0, tuple_shape, "cond_param")); + HloInstruction* cond_iter = cond_builder.AddInstruction( + HloInstruction::CreateGetTupleElement(scalar_shape, cond_param, 0)); + HloInstruction* cond_data = cond_builder.AddInstruction( + HloInstruction::CreateGetTupleElement(scalar_shape, cond_param, 1)); + HloInstruction* cond_lt = cond_builder.AddInstruction( + HloInstruction::CreateBinary(ShapeUtil::MakeShape(PRED, {}), + HloOpcode::kLt, cond_iter, cond_data)); + HloComputation* cond_computation = + tracker.module()->AddEmbeddedComputation(cond_builder.Build()); + + auto body_builder = HloComputation::Builder("WhileBody"); + HloInstruction* body_param = body_builder.AddInstruction( + HloInstruction::CreateParameter(0, tuple_shape, "body_param")); + HloComputation* body_computation = + tracker.module()->AddEmbeddedComputation(body_builder.Build()); + + auto builder = HloComputation::Builder(TestName()); + HloInstruction* param = builder.AddInstruction( + HloInstruction::CreateParameter(0, tuple_shape, "param")); + HloInstruction* while_op = builder.AddInstruction(HloInstruction::CreateWhile( + tuple_shape, cond_computation, body_computation, param)); + tracker.module()->AddEntryComputation(builder.Build()); + + tracker.RunWholeModule( + {param, while_op, body_param, cond_param, cond_iter, cond_data, cond_lt}); + tracker.ExpectCallSequence({ + // The entry computation param and while_op are allocated first. + {kAlloc, tracker.BufferAt(param, {})}, + {kAlloc, tracker.BufferAt(param, {0})}, + {kAlloc, tracker.BufferAt(param, {1})}, + {kAlloc, tracker.BufferAt(while_op, {})}, + {kAlloc, tracker.BufferAt(while_op, {0})}, + {kAlloc, tracker.BufferAt(while_op, {1})}, + + // Now the while body param is allocated and freed. + {kAlloc, tracker.BufferAt(body_param, {})}, + {kAlloc, tracker.BufferAt(body_param, {0})}, + {kAlloc, tracker.BufferAt(body_param, {1})}, + {kFree, tracker.BufferAt(body_param, {})}, + {kFree, tracker.BufferAt(body_param, {0})}, + {kFree, tracker.BufferAt(body_param, {1})}, + + // Now the while cond param is allocated. The GTE instructions just alias + // the param elements, so the param tuple can immediately be freed. + {kAlloc, tracker.BufferAt(cond_param, {})}, + {kAlloc, tracker.BufferAt(cond_param, {0})}, + {kAlloc, tracker.BufferAt(cond_param, {1})}, + {kFree, tracker.BufferAt(cond_param, {})}, + + // Now the final cond less-than buffer is allocated. + {kAlloc, tracker.BufferAt(cond_lt, {})}, + + // The order of the remaining Free calls is based on the LogicalBuffer.id, + // which is deterministic, but not obvious. + {kFree, tracker.BufferAt(param, {})}, + {kFree, tracker.BufferAt(param, {0})}, + {kFree, tracker.BufferAt(param, {1})}, + + {kFree, tracker.BufferAt(while_op, {})}, + {kFree, tracker.BufferAt(while_op, {0})}, + {kFree, tracker.BufferAt(while_op, {1})}, + + {kFree, tracker.BufferAt(cond_param, {0})}, + {kFree, tracker.BufferAt(cond_param, {1})}, + {kFree, tracker.BufferAt(cond_lt, {})}, + + {kFinish, nullptr}, + }); +} + // Base class for heap algorithm tests. class HeapAlgorithmTestBase : public ::testing::Test { protected: diff --git a/tensorflow/compiler/xla/service/hlo_constant_folding_test.cc b/tensorflow/compiler/xla/service/hlo_constant_folding_test.cc index d20f423bd6c..21d93a1f27f 100644 --- a/tensorflow/compiler/xla/service/hlo_constant_folding_test.cc +++ b/tensorflow/compiler/xla/service/hlo_constant_folding_test.cc @@ -28,6 +28,7 @@ limitations under the License. #include "tensorflow/compiler/xla/shape_util.h" #include "tensorflow/compiler/xla/test.h" #include "tensorflow/compiler/xla/tests/hlo_test_base.h" +#include "tensorflow/compiler/xla/tests/literal_test_util.h" #include "tensorflow/compiler/xla/types.h" namespace op = xla::testing::opcode_matchers; @@ -49,8 +50,9 @@ TEST_F(HloConstantFoldingTest, ConvertF32ToS64) { EXPECT_THAT(computation->root_instruction(), op::Convert(input)); - HloConstantFolding simplifier; - ASSERT_TRUE(simplifier.Run(module.get()).ValueOrDie()); + HloConstantFolding const_folder; + TF_ASSIGN_OR_ASSERT_OK(bool result, const_folder.Run(module.get())); + EXPECT_TRUE(result); EXPECT_THAT(computation->root_instruction(), op::Constant()); EXPECT_EQ(LiteralUtil::GetFirstElement( @@ -70,8 +72,9 @@ TEST_F(HloConstantFoldingTest, ConvertS64ToF32) { EXPECT_THAT(computation->root_instruction(), op::Convert(input)); - HloConstantFolding simplifier; - ASSERT_TRUE(simplifier.Run(module.get()).ValueOrDie()); + HloConstantFolding const_folder; + TF_ASSIGN_OR_ASSERT_OK(bool result, const_folder.Run(module.get())); + EXPECT_TRUE(result); EXPECT_THAT(computation->root_instruction(), op::Constant()); EXPECT_EQ(LiteralUtil::GetFirstElement( @@ -91,8 +94,9 @@ TEST_F(HloConstantFoldingTest, ConvertF32ArrayToS64Array) { EXPECT_THAT(computation->root_instruction(), op::Convert(input)); - HloConstantFolding simplifier; - ASSERT_TRUE(simplifier.Run(module.get()).ValueOrDie()); + HloConstantFolding const_folder; + TF_ASSIGN_OR_ASSERT_OK(bool result, const_folder.Run(module.get())); + EXPECT_TRUE(result); EXPECT_THAT(computation->root_instruction(), op::Constant()); EXPECT_EQ( @@ -131,11 +135,12 @@ TEST_F(HloConstantFoldingTest, Concatenate) { Shape shape = ShapeUtil::MakeShape(F32, dimensions); builder.AddInstruction(HloInstruction::CreateConcatenate( shape, operands, test_config.concat_dimension)); - HloModule module(TestName()); - auto computation = module.AddEntryComputation(builder.Build()); + auto module = MakeUnique(TestName()); + auto computation = module->AddEntryComputation(builder.Build()); - HloConstantFolding simplifier; - ASSERT_TRUE(simplifier.Run(&module).ValueOrDie()); + HloConstantFolding const_folder; + TF_ASSIGN_OR_ASSERT_OK(bool result, const_folder.Run(module.get())); + EXPECT_TRUE(result); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Constant()); @@ -148,22 +153,61 @@ TEST_F(HloConstantFoldingTest, Slice) { const int64 dimensions[] = {11, 8, 7, 5, 9}; const int64 slice_start[] = {4, 2, 3, 1, 5}; const int64 slice_limits[] = {10, 8, 6, 5, 9}; - auto literal = LiteralUtil::CreateFromDimensions(F32, dimensions); - HloInstruction* lit_insn = builder.AddInstruction( + TF_ASSIGN_OR_ASSERT_OK(auto literal, + LiteralTestUtil::CreateRandomLiteral( + ShapeUtil::MakeShape(F32, dimensions), 0.0, 1.0)); + HloInstruction* literal_instruction = builder.AddInstruction( HloInstruction::CreateConstant(std::move(literal))); Shape shape = ShapeUtil::MakeShape(F32, {6, 6, 3, 4, 4}); - builder.AddInstruction( - HloInstruction::CreateSlice(shape, lit_insn, slice_start, slice_limits)); - HloModule module(TestName()); - auto computation = module.AddEntryComputation(builder.Build()); + builder.AddInstruction(HloInstruction::CreateSlice( + shape, literal_instruction, slice_start, slice_limits)); + auto module = MakeUnique(TestName()); + auto computation = module->AddEntryComputation(builder.Build()); - HloConstantFolding simplifier; - ASSERT_TRUE(simplifier.Run(&module).ValueOrDie()); + HloConstantFolding const_folder; + TF_ASSIGN_OR_ASSERT_OK(bool result, const_folder.Run(module.get())); + EXPECT_TRUE(result); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Constant()); EXPECT_TRUE(ShapeUtil::Equal(root->shape(), shape)); } +TEST_F(HloConstantFoldingTest, TransposeConstantFold) { + HloComputation::Builder builder(TestName()); + const int64 dimensions[] = {11, 8, 7, 5, 9}; + TF_ASSIGN_OR_ASSERT_OK(auto literal, + LiteralTestUtil::CreateRandomLiteral( + ShapeUtil::MakeShape(F32, dimensions), 0.0, 1.0)); + auto literal_clone = LiteralUtil::CloneToUnique(*literal); + HloInstruction* literal_instruction = builder.AddInstruction( + HloInstruction::CreateConstant(std::move(literal))); + Shape shape = ShapeUtil::MakeShape(F32, {8, 7, 11, 9, 5}); + const int64 permutation[] = {1, 2, 0, 4, 3}; + builder.AddInstruction( + HloInstruction::CreateTranspose(shape, literal_instruction, permutation)); + auto module = MakeUnique(TestName()); + auto computation = module->AddEntryComputation(builder.Build()); + + HloConstantFolding const_folder; + TF_ASSIGN_OR_ASSERT_OK(bool result, const_folder.Run(module.get())); + EXPECT_TRUE(result); + + HloInstruction* root = computation->root_instruction(); + EXPECT_THAT(root, op::Constant()); + EXPECT_TRUE(ShapeUtil::Equal(root->shape(), shape)); + + using NativeT = typename primitive_util::PrimitiveTypeToNative::type; + bool matched = true; + LiteralUtil::EachCell( + root->literal(), + [&](tensorflow::gtl::ArraySlice indices, NativeT value) { + std::vector rindexes = Permute(permutation, indices); + matched = matched && (value == LiteralUtil::Get(*literal_clone, + rindexes)); + }); + EXPECT_TRUE(matched); +} + } // namespace } // namespace xla diff --git a/tensorflow/compiler/xla/service/hlo_instruction.cc b/tensorflow/compiler/xla/service/hlo_instruction.cc index 179e1832654..66fb0599752 100644 --- a/tensorflow/compiler/xla/service/hlo_instruction.cc +++ b/tensorflow/compiler/xla/service/hlo_instruction.cc @@ -1570,7 +1570,9 @@ string HloInstruction::ToCategory() const { return "non-elementwise fusion"; } case FusionKind::kInput: - return "reduce fusion"; + return "input fusion"; + case FusionKind::kOutput: + return "output fusion"; case FusionKind::kTransposeDot: return "dot fusion"; case FusionKind::kConvBackwardFilter: @@ -1618,7 +1620,6 @@ bool HloInstruction::IsFusable() const { // Some kinds of instructions don't make sense to fuse. switch (opcode_) { - case HloOpcode::kFusion: case HloOpcode::kInfeed: case HloOpcode::kOutfeed: case HloOpcode::kParameter: @@ -2186,6 +2187,8 @@ string ToString(HloInstruction::FusionKind kind) { return "kLoop"; case HloInstruction::FusionKind::kInput: return "kInput"; + case HloInstruction::FusionKind::kOutput: + return "kOutput"; case HloInstruction::FusionKind::kTransposeDot: return "kTransposeDot"; case HloInstruction::FusionKind::kConvBackwardFilter: diff --git a/tensorflow/compiler/xla/service/hlo_instruction.h b/tensorflow/compiler/xla/service/hlo_instruction.h index 5ec17c80048..43935690dff 100644 --- a/tensorflow/compiler/xla/service/hlo_instruction.h +++ b/tensorflow/compiler/xla/service/hlo_instruction.h @@ -54,7 +54,8 @@ class HloInstruction { public: enum class FusionKind { kLoop, // Fused into a loop. - kInput, // Fused into a reduction kernel. + kInput, // Op's input is fused into the op itself. + kOutput, // Op's output is fused into the op itself. kTransposeDot, // Fused into a dot with transposed operands. kConvBackwardFilter, // Fused into a backward filter convolution. kConvBackwardInput, // Fused into a backward input convolution. diff --git a/tensorflow/compiler/xla/service/hlo_ordering.cc b/tensorflow/compiler/xla/service/hlo_ordering.cc index 7476b72f029..725ce17d664 100644 --- a/tensorflow/compiler/xla/service/hlo_ordering.cc +++ b/tensorflow/compiler/xla/service/hlo_ordering.cc @@ -221,23 +221,6 @@ string SequentialHloOrdering::ToString() const { return tensorflow::str_util::Join(pieces, "\n"); } -namespace { -StatusOr MinimumMemoryForSequence( - const HloComputation& computation, - const std::vector& sequence, - const TuplePointsToAnalysis& points_to_analysis, - const LogicalBuffer::SizeFunction& size_function) { - // The absolute minimum memory required for a given sequence of instructions - // is determined by the sequence of Alloc and Free calls on a simulated heap, - // ignoring fragmentation. - TF_ASSIGN_OR_RETURN( - HeapSimulator::Result result, - HeapSimulator::Run(MakeUnique(), sequence, - computation, points_to_analysis, size_function)); - return result.heap_size; -} -} // namespace - StatusOr MinimumMemoryForSequence( const SequentialHloOrdering::HloModuleSequence& module_sequence, const LogicalBuffer::SizeFunction& size_function) { @@ -249,17 +232,16 @@ StatusOr MinimumMemoryForSequence( TF_ASSIGN_OR_RETURN(std::unique_ptr points_to_analysis, TuplePointsToAnalysis::Run(module)); - int64 total_memory = 0; - for (const auto& pair : module_sequence) { - const HloComputation* computation = pair.first; - const std::vector& sequence = pair.second; - TF_ASSIGN_OR_RETURN( - const int64 memory, - MinimumMemoryForSequence(*computation, sequence, *points_to_analysis, - size_function)); - total_memory += memory; - } - return total_memory; + // The absolute minimum memory required for a given sequence of instructions + // is determined by the sequence of Alloc and Free calls on a simulated heap, + // ignoring fragmentation. We run the heap simulation on the whole module, + // rather than summing each computation, since it gives us a better lower + // bound, by minimizing the liveness of sub-computations. + TF_ASSIGN_OR_RETURN( + HeapSimulator::Result result, + HeapSimulator::Run(MakeUnique(), *module, + module_sequence, *points_to_analysis, size_function)); + return result.heap_size; } namespace { @@ -516,6 +498,18 @@ StatusOr> RunDFSMemoryScheduler( return sequence; } +StatusOr MinimumMemoryForComputation( + const HloComputation& computation, + const std::vector& sequence, + const TuplePointsToAnalysis& points_to_analysis, + const LogicalBuffer::SizeFunction& size_function) { + TF_ASSIGN_OR_RETURN( + HeapSimulator::Result result, + HeapSimulator::Run(MakeUnique(), computation, + sequence, points_to_analysis, size_function)); + return result.heap_size; +} + StatusOr> CreateMemoryMinimizingSequence( const HloComputation& computation, const TuplePointsToAnalysis& points_to_analysis, @@ -523,13 +517,17 @@ StatusOr> CreateMemoryMinimizingSequence( // We try both a list-scheduler based ordering and a DFS based ordering, and // choose whichever returns a lower min-memory, not accounting for // fragmentation. + // + // Note that this is just a heuristic. One obvious inaccuracy is that the + // memory required for sub-computations might be different when considered + // within the caller's context. But it's good enough for now. TF_ASSIGN_OR_RETURN( std::vector list_sequence, ListScheduler::Run(computation, points_to_analysis, size_function)); TF_ASSIGN_OR_RETURN( const int64 list_memory, - MinimumMemoryForSequence(computation, list_sequence, points_to_analysis, - size_function)); + MinimumMemoryForComputation(computation, list_sequence, + points_to_analysis, size_function)); VLOG(2) << "Min-memory list sequence: " << list_memory << " bytes"; TF_ASSIGN_OR_RETURN( @@ -537,8 +535,8 @@ StatusOr> CreateMemoryMinimizingSequence( RunDFSMemoryScheduler(computation, points_to_analysis, size_function)); TF_ASSIGN_OR_RETURN( const int64 dfs_memory, - MinimumMemoryForSequence(computation, dfs_sequence, points_to_analysis, - size_function)); + MinimumMemoryForComputation(computation, dfs_sequence, points_to_analysis, + size_function)); VLOG(2) << "Min-memory dfs sequence: " << dfs_memory << " bytes"; if (list_memory <= dfs_memory) { diff --git a/tensorflow/compiler/xla/service/hlo_ordering_test.cc b/tensorflow/compiler/xla/service/hlo_ordering_test.cc index 01b5fd93644..c387fbb89b1 100644 --- a/tensorflow/compiler/xla/service/hlo_ordering_test.cc +++ b/tensorflow/compiler/xla/service/hlo_ordering_test.cc @@ -155,6 +155,65 @@ TEST_F(HloOrderingTest, InstructionsInDifferentComputations) { EXPECT_FALSE(ordering.ExecutesBefore(y, c)); } +class MinimumMemoryForSequenceTest : public HloTestBase {}; + +TEST_F(MinimumMemoryForSequenceTest, MultiComputation) { + HloModule module(TestName()); + const Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); + const Shape tuple_shape = + ShapeUtil::MakeTupleShape({scalar_shape, scalar_shape}); + + auto cond_builder = HloComputation::Builder("WhileCond"); + // Tuple param: 24 bytes (each elem has 8 byte pointer, 4 byte element) + HloInstruction* cond_param = cond_builder.AddInstruction( + HloInstruction::CreateParameter(0, tuple_shape, "cond_param")); + HloInstruction* cond_iter = cond_builder.AddInstruction( + HloInstruction::CreateGetTupleElement(scalar_shape, cond_param, 0)); + HloInstruction* cond_data = cond_builder.AddInstruction( + HloInstruction::CreateGetTupleElement(scalar_shape, cond_param, 1)); + // Free cond_param[] (16 bytes), Alloc PRED[] (1 byte) + HloInstruction* cond_lt = cond_builder.AddInstruction( + HloInstruction::CreateBinary(ShapeUtil::MakeShape(PRED, {}), + HloOpcode::kLt, cond_iter, cond_data)); + HloComputation* cond_computation = + module.AddEmbeddedComputation(cond_builder.Build()); + + auto body_builder = HloComputation::Builder("WhileBody"); + // Tuple param: 24 bytes (each elem has 8 byte pointer, 4 byte element) + HloInstruction* body_param = body_builder.AddInstruction( + HloInstruction::CreateParameter(0, tuple_shape, "body_param")); + HloComputation* body_computation = + module.AddEmbeddedComputation(body_builder.Build()); + + auto builder = HloComputation::Builder(TestName()); + // Entry params: 8 bytes (4 bytes per param), TOTAL=8 + HloInstruction* iter = builder.AddInstruction( + HloInstruction::CreateParameter(0, scalar_shape, "param_iter")); + HloInstruction* data = builder.AddInstruction( + HloInstruction::CreateParameter(1, scalar_shape, "param_data")); + // Tuple: 16 bytes (8 bytes per pointer), TOTAL=24 + HloInstruction* tuple = + builder.AddInstruction(HloInstruction::CreateTuple({iter, data})); + // While: 8 bytes (4 bytes per element), TOTAL=32 + // Both cond and body use a max of 24 bytes, TOTAL=56 + HloInstruction* while_op = builder.AddInstruction(HloInstruction::CreateWhile( + tuple_shape, cond_computation, body_computation, tuple)); + HloComputation* entry_computation = + module.AddEntryComputation(builder.Build()); + + auto size_fn = [](const LogicalBuffer& buffer) { + return ShapeUtil::ByteSizeOf(buffer.shape(), /*pointer_size=*/8); + }; + + SequentialHloOrdering::HloModuleSequence module_sequence; + module_sequence[cond_computation] = {cond_param, cond_iter, cond_data, + cond_lt}; + module_sequence[body_computation] = {body_param}; + module_sequence[entry_computation] = {iter, data, tuple, while_op}; + EXPECT_EQ(56, + MinimumMemoryForSequence(module_sequence, size_fn).ValueOrDie()); +} + } // namespace } // namespace xla diff --git a/tensorflow/compiler/xla/service/hlo_rematerialization.cc b/tensorflow/compiler/xla/service/hlo_rematerialization.cc index 44293f582e6..b1ee2e46b0f 100644 --- a/tensorflow/compiler/xla/service/hlo_rematerialization.cc +++ b/tensorflow/compiler/xla/service/hlo_rematerialization.cc @@ -1160,28 +1160,25 @@ StatusOr HloRematerialization::Run( TuplePointsToAnalysis::Run( module, /*include_loop_fusion_instructions=*/true)); - // Adjust memory limit to account for the parameter and output of the entry + // Adjust memory limit to account for the output of the entry // computation. This is necessary because the per-computation accounting in - // MemoryUsageTracker do not include parameters and output as these are - // typically allocated by the caller. With this adjustment the memory limit - // accounts for the size of all HLO instructions (parameters, output - // instructions, etc). - auto total_size = [this](const HloInstruction* instruction) { - int64 total_size = 0; - for (const LogicalBuffer* logical_buffer : - points_to_analysis_->GetBuffersDefinedByInstruction(instruction)) { - total_size += size_function_(logical_buffer->shape()); - } - return total_size; - }; - const HloComputation* entry_computation = module->entry_computation(); - memory_limit_bytes -= total_size(entry_computation->root_instruction()); - for (const HloInstruction* param : - entry_computation->parameter_instructions()) { - memory_limit_bytes -= total_size(param); - } - VLOG(1) << "Adjusted memory limit accounting for parameters and output: " - << HumanReadableNumBytes(memory_limit_bytes); + // MemoryUsageTracker do not include output as these are typically allocated + // by the caller. + int64 module_output_size = 0; + ShapeUtil::ForEachSubshape( + module->entry_computation()->root_instruction()->shape(), + [&module_output_size, this](const Shape& subshape, + const ShapeIndex& /*index*/) { + module_output_size += size_function_(subshape); + return Status::OK(); + }) + .IgnoreError(); + + const int64 adjusted_memory_limit_bytes = + memory_limit_bytes - module_output_size; + VLOG(1) << "Adjusted memory limit accounting for output (" + << HumanReadableNumBytes(module_output_size) + << "): " << HumanReadableNumBytes(adjusted_memory_limit_bytes); XLA_VLOG_LINES(3, "Before HloRematerialization:\n" + module->ToString()); // Create initial sequence of HLO instructions. @@ -1204,8 +1201,13 @@ StatusOr HloRematerialization::Run( return Status::OK(); })); + // The peak memory usage of the module equals the peak memory use of the entry + // computation plus the output size of the computation. This is because the + // peak memory for a computation does not include the output as this is + // typically accounted for in the caller. const int64 before_peak_memory = - computation_peak_memory_.at(module->entry_computation()); + computation_peak_memory_.at(module->entry_computation()) + + module_output_size; VLOG(1) << "Peak memory usage of module (before): " << HumanReadableNumBytes(before_peak_memory); @@ -1216,9 +1218,9 @@ StatusOr HloRematerialization::Run( // Subcomputations called by the entry computation will also be // rematerialized. - TF_ASSIGN_OR_RETURN(bool changed, - RematerializeComputation(module->entry_computation(), - sequence, memory_limit_bytes)); + TF_ASSIGN_OR_RETURN(bool changed, RematerializeComputation( + module->entry_computation(), sequence, + adjusted_memory_limit_bytes)); // Rematerialization can introduce dead code. This occurs if all uses of an // instruction are replaced with rematerializations of the instruction. @@ -1257,7 +1259,8 @@ StatusOr HloRematerialization::Run( << " instructions in module " << module->name() << "; " << net_instructions_added_ << " net instructions added"; const int64 current_peak_memory = - computation_peak_memory_.at(module->entry_computation()); + computation_peak_memory_.at(module->entry_computation()) + + module_output_size; VLOG(1) << "Peak memory usage of module now " << HumanReadableNumBytes(current_peak_memory) << " (" << current_peak_memory << " bytes), was " diff --git a/tensorflow/compiler/xla/service/user_computation.cc b/tensorflow/compiler/xla/service/user_computation.cc index 34e8ee8acad..e9fcc9fa666 100644 --- a/tensorflow/compiler/xla/service/user_computation.cc +++ b/tensorflow/compiler/xla/service/user_computation.cc @@ -1928,6 +1928,12 @@ HloInstruction* ComputationLowerer::Visit( const OperationRequest& request = session_computation_.requests().at(handle.handle()); + auto add_instruction = [&](std::unique_ptr instruction) { + HloInstruction* hlo_instruction = + hlo_builder_.AddInstruction(std::move(instruction)); + hlo_instruction->set_metadata(request.request().metadata()); + return hlo_instruction; + }; HloInstruction* hlo_instruction; switch (request.request().op_case()) { case OpRequest::kRngRequest: { @@ -1936,7 +1942,7 @@ HloInstruction* ComputationLowerer::Visit( for (const ComputationDataHandle& param : rng_request.parameter()) { parameters.push_back(Visit(param, visited)); } - hlo_instruction = hlo_builder_.AddInstruction(HloInstruction::CreateRng( + hlo_instruction = add_instruction(HloInstruction::CreateRng( request.output_shape(), rng_request.distribution(), parameters)); break; } @@ -1944,9 +1950,8 @@ HloInstruction* ComputationLowerer::Visit( case OpRequest::kConstantRequest: { const ConstantRequest& constant_request = request.request().constant_request(); - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateConstant( - LiteralUtil::CloneToUnique(constant_request.literal()))); + hlo_instruction = add_instruction(HloInstruction::CreateConstant( + LiteralUtil::CloneToUnique(constant_request.literal()))); break; } @@ -1955,17 +1960,15 @@ HloInstruction* ComputationLowerer::Visit( request.request().get_tuple_element_request(); HloInstruction* operand = Visit(get_tuple_element_request.operand(), visited); - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateGetTupleElement( - request.output_shape(), operand, - get_tuple_element_request.index())); + hlo_instruction = add_instruction(HloInstruction::CreateGetTupleElement( + request.output_shape(), operand, get_tuple_element_request.index())); break; } case OpRequest::kSliceRequest: { const SliceRequest& slice_request = request.request().slice_request(); HloInstruction* operand = Visit(slice_request.operand(), visited); - hlo_instruction = hlo_builder_.AddInstruction(HloInstruction::CreateSlice( + hlo_instruction = add_instruction(HloInstruction::CreateSlice( request.output_shape(), operand, AsInt64Slice(slice_request.start_indices()), AsInt64Slice(slice_request.limit_indices()))); @@ -1979,10 +1982,9 @@ HloInstruction* ComputationLowerer::Visit( HloInstruction* start_indices = Visit(dynamic_slice_request.start_indices(), visited); - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateDynamicSlice( - request.output_shape(), operand, start_indices, - AsInt64Slice(dynamic_slice_request.slice_sizes()))); + hlo_instruction = add_instruction(HloInstruction::CreateDynamicSlice( + request.output_shape(), operand, start_indices, + AsInt64Slice(dynamic_slice_request.slice_sizes()))); break; } @@ -1996,7 +1998,7 @@ HloInstruction* ComputationLowerer::Visit( HloInstruction* start_indices = Visit(dynamic_update_slice_request.start_indices(), visited); hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateDynamicUpdateSlice( + add_instruction(HloInstruction::CreateDynamicUpdateSlice( request.output_shape(), operand, update, start_indices)); break; } @@ -2010,9 +2012,8 @@ HloInstruction* ComputationLowerer::Visit( HloInstruction* operand = Visit(handle, visited); operands.push_back(operand); } - hlo_instruction = hlo_builder_.AddInstruction( - HloInstruction::CreateConcatenate(request.output_shape(), operands, - concatenate_request.dimension())); + hlo_instruction = add_instruction(HloInstruction::CreateConcatenate( + request.output_shape(), operands, concatenate_request.dimension())); break; } @@ -2021,10 +2022,9 @@ HloInstruction* ComputationLowerer::Visit( request.request().convolve_request(); HloInstruction* lhs = Visit(convolve_request.lhs(), visited); HloInstruction* rhs = Visit(convolve_request.rhs(), visited); - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateConvolve( - request.output_shape(), lhs, rhs, convolve_request.window(), - convolve_request.dimension_numbers())); + hlo_instruction = add_instruction(HloInstruction::CreateConvolve( + request.output_shape(), lhs, rhs, convolve_request.window(), + convolve_request.dimension_numbers())); break; } @@ -2033,17 +2033,15 @@ HloInstruction* ComputationLowerer::Visit( request.request().cross_replica_sum_request(); HloInstruction* operand = Visit(cross_replica_sum_request.operand(), visited); - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateCrossReplicaSum( - request.output_shape(), operand)); + hlo_instruction = add_instruction(HloInstruction::CreateCrossReplicaSum( + request.output_shape(), operand)); break; } case OpRequest::kInfeedRequest: { const InfeedRequest& infeed_request = request.request().infeed_request(); - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateInfeed( - request.output_shape(), infeed_request.config())); + hlo_instruction = add_instruction(HloInstruction::CreateInfeed( + request.output_shape(), infeed_request.config())); break; } @@ -2051,9 +2049,8 @@ HloInstruction* ComputationLowerer::Visit( const OutfeedRequest& outfeed_request = request.request().outfeed_request(); HloInstruction* operand = Visit(outfeed_request.operand(), visited); - hlo_instruction = hlo_builder_.AddInstruction( - HloInstruction::CreateOutfeed(outfeed_request.shape(), operand, - outfeed_request.outfeed_config())); + hlo_instruction = add_instruction(HloInstruction::CreateOutfeed( + outfeed_request.shape(), operand, outfeed_request.outfeed_config())); break; } @@ -2069,7 +2066,7 @@ HloInstruction* ComputationLowerer::Visit( request.embedded_computation_versions(0); HloComputation* map_computation = ResolveComputation(map_request.to_apply(), map_version); - hlo_instruction = hlo_builder_.AddInstruction(HloInstruction::CreateMap( + hlo_instruction = add_instruction(HloInstruction::CreateMap( request.output_shape(), operands, map_computation)); break; } @@ -2083,10 +2080,9 @@ HloInstruction* ComputationLowerer::Visit( request.embedded_computation_versions(0); HloComputation* reduce_computation = ResolveComputation(reduce_request.to_apply(), reduce_version); - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateReduce( - request.output_shape(), operand, init_value, - AsInt64Slice(reduce_request.dimensions()), reduce_computation)); + hlo_instruction = add_instruction(HloInstruction::CreateReduce( + request.output_shape(), operand, init_value, + AsInt64Slice(reduce_request.dimensions()), reduce_computation)); break; } @@ -2101,10 +2097,9 @@ HloInstruction* ComputationLowerer::Visit( request.embedded_computation_versions(0); HloComputation* reduce_window_computation = ResolveComputation( reduce_window_request.to_apply(), reduce_window_version); - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateReduceWindow( - request.output_shape(), operand, init_value, - reduce_window_request.window(), reduce_window_computation)); + hlo_instruction = add_instruction(HloInstruction::CreateReduceWindow( + request.output_shape(), operand, init_value, + reduce_window_request.window(), reduce_window_computation)); break; } @@ -2126,11 +2121,10 @@ HloInstruction* ComputationLowerer::Visit( select_and_scatter_request.select(), select_version); HloComputation* scatter_computation = ResolveComputation( select_and_scatter_request.scatter(), scatter_version); - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateSelectAndScatter( - request.output_shape(), operand, select_computation, - select_and_scatter_request.window(), source, init_value, - scatter_computation)); + hlo_instruction = add_instruction(HloInstruction::CreateSelectAndScatter( + request.output_shape(), operand, select_computation, + select_and_scatter_request.window(), source, init_value, + scatter_computation)); break; } @@ -2151,9 +2145,8 @@ HloInstruction* ComputationLowerer::Visit( ShapeUtil::Rank(request.output_shape()) - ShapeUtil::Rank(operand->shape())); } - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateBroadcast( - request.output_shape(), operand, broadcast_dimensions)); + hlo_instruction = add_instruction(HloInstruction::CreateBroadcast( + request.output_shape(), operand, broadcast_dimensions)); break; } @@ -2165,14 +2158,13 @@ HloInstruction* ComputationLowerer::Visit( if (IsIdentityPermutation(AsInt64Slice(reshape_request.dimensions()))) { transposed = operand; } else { - transposed = - hlo_builder_.AddInstruction(HloInstruction::CreateTranspose( - ShapeUtil::PermuteDimensions(InversePermutation(AsInt64Slice( - reshape_request.dimensions())), - operand->shape()), - operand, AsInt64Slice(reshape_request.dimensions()))); + transposed = add_instruction(HloInstruction::CreateTranspose( + ShapeUtil::PermuteDimensions( + InversePermutation(AsInt64Slice(reshape_request.dimensions())), + operand->shape()), + operand, AsInt64Slice(reshape_request.dimensions()))); } - hlo_instruction = hlo_builder_.AddInstruction( + hlo_instruction = add_instruction( HloInstruction::CreateReshape(request.output_shape(), transposed)); break; } @@ -2181,12 +2173,11 @@ HloInstruction* ComputationLowerer::Visit( const TransposeRequest& transpose_request = request.request().transpose_request(); HloInstruction* operand = Visit(transpose_request.operand(), visited); - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateTranspose( - ShapeUtil::PermuteDimensions(InversePermutation(AsInt64Slice( - transpose_request.dimensions())), - operand->shape()), - operand, AsInt64Slice(transpose_request.dimensions()))); + hlo_instruction = add_instruction(HloInstruction::CreateTranspose( + ShapeUtil::PermuteDimensions( + InversePermutation(AsInt64Slice(transpose_request.dimensions())), + operand->shape()), + operand, AsInt64Slice(transpose_request.dimensions()))); break; } @@ -2194,10 +2185,9 @@ HloInstruction* ComputationLowerer::Visit( const ReverseRequest& reverse_request = request.request().reverse_request(); HloInstruction* operand = Visit(reverse_request.operand(), visited); - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateReverse( - request.output_shape(), operand, - AsInt64Slice(reverse_request.dimensions()))); + hlo_instruction = add_instruction(HloInstruction::CreateReverse( + request.output_shape(), operand, + AsInt64Slice(reverse_request.dimensions()))); break; } @@ -2206,7 +2196,7 @@ HloInstruction* ComputationLowerer::Visit( HloInstruction* operand = Visit(pad_request.operand(), visited); HloInstruction* padding_value = Visit(pad_request.padding_value(), visited); - hlo_instruction = hlo_builder_.AddInstruction(HloInstruction::CreatePad( + hlo_instruction = add_instruction(HloInstruction::CreatePad( request.output_shape(), operand, padding_value, pad_request.padding_config())); break; @@ -2214,7 +2204,7 @@ HloInstruction* ComputationLowerer::Visit( case OpRequest::kRecvRequest: { const RecvRequest& recv_request = request.request().recv_request(); - hlo_instruction = hlo_builder_.AddInstruction(HloInstruction::CreateRecv( + hlo_instruction = add_instruction(HloInstruction::CreateRecv( request.output_shape(), recv_request.channel_handle().handle())); break; } @@ -2222,10 +2212,9 @@ HloInstruction* ComputationLowerer::Visit( case OpRequest::kParameterRequest: { const ParameterRequest& parameter_request = request.request().parameter_request(); - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateParameter( - parameter_request.parameter(), request.output_shape(), - parameter_request.name())); + hlo_instruction = add_instruction(HloInstruction::CreateParameter( + parameter_request.parameter(), request.output_shape(), + parameter_request.name())); break; } @@ -2233,7 +2222,7 @@ HloInstruction* ComputationLowerer::Visit( const ConvertRequest& convert_request = request.request().convert_request(); HloInstruction* operand = Visit(convert_request.operand(), visited); - hlo_instruction = hlo_builder_.AddInstruction( + hlo_instruction = add_instruction( HloInstruction::CreateConvert(request.output_shape(), operand)); break; } @@ -2250,7 +2239,7 @@ HloInstruction* ComputationLowerer::Visit( HloComputation* body = ResolveComputation(while_request.body(), body_version); HloInstruction* init = Visit(while_request.init(), visited); - hlo_instruction = hlo_builder_.AddInstruction(HloInstruction::CreateWhile( + hlo_instruction = add_instruction(HloInstruction::CreateWhile( request.output_shape(), condition, body, init)); break; } @@ -2262,9 +2251,8 @@ HloInstruction* ComputationLowerer::Visit( HloInstruction* rhs = Visit(ternary_op_request.rhs(), visited); HloInstruction* ehs = Visit(ternary_op_request.ehs(), visited); auto hlo_opcode = TernaryOperationToHloOpcode(ternary_op_request.triop()); - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateTernary( - request.output_shape(), hlo_opcode, lhs, rhs, ehs)); + hlo_instruction = add_instruction(HloInstruction::CreateTernary( + request.output_shape(), hlo_opcode, lhs, rhs, ehs)); break; } @@ -2279,9 +2267,8 @@ HloInstruction* ComputationLowerer::Visit( } auto hlo_opcode = VariadicOperationToHloOpcode(variadic_op_request.varop()); - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateVariadic( - request.output_shape(), hlo_opcode, operands)); + hlo_instruction = add_instruction(HloInstruction::CreateVariadic( + request.output_shape(), hlo_opcode, operands)); break; } @@ -2296,7 +2283,7 @@ HloInstruction* ComputationLowerer::Visit( request.embedded_computation_versions(0); HloComputation* call_computation = ResolveComputation(call_request.to_apply(), call_version); - hlo_instruction = hlo_builder_.AddInstruction(HloInstruction::CreateCall( + hlo_instruction = add_instruction(HloInstruction::CreateCall( request.output_shape(), operands, call_computation)); break; } @@ -2308,9 +2295,8 @@ HloInstruction* ComputationLowerer::Visit( for (const ComputationDataHandle& operand : cc_request.operands()) { operands.push_back(Visit(operand, visited)); } - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateCustomCall( - cc_request.shape(), operands, cc_request.call_target_name())); + hlo_instruction = add_instruction(HloInstruction::CreateCustomCall( + cc_request.shape(), operands, cc_request.call_target_name())); break; } @@ -2319,7 +2305,7 @@ HloInstruction* ComputationLowerer::Visit( request.request().unary_op_request(); HloInstruction* operand = Visit(unary_op_request.operand(), visited); auto hlo_opcode = UnaryOperationToHloOpcode(unary_op_request.unop()); - hlo_instruction = hlo_builder_.AddInstruction(HloInstruction::CreateUnary( + hlo_instruction = add_instruction(HloInstruction::CreateUnary( request.output_shape(), hlo_opcode, operand)); break; } @@ -2347,23 +2333,22 @@ HloInstruction* ComputationLowerer::Visit( // identical to the HLO broadcast semantics so the broadcast_dimensions // field can just be passed to the instruction builder. HloInstruction* broadcasted_operand = - hlo_builder_.AddInstruction(HloInstruction::CreateBroadcast( + add_instruction(HloInstruction::CreateBroadcast( broadcast_shape, operand_to_broadcast, AsInt64Slice(binary_op_request.broadcast_dimensions()))); lhs = (lhs == operand_to_broadcast) ? broadcasted_operand : lhs; rhs = (rhs == operand_to_broadcast) ? broadcasted_operand : rhs; } - hlo_instruction = - hlo_builder_.AddInstruction(HloInstruction::CreateBinary( - request.output_shape(), hlo_opcode, lhs, rhs)); + hlo_instruction = add_instruction(HloInstruction::CreateBinary( + request.output_shape(), hlo_opcode, lhs, rhs)); break; } case OpRequest::kTraceRequest: { const TraceRequest& trace_request = request.request().trace_request(); HloInstruction* operand = Visit(trace_request.operand(), visited); - hlo_instruction = hlo_builder_.AddInstruction( + hlo_instruction = add_instruction( HloInstruction::CreateTrace(trace_request.tag(), operand)); operand->set_tracing(hlo_instruction); break; @@ -2372,7 +2357,7 @@ HloInstruction* ComputationLowerer::Visit( case OpRequest::kSendRequest: { const SendRequest& send_request = request.request().send_request(); HloInstruction* operand = Visit(send_request.operand(), visited); - hlo_instruction = hlo_builder_.AddInstruction(HloInstruction::CreateSend( + hlo_instruction = add_instruction(HloInstruction::CreateSend( operand, send_request.channel_handle().handle())); break; } @@ -2383,7 +2368,6 @@ HloInstruction* ComputationLowerer::Visit( default: LOG(FATAL) << "Unexpected request type: " << request.request().op_case(); } - hlo_instruction->set_metadata(request.request().metadata()); (*visited)[handle.handle()] = hlo_instruction; return hlo_instruction; } diff --git a/tensorflow/compiler/xla/service/user_computation_test.cc b/tensorflow/compiler/xla/service/user_computation_test.cc index 032b5cfac60..cf04cfde500 100644 --- a/tensorflow/compiler/xla/service/user_computation_test.cc +++ b/tensorflow/compiler/xla/service/user_computation_test.cc @@ -59,6 +59,9 @@ TEST_F(UserComputationTest, SimpleComputation) { param_request.set_name("param0"); TF_ASSIGN_OR_ASSERT_OK(ComputationDataHandle param_handle, computation.AddParameterInstruction(param_request)); + OpMetadata metadata; + metadata.set_op_name("meta"); + TF_ASSERT_OK(computation.SetOpMetadata(param_handle, metadata)); OutfeedRequest outfeed_request; *outfeed_request.mutable_operand() = constant_handle; @@ -135,6 +138,8 @@ TEST_F(UserComputationTest, SimpleComputation) { // The root of the instruction should be the parameter instruction (not the // outfeed). EXPECT_THAT(hlo_computation->root_instruction(), op::Parameter()); + EXPECT_EQ(hlo_computation->root_instruction()->metadata().op_name(), + "meta"); } } diff --git a/tensorflow/compiler/xla/tests/literal_test_util.h b/tensorflow/compiler/xla/tests/literal_test_util.h index aeadc023cc0..4f980830333 100644 --- a/tensorflow/compiler/xla/tests/literal_test_util.h +++ b/tensorflow/compiler/xla/tests/literal_test_util.h @@ -18,6 +18,7 @@ limitations under the License. #include #include +#include #include #include "tensorflow/compiler/xla/array2d.h" @@ -171,6 +172,36 @@ class LiteralTestUtil { tensorflow::gtl::ArraySlice minor_to_major, const Literal& literal); + // Creates a literal with the supplied shape, and uses the provided value + // generator to populate the literal's values. + // Returns the new literal object, or an error Status if failed. + template < + PrimitiveType type, + typename T = typename primitive_util::PrimitiveTypeToNative::type> + static StatusOr> CreateRandomLiteral( + const Shape& shape, + const std::function)>& generator); + + // Creates a literal with the supplied shape, and initializes the literal + // values using a normal distribution with given mean and stddev standard + // deviation, and using the engine as entropy generator. + // Returns the new literal object, or an error Status if failed. + template < + PrimitiveType type, typename E, + typename T = typename primitive_util::PrimitiveTypeToNative::type> + static StatusOr> CreateRandomLiteral( + const Shape& shape, E* engine, T mean, T stddev); + + // Creates a literal with the supplied shape, and initializes the literal + // values using a normal distribution with given mean and stddev standard + // deviation. + // Returns the new literal object, or an error Status if failed. + template < + PrimitiveType type, + typename T = typename primitive_util::PrimitiveTypeToNative::type> + static StatusOr> CreateRandomLiteral( + const Shape& shape, T mean, T stddev); + private: TF_DISALLOW_COPY_AND_ASSIGN(LiteralTestUtil); }; @@ -270,6 +301,40 @@ template ExpectNear(*LiteralUtil::CreateR4FromArray4D(expected), actual, error); } +template +/* static */ StatusOr> +LiteralTestUtil::CreateRandomLiteral( + const Shape& shape, + const std::function)>& generator) { + using NativeT = typename primitive_util::PrimitiveTypeToNative::type; + TF_RET_CHECK(shape.element_type() == type); + std::unique_ptr literal = LiteralUtil::CreateFromShape(shape); + TF_RETURN_IF_ERROR(LiteralUtil::Populate( + literal.get(), [&](tensorflow::gtl::ArraySlice indexes) { + return generator(indexes); + })); + return std::move(literal); +} + +template +/* static */ StatusOr> +LiteralTestUtil::CreateRandomLiteral(const Shape& shape, E* engine, T mean, + T stddev) { + using NativeT = typename primitive_util::PrimitiveTypeToNative::type; + std::normal_distribution generator(mean, stddev); + return CreateRandomLiteral( + shape, [&](tensorflow::gtl::ArraySlice /*indexes*/) { + return generator(*engine); + }); +} + +template +/* static */ StatusOr> +LiteralTestUtil::CreateRandomLiteral(const Shape& shape, T mean, T stddev) { + std::minstd_rand0 engine; + return CreateRandomLiteral(shape, &engine, mean, stddev); +} + } // namespace xla #endif // TENSORFLOW_COMPILER_XLA_TESTS_LITERAL_TEST_UTIL_H_ diff --git a/tensorflow/contrib/keras/python/keras/layers/core.py b/tensorflow/contrib/keras/python/keras/layers/core.py index 7a9e0d1736f..0b6cdc65a4f 100644 --- a/tensorflow/contrib/keras/python/keras/layers/core.py +++ b/tensorflow/contrib/keras/python/keras/layers/core.py @@ -741,6 +741,7 @@ class Dense(tf_core_layers.Dense, Layer): self.constraints[self.kernel] = self.kernel_constraint if self.use_bias and self.bias_constraint: self.constraints[self.bias] = self.bias_constraint + self.built = True def get_config(self): config = { diff --git a/tensorflow/contrib/keras/python/keras/layers/merge.py b/tensorflow/contrib/keras/python/keras/layers/merge.py index 25921979bdd..b4bb9935fde 100644 --- a/tensorflow/contrib/keras/python/keras/layers/merge.py +++ b/tensorflow/contrib/keras/python/keras/layers/merge.py @@ -111,6 +111,7 @@ class _Merge(Layer): self._reshape_required = False else: self._reshape_required = True + self.built = True def call(self, inputs): if self._reshape_required: @@ -302,6 +303,7 @@ class Concatenate(_Merge): 'inputs with matching shapes ' 'except for the concat axis. ' 'Got inputs shapes: %s' % (input_shape)) + self.built = True def call(self, inputs): if not isinstance(inputs, list): @@ -414,6 +416,7 @@ class Dot(_Merge): raise ValueError('Dimension incompatibility ' '%s != %s. ' % (shape1[axes[0]], shape2[axes[1]]) + 'Layer shapes: %s, %s' % (shape1, shape2)) + self.built = True def call(self, inputs): x1 = inputs[0] diff --git a/tensorflow/contrib/keras/python/keras/layers/wrappers.py b/tensorflow/contrib/keras/python/keras/layers/wrappers.py index ce6458fd0c8..092501cb114 100644 --- a/tensorflow/contrib/keras/python/keras/layers/wrappers.py +++ b/tensorflow/contrib/keras/python/keras/layers/wrappers.py @@ -166,6 +166,7 @@ class TimeDistributed(Wrapper): self.layer.build(child_input_shape) self.layer.built = True super(TimeDistributed, self).build() + self.built = True def _compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() diff --git a/tensorflow/contrib/layers/python/layers/layers.py b/tensorflow/contrib/layers/python/layers/layers.py index c920764803d..32ca0c38d91 100644 --- a/tensorflow/contrib/layers/python/layers/layers.py +++ b/tensorflow/contrib/layers/python/layers/layers.py @@ -844,7 +844,7 @@ def convolution(inputs, variable would be created and added the activations. Finally, if `activation_fn` is not `None`, it is applied to the activations as well. - Performs a'trous convolution with input stride/dilation rate equal to `rate` + Performs atrous convolution with input stride/dilation rate equal to `rate` if a value > 1 for any dimension of `rate` is specified. In this case `stride` values != 1 are not supported. @@ -870,7 +870,7 @@ def convolution(inputs, "NCW". For N=2, the valid values are "NHWC" (default) and "NCHW". For N=3, the valid values are "NDHWC" (default) and "NCDHW". rate: A sequence of N positive integers specifying the dilation rate to use - for a'trous convolution. Can be a single integer to specify the same + for atrous convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `rate` value != 1 is incompatible with specifying any `stride` value != 1. activation_fn: Activation function. The default value is a ReLU function. @@ -1865,7 +1865,7 @@ def separable_convolution2d( depthwise convolution stride. Can be an int if both strides are the same. padding: One of 'VALID' or 'SAME'. rate: A list of length 2: [rate_height, rate_width], specifying the dilation - rates for a'trous convolution. Can be an int if both rates are the same. + rates for atrous convolution. Can be an int if both rates are the same. If any value is larger than one, then both stride values need to be one. activation_fn: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation. diff --git a/tensorflow/contrib/learn/python/learn/estimators/estimator.py b/tensorflow/contrib/learn/python/learn/estimators/estimator.py index 123db50d325..74a6da20d4e 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/estimator.py +++ b/tensorflow/contrib/learn/python/learn/estimators/estimator.py @@ -966,7 +966,8 @@ class BaseEstimator( saver.Saver( sharded=True, max_to_keep=self._config.keep_checkpoint_max, - defer_build=True)) + defer_build=True, + save_relative_paths=True)) chief_hooks = [] if (self._config.save_checkpoints_secs or diff --git a/tensorflow/contrib/learn/python/learn/estimators/estimator_test.py b/tensorflow/contrib/learn/python/learn/estimators/estimator_test.py index 8c61ffad553..c95df75356b 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/estimator_test.py +++ b/tensorflow/contrib/learn/python/learn/estimators/estimator_test.py @@ -28,6 +28,8 @@ import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin +from google.protobuf import text_format + from tensorflow.contrib import learn from tensorflow.contrib import lookup from tensorflow.contrib.framework.python.ops import variables @@ -50,6 +52,7 @@ from tensorflow.python.client import session as session_lib from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops +from tensorflow.python.lib.io import file_io from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops @@ -61,6 +64,7 @@ from tensorflow.python.platform import test from tensorflow.python.saved_model import loader from tensorflow.python.saved_model import tag_constants from tensorflow.python.training import basic_session_run_hooks +from tensorflow.python.training import checkpoint_state_pb2 from tensorflow.python.training import input as input_lib from tensorflow.python.training import monitored_session from tensorflow.python.training import saver as saver_lib @@ -674,6 +678,38 @@ class EstimatorTest(test.TestCase): metrics={'MSE': metric_ops.streaming_mean_squared_error}) self.assertLess(scores3['MSE'], scores['MSE']) + def test_checkpoint_contains_relative_paths(self): + tmpdir = tempfile.mkdtemp() + est = estimator.Estimator( + model_dir=tmpdir, + model_fn=linear_model_fn_with_model_fn_ops) + est.fit(input_fn=boston_input_fn, steps=5) + + checkpoint_file_content = file_io.read_file_to_string( + os.path.join(tmpdir, 'checkpoint')) + ckpt = checkpoint_state_pb2.CheckpointState() + text_format.Merge(checkpoint_file_content, ckpt) + self.assertEqual(ckpt.model_checkpoint_path, 'model.ckpt-5') + self.assertAllEqual( + ['model.ckpt-1', 'model.ckpt-5'], ckpt.all_model_checkpoint_paths) + + def test_train_save_copy_reload(self): + tmpdir = tempfile.mkdtemp() + model_dir1 = os.path.join(tmpdir, 'model_dir1') + est1 = estimator.Estimator( + model_dir=model_dir1, + model_fn=linear_model_fn_with_model_fn_ops) + est1.fit(input_fn=boston_input_fn, steps=5) + + model_dir2 = os.path.join(tmpdir, 'model_dir2') + os.renames(model_dir1, model_dir2) + est2 = estimator.Estimator( + model_dir=model_dir2, + model_fn=linear_model_fn_with_model_fn_ops) + self.assertEqual(5, est2.get_variable_value('global_step')) + est2.fit(input_fn=boston_input_fn, steps=5) + self.assertEqual(10, est2.get_variable_value('global_step')) + def testEstimatorParams(self): boston = base.load_boston() est = estimator.SKCompat( diff --git a/tensorflow/contrib/learn/python/learn/estimators/head.py b/tensorflow/contrib/learn/python/learn/estimators/head.py index 15e457f932c..25f2922bf8e 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/head.py +++ b/tensorflow/contrib/learn/python/learn/estimators/head.py @@ -379,7 +379,12 @@ def multi_label_head(n_classes, loss_fn=None): """Creates a Head for multi label classification. - The Head uses sigmoid cross entropy loss. + Multi-label classification handles the case where each example may have zero + or more associated labels, from a discrete set. This is distinct from + `multi_class_head` which has exactly one label from a discrete set. + + This head by default uses sigmoid cross entropy loss, which expects as input + a multi-hot tensor of shape `(batch_size, num_classes)`. Args: n_classes: Integer, number of classes, must be >= 2 diff --git a/tensorflow/contrib/learn/python/learn/estimators/run_config.py b/tensorflow/contrib/learn/python/learn/estimators/run_config.py index 5a63ee7fa82..3b7d618b60f 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/run_config.py +++ b/tensorflow/contrib/learn/python/learn/estimators/run_config.py @@ -28,6 +28,7 @@ import six from tensorflow.contrib.framework.python.framework import experimental from tensorflow.core.protobuf import config_pb2 from tensorflow.python.estimator import run_config as core_run_config +from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import server_lib @@ -260,10 +261,12 @@ class RunConfig(ClusterConfig, core_run_config.RunConfig): the feature. evaluation_master: the master on which to perform evaluation. model_dir: directory where model parameters, graph etc are saved. If - `None`, see `Estimator` about where the model will be saved. + `None`, will use `model_dir` property in `TF_CONFIG` environment + variable. If both are set, must have same value. If both are `None`, see + `Estimator` about where the model will be saved. session_config: a ConfigProto used to set session parameters, or None. - Note - using this argument, it is easy to provide settings which break - otherwise perfectly good models. Use with care. + Note - using this argument, it is easy to provide settings which break + otherwise perfectly good models. Use with care. """ super(RunConfig, self).__init__( master=master, evaluation_master=evaluation_master) @@ -291,7 +294,7 @@ class RunConfig(ClusterConfig, core_run_config.RunConfig): # create Scaffold and Saver in their model_fn to set these. self._keep_checkpoint_max = keep_checkpoint_max self._keep_checkpoint_every_n_hours = keep_checkpoint_every_n_hours - self._model_dir = model_dir + self._model_dir = _get_model_dir(model_dir) def replace(self, **kwargs): """Returns a new instance of `RunConfig` replacing specified properties. @@ -434,3 +437,21 @@ def _get_master(cluster_spec, task_type, task_id): # For backwards compatibility, we return empty string if task_type was # not set (task_type did not previously exist). return '' + + +def _get_model_dir(model_dir): + """Returns `model_dir` based user provided `model_dir` or `TF_CONFIG`.""" + + model_dir_in_tf_config = json.loads( + os.environ.get('TF_CONFIG') or '{}').get('model_dir', None) + if model_dir_in_tf_config is not None: + if model_dir is not None and model_dir_in_tf_config != model_dir: + raise ValueError( + '`model_dir` provided in RunConfig construct, if set, ' + 'must have the same value as the model_dir in TF_CONFIG. ' + 'model_dir: {}\nTF_CONFIG["model_dir"]: {}.\n'.format( + model_dir, model_dir_in_tf_config)) + + logging.info('Using model_dir in TF_CONFIG: %s', model_dir_in_tf_config) + + return model_dir or model_dir_in_tf_config diff --git a/tensorflow/contrib/learn/python/learn/estimators/run_config_test.py b/tensorflow/contrib/learn/python/learn/estimators/run_config_test.py index 6d39a9ad137..9102e42bfbb 100644 --- a/tensorflow/contrib/learn/python/learn/estimators/run_config_test.py +++ b/tensorflow/contrib/learn/python/learn/estimators/run_config_test.py @@ -223,6 +223,27 @@ class RunConfigTest(test.TestCase): config = run_config_lib.RunConfig(model_dir=TEST_DIR) self.assertEqual(TEST_DIR, config.model_dir) + def test_model_dir_in_tf_config(self): + tf_config = {"model_dir": TEST_DIR} + with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): + run_config = run_config_lib.RunConfig() + self.assertEqual(TEST_DIR, run_config.model_dir) + + def test_model_dir_both_in_tf_config_and_constructor(self): + tf_config = {"model_dir": TEST_DIR} + with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): + run_config = run_config_lib.RunConfig(model_dir=TEST_DIR) + self.assertEqual(TEST_DIR, run_config.model_dir) + + def test_model_dir_fail_if_constructor_value_mismatch_tf_config(self): + tf_config = {"model_dir": TEST_DIR} + with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): + with self.assertRaisesRegexp( + ValueError, + "`model_dir` provided in RunConfig .* must have " + "the same value .* in TF_CONFIG"): + run_config_lib.RunConfig(model_dir=TEST_DIR + "/sub_dir") + def test_replace(self): config = run_config_lib.RunConfig( tf_random_seed=RANDOM_SEED, model_dir=TEST_DIR) diff --git a/tensorflow/contrib/linalg/python/kernel_tests/linear_operator_composition_test.py b/tensorflow/contrib/linalg/python/kernel_tests/linear_operator_composition_test.py index 998073e28bd..0585a0ba5a9 100644 --- a/tensorflow/contrib/linalg/python/kernel_tests/linear_operator_composition_test.py +++ b/tensorflow/contrib/linalg/python/kernel_tests/linear_operator_composition_test.py @@ -65,12 +65,15 @@ class SquareLinearOperatorCompositionTest( # feed_dict. matrices = sess.run(matrices) operator = linalg.LinearOperatorComposition( - [linalg.LinearOperatorFullMatrix(m_ph) for m_ph in matrices_ph]) + [linalg.LinearOperatorFullMatrix(m_ph) for m_ph in matrices_ph], + is_square=True) feed_dict = {m_ph: m for (m_ph, m) in zip(matrices_ph, matrices)} else: operator = linalg.LinearOperatorComposition( [linalg.LinearOperatorFullMatrix(m) for m in matrices]) feed_dict = None + # Should be auto-set. + self.assertTrue(operator.is_square) # Convert back to Tensor. Needed if use_placeholder, since then we have # already evaluated each matrix to a numpy array. diff --git a/tensorflow/contrib/linalg/python/kernel_tests/linear_operator_full_matrix_test.py b/tensorflow/contrib/linalg/python/kernel_tests/linear_operator_full_matrix_test.py index d4a9e97ce7a..12c299683aa 100644 --- a/tensorflow/contrib/linalg/python/kernel_tests/linear_operator_full_matrix_test.py +++ b/tensorflow/contrib/linalg/python/kernel_tests/linear_operator_full_matrix_test.py @@ -45,9 +45,10 @@ class SquareLinearOperatorFullMatrixTest( # values are random and we want the same value used for both mat and # feed_dict. matrix = matrix.eval() - operator = linalg.LinearOperatorFullMatrix(matrix_ph) + operator = linalg.LinearOperatorFullMatrix(matrix_ph, is_square=True) feed_dict = {matrix_ph: matrix} else: + # is_square should be auto-detected here. operator = linalg.LinearOperatorFullMatrix(matrix) feed_dict = None @@ -68,6 +69,8 @@ class SquareLinearOperatorFullMatrixTest( self.assertTrue(operator.is_positive_definite) self.assertTrue(operator.is_non_singular) self.assertFalse(operator.is_self_adjoint) + # Auto-detected. + self.assertTrue(operator.is_square) class SquareLinearOperatorFullMatrixSymmetricPositiveDefiniteTest( @@ -104,6 +107,7 @@ class SquareLinearOperatorFullMatrixSymmetricPositiveDefiniteTest( # values are random and we want the same value used for both mat and # feed_dict. matrix = matrix.eval() + # is_square is auto-set because of self_adjoint/pd. operator = linalg.LinearOperatorFullMatrix( matrix_ph, is_self_adjoint=True, is_positive_definite=True) feed_dict = {matrix_ph: matrix} @@ -129,7 +133,8 @@ class SquareLinearOperatorFullMatrixSymmetricPositiveDefiniteTest( # Should be auto-set self.assertTrue(operator.is_non_singular) - self.assertTrue(operator._is_spd) + self.assertTrue(operator._can_use_cholesky) + self.assertTrue(operator.is_square) class NonSquareLinearOperatorFullMatrixTest( @@ -157,16 +162,14 @@ class NonSquareLinearOperatorFullMatrixTest( return operator, mat, feed_dict def test_is_x_flags(self): - # Matrix with two positive eigenvalues. - matrix = [[3., 0.], [1., 1.]] + matrix = [[3., 2., 1.], [1., 1., 1.]] operator = linalg.LinearOperatorFullMatrix( matrix, - is_positive_definite=True, - is_non_singular=True, is_self_adjoint=False) - self.assertTrue(operator.is_positive_definite) - self.assertTrue(operator.is_non_singular) + self.assertEqual(operator.is_positive_definite, None) + self.assertEqual(operator.is_non_singular, None) self.assertFalse(operator.is_self_adjoint) + self.assertFalse(operator.is_square) def test_matrix_must_have_at_least_two_dims_or_raises(self): with self.assertRaisesRegexp(ValueError, "at least 2 dimensions"): diff --git a/tensorflow/contrib/linalg/python/kernel_tests/linear_operator_test.py b/tensorflow/contrib/linalg/python/kernel_tests/linear_operator_test.py index c5bfc6e1fd5..d24388fce32 100644 --- a/tensorflow/contrib/linalg/python/kernel_tests/linear_operator_test.py +++ b/tensorflow/contrib/linalg/python/kernel_tests/linear_operator_test.py @@ -54,6 +54,9 @@ class LinearOperatorShape(linalg.LinearOperator): def _shape_tensor(self): return constant_op.constant(self._stored_shape, dtype=dtypes.int32) + def _apply(self): + raise NotImplementedError("Not needed for this test.") + class LinearOperatorApplyOnly(linalg.LinearOperator): """LinearOperator that simply wraps a [batch] matrix and implements apply.""" diff --git a/tensorflow/contrib/linalg/python/ops/linear_operator.py b/tensorflow/contrib/linalg/python/ops/linear_operator.py index 454411d93cf..8d0a1d7de20 100644 --- a/tensorflow/contrib/linalg/python/ops/linear_operator.py +++ b/tensorflow/contrib/linalg/python/ops/linear_operator.py @@ -18,6 +18,7 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function +import abc import contextlib from tensorflow.contrib import framework as contrib_framework @@ -25,6 +26,7 @@ from tensorflow.contrib.linalg.python.ops import linear_operator_util from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import linalg_ops +from tensorflow.python.ops import math_ops __all__ = ["LinearOperator"] @@ -50,11 +52,9 @@ class LinearOperator(object): #### Performance contract - Subclasses should implement a method only if it can be done with a reasonable - performance increase over generic dense operations, either in time, parallel - scalability, or memory usage. For example, if the determinant can only be - computed using `tf.matrix_determinant(self.to_dense())`, then determinants - should not be implemented. + Subclasses should only implement the assert methods + (e.g. `assert_non_singular`) if they can be done in less than `O(N^3)` + time. Class docstrings should contain an explanation of computational complexity. Since this is a high-performance library, attention should be paid to detail, @@ -100,7 +100,7 @@ class LinearOperator(object): operator.shape() ==> [2, 4, 4] - operator.log_determinant() + operator.log_abs_determinant() ==> Shape [2] Tensor x = ... Shape [2, 4, 5] Tensor @@ -131,6 +131,7 @@ class LinearOperator(object): * If `is_X == None` (the default), callers should have no expectation either way. """ + __metaclass__ = abc.ABCMeta def __init__(self, dtype, @@ -167,17 +168,23 @@ class LinearOperator(object): ValueError: If hints are set incorrectly. """ # Check and auto-set flags. - if is_square is False: - if is_non_singular or is_positive_definite: - raise ValueError( - "A non-singular or positive definite operator is always square.") - self._is_square_set_by_user = is_square - if is_positive_definite: if is_non_singular is False: raise ValueError("A positive definite matrix is always non-singular.") is_non_singular = True + if is_non_singular: + if is_square is False: + raise ValueError("A non-singular matrix is always square.") + is_square = True + + if is_self_adjoint: + if is_square is False: + raise ValueError("A self-adjoint matrix is always square.") + is_square = True + + self._is_square_set_or_implied_by_hints = is_square + graph_parents = [] if graph_parents is None else graph_parents for i, t in enumerate(graph_parents): if t is None or not contrib_framework.is_tensor(t): @@ -239,15 +246,16 @@ class LinearOperator(object): """Return `True/False` depending on if this operator is square.""" # Static checks done after __init__. Why? Because domain/range dimension # sometimes requires lots of work done in the derived class after init. - static_square_check = self.domain_dimension == self.range_dimension - if self._is_square_set_by_user is False and static_square_check: + auto_square_check = self.domain_dimension == self.range_dimension + if self._is_square_set_or_implied_by_hints is False and auto_square_check: raise ValueError( "User set is_square hint to False, but the operator was square.") - if self._is_square_set_by_user is None: - return static_square_check + if self._is_square_set_or_implied_by_hints is None: + return auto_square_check - return self._is_square_set_by_user + return self._is_square_set_or_implied_by_hints + @abc.abstractmethod def _shape(self): # Write this in derived class to enable all static shape methods. raise NotImplementedError("_shape is not implemented.") @@ -265,6 +273,7 @@ class LinearOperator(object): """ return self._shape() + @abc.abstractmethod def _shape_tensor(self): raise NotImplementedError("_shape_tensor is not implemented.") @@ -367,8 +376,7 @@ class LinearOperator(object): self._cached_tensor_rank_tensor = ops.convert_to_tensor( self.tensor_rank) else: - self._cached_tensor_rank_tensor = array_ops.size( - self.shape_tensor()) + self._cached_tensor_rank_tensor = array_ops.size(self.shape_tensor()) return self._cached_tensor_rank_tensor @property @@ -486,9 +494,10 @@ class LinearOperator(object): """Check that arg.dtype == self.dtype.""" if arg.dtype != self.dtype: raise TypeError( - "Expected argument to have dtype %s. Found: %s in tensor %s" - % (self.dtype, arg.dtype, arg)) + "Expected argument to have dtype %s. Found: %s in tensor %s" % + (self.dtype, arg.dtype, arg)) + @abc.abstractmethod def _apply(self, x, adjoint=False, adjoint_arg=False): raise NotImplementedError("_apply is not implemented.") @@ -517,7 +526,9 @@ class LinearOperator(object): return self._apply(x, adjoint=adjoint, adjoint_arg=adjoint_arg) def _determinant(self): - raise NotImplementedError("_det is not implemented.") + if self._can_use_cholesky(): + return math_ops.exp(self.log_abs_determinant()) + return linalg_ops.matrix_determinant(self._matrix) def determinant(self, name="det"): """Determinant for every batch member. @@ -539,7 +550,11 @@ class LinearOperator(object): return self._determinant() def _log_abs_determinant(self): - raise NotImplementedError("_log_abs_det is not implemented.") + if self._can_use_cholesky(): + diag = array_ops.matrix_diag_part(self._get_cached_chol()) + return 2 * math_ops.reduce_sum(math_ops.log(diag), reduction_indices=[-1]) + abs_det = math_ops.abs(self.determinant()) + return math_ops.log(abs_det) def log_abs_determinant(self, name="log_abs_det"): """Log absolute value of determinant for every batch member. @@ -561,13 +576,20 @@ class LinearOperator(object): return self._log_abs_determinant() def _solve(self, rhs, adjoint=False, adjoint_arg=False): - # Since this is an exact solve method for all rhs, this will only be - # available for non-singular (batch) operators, in particular the operator - # must be square. - raise NotImplementedError("_solve is not implemented.") + if self.is_square is False: + raise NotImplementedError( + "Solve is not yet implemented for non-square operators.") + rhs = linear_operator_util.matrix_adjoint(rhs) if adjoint_arg else rhs + if self._can_use_cholesky(): + return linalg_ops.cholesky_solve(self._get_cached_chol(), rhs) + return linalg_ops.matrix_solve( + self._get_cached_dense_matrix(), rhs, adjoint=adjoint) def solve(self, rhs, adjoint=False, adjoint_arg=False, name="solve"): - """Solve `R` (batch) systems of equations exactly: `A X = rhs`. + """Solve `R` (batch) systems of equations with best effort: `A X = rhs`. + + The solution may not be exact, and in this case it will be close in some + sense (see class docstring for details). Examples: @@ -689,3 +711,20 @@ class LinearOperator(object): x = ops.convert_to_tensor(x, name="x") self._check_input_dtype(x) return self._add_to_tensor(x) + + def _can_use_cholesky(self): + # TODO(langmore) Add complex types when tf.cholesky can use them. + return (not self.dtype.is_complex and self.is_self_adjoint and + self.is_positive_definite) + + def _get_cached_dense_matrix(self): + if not hasattr(self, "_cached_dense_matrix"): + self._cached_dense_matrix = self.to_dense() + return self._cached_dense_matrix + + def _get_cached_chol(self): + if not self._can_use_cholesky(): + return None + if not hasattr(self, "_cached_chol"): + self._cached_chol = linalg_ops.cholesky(self._get_cached_dense_matrix()) + return self._cached_chol diff --git a/tensorflow/contrib/linalg/python/ops/linear_operator_composition.py b/tensorflow/contrib/linalg/python/ops/linear_operator_composition.py index b1557769b22..550c630497c 100644 --- a/tensorflow/contrib/linalg/python/ops/linear_operator_composition.py +++ b/tensorflow/contrib/linalg/python/ops/linear_operator_composition.py @@ -63,7 +63,7 @@ class LinearOperatorComposition(linear_operator.LinearOperator): operator.shape ==> [2, 2] - operator.log_determinant() + operator.log_abs_determinant() ==> scalar Tensor x = ... Shape [2, 4] Tensor @@ -96,7 +96,7 @@ class LinearOperatorComposition(linear_operator.LinearOperator): #### Matrix property hints This `LinearOperator` is initialized with boolean flags of the form `is_X`, - for `X = non_singular, self_adjoint, positive_definite`. + for `X = non_singular, self_adjoint, positive_definite, square`. These have the following meaning * If `is_X == True`, callers should expect the operator to have the property `X`. This is a promise that should be fulfilled, but is *not* a @@ -112,6 +112,7 @@ class LinearOperatorComposition(linear_operator.LinearOperator): is_non_singular=None, is_self_adjoint=None, is_positive_definite=None, + is_square=None, name=None): r"""Initialize a `LinearOperatorComposition`. @@ -132,6 +133,7 @@ class LinearOperatorComposition(linear_operator.LinearOperator): self-adjoint to be positive-definite. See: https://en.wikipedia.org/wiki/Positive-definite_matrix\ #Extension_for_non_symmetric_matrices + is_square: Expect that this operator acts like square [batch] matrices. name: A name for this `LinearOperator`. Default is the individual operators names joined with `_o_`. @@ -177,6 +179,7 @@ class LinearOperatorComposition(linear_operator.LinearOperator): is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, + is_square=is_square, name=name) @property diff --git a/tensorflow/contrib/linalg/python/ops/linear_operator_diag.py b/tensorflow/contrib/linalg/python/ops/linear_operator_diag.py index 97e52d08a43..d81dea65143 100644 --- a/tensorflow/contrib/linalg/python/ops/linear_operator_diag.py +++ b/tensorflow/contrib/linalg/python/ops/linear_operator_diag.py @@ -52,7 +52,7 @@ class LinearOperatorDiag(linear_operator.LinearOperator): operator.shape ==> [2, 2] - operator.log_determinant() + operator.log_abs_determinant() ==> scalar Tensor x = ... Shape [2, 4] Tensor @@ -97,7 +97,7 @@ class LinearOperatorDiag(linear_operator.LinearOperator): #### Matrix property hints This `LinearOperator` is initialized with boolean flags of the form `is_X`, - for `X = non_singular, self_adjoint, positive_definite`. + for `X = non_singular, self_adjoint, positive_definite, square`. These have the following meaning * If `is_X == True`, callers should expect the operator to have the property `X`. This is a promise that should be fulfilled, but is *not* a @@ -113,6 +113,7 @@ class LinearOperatorDiag(linear_operator.LinearOperator): is_non_singular=None, is_self_adjoint=None, is_positive_definite=None, + is_square=None, name="LinearOperatorDiag"): r"""Initialize a `LinearOperatorDiag`. @@ -129,6 +130,7 @@ class LinearOperatorDiag(linear_operator.LinearOperator): self-adjoint to be positive-definite. See: https://en.wikipedia.org/wiki/Positive-definite_matrix\ #Extension_for_non_symmetric_matrices + is_square: Expect that this operator acts like square [batch] matrices. name: A name for this `LinearOperator`. Raises: @@ -147,12 +149,17 @@ class LinearOperatorDiag(linear_operator.LinearOperator): else: is_self_adjoint = True + if is_square is False: + raise ValueError("Only square diagonal operators currently supported.") + is_square = True + super(LinearOperatorDiag, self).__init__( dtype=self._diag.dtype, graph_parents=[self._diag], is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, + is_square=is_square, name=name) def _check_diag(self, diag): diff --git a/tensorflow/contrib/linalg/python/ops/linear_operator_full_matrix.py b/tensorflow/contrib/linalg/python/ops/linear_operator_full_matrix.py index 64ab5614577..0f245e609b0 100644 --- a/tensorflow/contrib/linalg/python/ops/linear_operator_full_matrix.py +++ b/tensorflow/contrib/linalg/python/ops/linear_operator_full_matrix.py @@ -19,11 +19,9 @@ from __future__ import division from __future__ import print_function from tensorflow.contrib.linalg.python.ops import linear_operator -from tensorflow.contrib.linalg.python.ops import linear_operator_util from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops -from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops __all__ = ["LinearOperatorFullMatrix"] @@ -49,7 +47,7 @@ class LinearOperatorFullMatrix(linear_operator.LinearOperator): operator.shape ==> [2, 2] - operator.log_determinant() + operator.log_abs_determinant() ==> scalar Tensor x = ... Shape [2, 4] Tensor @@ -93,7 +91,7 @@ class LinearOperatorFullMatrix(linear_operator.LinearOperator): #### Matrix property hints This `LinearOperator` is initialized with boolean flags of the form `is_X`, - for `X = non_singular, self_adjoint, positive_definite`. + for `X = non_singular, self_adjoint, positive_definite, square`. These have the following meaning * If `is_X == True`, callers should expect the operator to have the property `X`. This is a promise that should be fulfilled, but is *not* a @@ -109,6 +107,7 @@ class LinearOperatorFullMatrix(linear_operator.LinearOperator): is_non_singular=None, is_self_adjoint=None, is_positive_definite=None, + is_square=None, name="LinearOperatorFullMatrix"): r"""Initialize a `LinearOperatorFullMatrix`. @@ -124,6 +123,7 @@ class LinearOperatorFullMatrix(linear_operator.LinearOperator): self-adjoint to be positive-definite. See: https://en.wikipedia.org/wiki/Positive-definite_matrix\ #Extension_for_non_symmetric_matrices + is_square: Expect that this operator acts like square [batch] matrices. name: A name for this `LinearOperator`. Raises: @@ -134,19 +134,13 @@ class LinearOperatorFullMatrix(linear_operator.LinearOperator): self._matrix = ops.convert_to_tensor(matrix, name="matrix") self._check_matrix(self._matrix) - # Special treatment for (real) Symmetric Positive Definite. - self._is_spd = ( - (not self._matrix.dtype.is_complex) - and is_self_adjoint and is_positive_definite) - if self._is_spd: - self._chol = linalg_ops.cholesky(self._matrix) - super(LinearOperatorFullMatrix, self).__init__( dtype=self._matrix.dtype, graph_parents=[self._matrix], is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, + is_square=is_square, name=name) def _check_matrix(self, matrix): @@ -177,23 +171,5 @@ class LinearOperatorFullMatrix(linear_operator.LinearOperator): return math_ops.matmul( self._matrix, x, adjoint_a=adjoint, adjoint_b=adjoint_arg) - def _determinant(self): - if self._is_spd: - return math_ops.exp(self.log_abs_determinant()) - return linalg_ops.matrix_determinant(self._matrix) - - def _log_abs_determinant(self): - if self._is_spd: - diag = array_ops.matrix_diag_part(self._chol) - return 2 * math_ops.reduce_sum(math_ops.log(diag), reduction_indices=[-1]) - abs_det = math_ops.abs(self.determinant()) - return math_ops.log(abs_det) - - def _solve(self, rhs, adjoint=False, adjoint_arg=False): - rhs = linear_operator_util.matrix_adjoint(rhs) if adjoint_arg else rhs - if self._is_spd: - return linalg_ops.cholesky_solve(self._chol, rhs) - return linalg_ops.matrix_solve(self._matrix, rhs, adjoint=adjoint) - def _to_dense(self): return self._matrix diff --git a/tensorflow/contrib/linalg/python/ops/linear_operator_identity.py b/tensorflow/contrib/linalg/python/ops/linear_operator_identity.py index 845bf25192e..d595442c70b 100644 --- a/tensorflow/contrib/linalg/python/ops/linear_operator_identity.py +++ b/tensorflow/contrib/linalg/python/ops/linear_operator_identity.py @@ -112,7 +112,7 @@ class LinearOperatorIdentity(BaseLinearOperatorIdentity): operator.shape ==> [2, 2] - operator.log_determinant() + operator.log_abs_determinant() ==> 0. x = ... Shape [2, 4] Tensor @@ -180,7 +180,7 @@ class LinearOperatorIdentity(BaseLinearOperatorIdentity): #### Matrix property hints This `LinearOperator` is initialized with boolean flags of the form `is_X`, - for `X = non_singular, self_adjoint, positive_definite`. + for `X = non_singular, self_adjoint, positive_definite, square`. These have the following meaning * If `is_X == True`, callers should expect the operator to have the property `X`. This is a promise that should be fulfilled, but is *not* a @@ -198,6 +198,7 @@ class LinearOperatorIdentity(BaseLinearOperatorIdentity): is_non_singular=True, is_self_adjoint=True, is_positive_definite=True, + is_square=True, assert_proper_shapes=False, name="LinearOperatorIdentity"): r"""Initialize a `LinearOperatorIdentity`. @@ -224,6 +225,7 @@ class LinearOperatorIdentity(BaseLinearOperatorIdentity): self-adjoint to be positive-definite. See: https://en.wikipedia.org/wiki/Positive-definite_matrix\ #Extension_for_non_symmetric_matrices + is_square: Expect that this operator acts like square [batch] matrices. assert_proper_shapes: Python `bool`. If `False`, only perform static checks that initialization and method arguments have proper shape. If `True`, and static checks are inconclusive, add asserts to the graph. @@ -248,12 +250,15 @@ class LinearOperatorIdentity(BaseLinearOperatorIdentity): raise ValueError("An identity operator is always non-singular.") if not is_positive_definite: raise ValueError("An identity operator is always positive-definite.") + if not is_square: + raise ValueError("An identity operator is always square.") super(LinearOperatorIdentity, self).__init__( dtype=dtype, is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, + is_square=is_square, name=name) self._num_rows = linear_operator_util.shape_tensor( @@ -459,7 +464,7 @@ class LinearOperatorScaledIdentity(BaseLinearOperatorIdentity): operator.shape ==> [2, 2] - operator.log_determinant() + operator.log_abs_determinant() ==> 2 * Log[3] x = ... Shape [2, 4] Tensor @@ -510,7 +515,7 @@ class LinearOperatorScaledIdentity(BaseLinearOperatorIdentity): #### Matrix property hints This `LinearOperator` is initialized with boolean flags of the form `is_X`, - for `X = non_singular, self_adjoint, positive_definite`. + for `X = non_singular, self_adjoint, positive_definite, square`. These have the following meaning * If `is_X == True`, callers should expect the operator to have the property `X`. This is a promise that should be fulfilled, but is *not* a @@ -527,6 +532,7 @@ class LinearOperatorScaledIdentity(BaseLinearOperatorIdentity): is_non_singular=None, is_self_adjoint=None, is_positive_definite=None, + is_square=True, assert_proper_shapes=False, name="LinearOperatorScaledIdentity"): r"""Initialize a `LinearOperatorScaledIdentity`. @@ -550,6 +556,7 @@ class LinearOperatorScaledIdentity(BaseLinearOperatorIdentity): self-adjoint to be positive-definite. See: https://en.wikipedia.org/wiki/Positive-definite_matrix\ #Extension_for_non_symmetric_matrices + is_square: Expect that this operator acts like square [batch] matrices. assert_proper_shapes: Python `bool`. If `False`, only perform static checks that initialization and method arguments have proper shape. If `True`, and static checks are inconclusive, add asserts to the graph. @@ -561,6 +568,9 @@ class LinearOperatorScaledIdentity(BaseLinearOperatorIdentity): """ self._assert_proper_shapes = assert_proper_shapes + if not is_square: + raise ValueError("A ScaledIdentity operator is always square.") + with ops.name_scope(name, values=[multiplier, num_rows]): self._multiplier = ops.convert_to_tensor(multiplier, name="multiplier") @@ -569,6 +579,7 @@ class LinearOperatorScaledIdentity(BaseLinearOperatorIdentity): is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, + is_square=is_square, name=name) # Shape [B1,...Bb, 1, 1] diff --git a/tensorflow/contrib/linalg/python/ops/linear_operator_tril.py b/tensorflow/contrib/linalg/python/ops/linear_operator_tril.py index 756e26cc130..6d4033c2a30 100644 --- a/tensorflow/contrib/linalg/python/ops/linear_operator_tril.py +++ b/tensorflow/contrib/linalg/python/ops/linear_operator_tril.py @@ -53,7 +53,7 @@ class LinearOperatorTriL(linear_operator.LinearOperator): operator.shape ==> [2, 2] - operator.log_determinant() + operator.log_abs_determinant() ==> scalar Tensor x = ... Shape [2, 4] Tensor @@ -90,7 +90,7 @@ class LinearOperatorTriL(linear_operator.LinearOperator): #### Matrix property hints This `LinearOperator` is initialized with boolean flags of the form `is_X`, - for `X = non_singular, self_adjoint, positive_definite`. + for `X = non_singular, self_adjoint, positive_definite, square`. These have the following meaning * If `is_X == True`, callers should expect the operator to have the property `X`. This is a promise that should be fulfilled, but is *not* a @@ -106,6 +106,7 @@ class LinearOperatorTriL(linear_operator.LinearOperator): is_non_singular=None, is_self_adjoint=None, is_positive_definite=None, + is_square=None, name="LinearOperatorTriL"): r"""Initialize a `LinearOperatorTriL`. @@ -126,12 +127,19 @@ class LinearOperatorTriL(linear_operator.LinearOperator): self-adjoint to be positive-definite. See: https://en.wikipedia.org/wiki/Positive-definite_matrix\ #Extension_for_non_symmetric_matrices + is_square: Expect that this operator acts like square [batch] matrices. name: A name for this `LinearOperator`. Raises: TypeError: If `diag.dtype` is not an allowed type. + ValueError: If `is_square` is `False`. """ + if is_square is False: + raise ValueError( + "Only square lower triangular operators supported at this time.") + is_square = True + with ops.name_scope(name, values=[tril]): self._tril = ops.convert_to_tensor(tril, name="tril") self._check_tril(self._tril) @@ -144,6 +152,7 @@ class LinearOperatorTriL(linear_operator.LinearOperator): is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, + is_square=is_square, name=name) def _check_tril(self, tril): diff --git a/tensorflow/core/BUILD b/tensorflow/core/BUILD index 1617addba05..119bc0f8997 100644 --- a/tensorflow/core/BUILD +++ b/tensorflow/core/BUILD @@ -2417,6 +2417,9 @@ tf_cc_test( ":test_main", ":testlib", "//tensorflow/cc:cc_ops", + "//tensorflow/cc:cc_ops_internal", + "//tensorflow/cc:function_ops", + "//tensorflow/cc:functional_ops", "//tensorflow/core/kernels:cast_op", "//tensorflow/core/kernels:cwise_op", "//tensorflow/core/kernels:function_ops", diff --git a/tensorflow/core/common_runtime/function.cc b/tensorflow/core/common_runtime/function.cc index 13e20568fff..3644279b920 100644 --- a/tensorflow/core/common_runtime/function.cc +++ b/tensorflow/core/common_runtime/function.cc @@ -1001,25 +1001,19 @@ string NewName(const Node* n, bool pretty) { void ToGraphDef(const Graph* g, GraphDef* gdef, bool pretty) { // We visit nodes in forward topological sort order, which is a // possible execution order of the graph. - std::vector pending(g->num_node_ids()); - std::deque ready; - for (const Node* n : g->nodes()) { - pending[n->id()] = n->in_edges().size(); - if (pending[n->id()] == 0) ready.push_back(n); - } gtl::InlinedVector inputs; gdef->Clear(); gdef->mutable_versions()->CopyFrom(g->versions()); - while (!ready.empty()) { - const Node* n = ready.front(); - ready.pop_front(); - for (const Edge* e : n->out_edges()) { - const Node* next = e->dst(); - if (--pending[next->id()] == 0) { - ready.push_back(next); - } + + std::vector start_nodes; + for (Node* n : g->nodes()) { + if (n->out_edges().empty()) { + start_nodes.push_back(n); } - if (!n->IsOp()) continue; + } + + ReverseDFSFrom(*g, start_nodes, nullptr, [gdef, pretty, &inputs](Node* n) { + if (!n->IsOp()) return; NodeDef* ndef = gdef->add_node(); ndef->set_name(NewName(n, pretty)); ndef->set_op(n->type_string()); @@ -1054,7 +1048,7 @@ void ToGraphDef(const Graph* g, GraphDef* gdef, bool pretty) { ndef->add_input(strings::StrCat(srcname, ":", e->src_output())); } } - } + }); } string DebugString(const Graph* g) { diff --git a/tensorflow/core/common_runtime/function_test.cc b/tensorflow/core/common_runtime/function_test.cc index 8f70ab8783c..af1ff6aec03 100644 --- a/tensorflow/core/common_runtime/function_test.cc +++ b/tensorflow/core/common_runtime/function_test.cc @@ -17,6 +17,10 @@ limitations under the License. #include +#include "tensorflow/cc/ops/array_ops_internal.h" +#include "tensorflow/cc/ops/function_ops.h" +#include "tensorflow/cc/ops/functional_ops.h" +#include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/executor.h" @@ -28,10 +32,12 @@ limitations under the License. #include "tensorflow/core/graph/graph_constructor.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status.h" +#include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" +#include "tensorflow/core/util/equal_graph_def.h" namespace tensorflow { @@ -58,13 +64,8 @@ class FunctionTest : public ::testing::Test { : device_(DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")) {} - ~FunctionTest() override { - delete exec_; - delete device_; - } - void Create(const FunctionDef& fdef, InstantiateAttrValueSlice attrs) { - delete exec_; + exec_ = nullptr; InstantiationResult result; TF_CHECK_OK(InstantiateFunction(fdef, attrs, GetOpSig, &result)); @@ -79,15 +80,18 @@ class FunctionTest : public ::testing::Test { const int version = g->versions().producer(); LocalExecutorParams params; - params.device = device_; + params.device = device_.get(); params.create_kernel = [this, version](const NodeDef& ndef, OpKernel** kernel) { - return CreateNonCachedKernel(device_, nullptr, ndef, version, kernel); + return CreateNonCachedKernel(device_.get(), nullptr, ndef, version, + kernel); }; params.delete_kernel = [](OpKernel* kernel) { DeleteNonCachedKernel(kernel); }; - TF_CHECK_OK(NewLocalExecutor(params, g, &exec_)); + Executor* exec; + TF_CHECK_OK(NewLocalExecutor(params, g, &exec)); + exec_.reset(exec); } void Run(const std::vector& args, std::vector rets) { @@ -105,8 +109,8 @@ class FunctionTest : public ::testing::Test { } } - Device* device_ = nullptr; - Executor* exec_ = nullptr; + std::unique_ptr device_; + std::unique_ptr exec_; DataTypeVector arg_types_; DataTypeVector ret_types_; }; @@ -136,21 +140,15 @@ class FunctionLibraryRuntimeTest : public ::testing::Test { : device_(DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")) {} - ~FunctionLibraryRuntimeTest() override { - delete lib_; - delete lib_def_; - delete device_; - } - void Init(const std::vector& flib) { FunctionDefLibrary proto; for (const auto& fdef : flib) *(proto.add_function()) = fdef; - delete lib_def_; - lib_def_ = new FunctionLibraryDefinition(OpRegistry::Global(), proto); - delete lib_; + lib_def_.reset(new FunctionLibraryDefinition(OpRegistry::Global(), proto)); OptimizerOptions opts; - lib_ = NewFunctionLibraryRuntime(nullptr, Env::Default(), device_, - TF_GRAPH_DEF_VERSION, lib_def_, opts); + lib_.reset(NewFunctionLibraryRuntime(nullptr, Env::Default(), device_.get(), + TF_GRAPH_DEF_VERSION, lib_def_.get(), + opts)); + fdef_lib_ = lib_def_->ToProto(); } Status Run(const string& name, InstantiateAttrValueSlice attrs, @@ -190,7 +188,8 @@ class FunctionLibraryRuntimeTest : public ::testing::Test { return Status::OK(); } - Graph* GetFuncBody(const string& name, InstantiateAttrValueSlice attrs) { + std::unique_ptr GetFuncBody(const string& name, + InstantiateAttrValueSlice attrs) { FunctionLibraryRuntime::Handle handle; Status status = lib_->Instantiate(name, attrs, &handle); if (!status.ok()) { @@ -199,12 +198,13 @@ class FunctionLibraryRuntimeTest : public ::testing::Test { } const FunctionBody* fbody = lib_->GetFunctionBody(handle); CHECK_NOTNULL(fbody); - Graph* ret = new Graph(lib_def_); - CopyGraph(*fbody->graph, ret); + std::unique_ptr ret(new Graph(lib_def_.get())); + CopyGraph(*fbody->graph, ret.get()); return ret; } - Graph* GetGradBody(const string& func, InstantiateAttrValueSlice attrs) { + std::unique_ptr GetGradBody(const string& func, + InstantiateAttrValueSlice attrs) { FunctionLibraryRuntime::Handle handle; Status status = lib_->Instantiate(func, attrs, &handle); if (!status.ok()) { @@ -213,17 +213,17 @@ class FunctionLibraryRuntimeTest : public ::testing::Test { } const FunctionBody* fbody = lib_->GetFunctionBody(handle); CHECK_NOTNULL(fbody); - FunctionBody* gbody = SymbolicGradient(*fbody); + std::unique_ptr gbody(SymbolicGradient(*fbody)); CHECK_NOTNULL(gbody); - Graph* ret = new Graph(lib_def_); - CopyGraph(*gbody->graph, ret); - delete gbody; + std::unique_ptr ret(new Graph(lib_def_.get())); + CopyGraph(*gbody->graph, ret.get()); return ret; } - Device* device_ = nullptr; - FunctionLibraryDefinition* lib_def_ = nullptr; - FunctionLibraryRuntime* lib_ = nullptr; + std::unique_ptr device_; + std::unique_ptr lib_def_; + std::unique_ptr lib_; + FunctionDefLibrary fdef_lib_; }; TEST_F(FunctionLibraryRuntimeTest, IsStateful) { @@ -254,113 +254,174 @@ TEST_F(FunctionLibraryRuntimeTest, XTimesN) { test::ExpectTensorEqual(y, test::AsTensor({16, 32, 48, 64})); } +// Adds a function call to 'scope. +// TODO(phawkins): replace with C++ API for calling functions, when that exists. +Output Call(Scope* scope, const string& op_name, const string& fn_name, + gtl::ArraySlice inputs) { + NodeDef def; + NodeDefBuilder builder(op_name, fn_name, scope->graph()->op_registry()); + for (const Input& input : inputs) { + builder.Input(input.node()->name(), input.index(), + input.node()->output_type(input.index())); + } + TF_CHECK_OK(builder.Finalize(&def)); + Status status; + Node* n = scope->graph()->AddNode(def, &status); + TF_CHECK_OK(status); + for (int i = 0; i < inputs.size(); ++i) { + scope->graph()->AddEdge(inputs[i].node(), inputs[i].index(), n, i); + } + return Output(n); +} + TEST_F(FunctionLibraryRuntimeTest, ExpandInlineFunctions) { Init({test::function::XTimesTwo(), test::function::XTimesFour(), test::function::XTimes16()}); - Graph* g = GetFuncBody("XTimes16", {{"T", DT_FLOAT}}); + std::unique_ptr g = GetFuncBody("XTimes16", {{"T", DT_FLOAT}}); ASSERT_TRUE(g != nullptr); - const char* e0 = R"P( -(n2:float) -> (n4:float) { - n3 = XTimesFour[T=float](n2) - n4 = XTimesFour[T=float](n3) -} -)P"; - EXPECT_EQ(e0, DebugString(g)); - ExpandInlineFunctions(lib_, g); - const char* e1 = R"P( -(n2:float) -> (n17:float) { - n10 = Identity[T=float](n2) - n7 = XTimesTwo[T=float](n10) - n8 = XTimesTwo[T=float](n7) - n11 = Identity[T=float](n8) - n16 = Identity[T=float](n11) - n13 = XTimesTwo[T=float](n16) - n14 = XTimesTwo[T=float](n13) - n17 = Identity[T=float](n14) -} -)P"; - EXPECT_EQ(e1, DebugString(g)); + { + Scope s = Scope::NewRootScope(); + TF_ASSERT_OK(s.graph()->AddFunctionLibrary(fdef_lib_)); + auto arg = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); + auto a = Call(&s, "x4", "XTimesFour", {arg}); + auto b = Call(&s, "y", "XTimesFour", {a}); + auto ret = ops::_Retval(s.WithOpName("y_RetVal"), b, 0); + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); - ExpandInlineFunctions(lib_, g); - const char* e2 = R"P( -(n2:float) -> (n17:float) { - n18 = Const[dtype=int64, value=Tensor]() - n25 = Const[dtype=int64, value=Tensor]() - n32 = Const[dtype=int64, value=Tensor]() - n39 = Const[dtype=int64, value=Tensor]() - n19 = Cast[DstT=float, SrcT=int64](n18) - n26 = Cast[DstT=float, SrcT=int64](n25) - n33 = Cast[DstT=float, SrcT=int64](n32) - n40 = Cast[DstT=float, SrcT=int64](n39) - n10 = Identity[T=float](n2) - n23 = Identity[T=float](n10) - n21 = Mul[T=float](n23, n19) - n24 = Identity[T=float](n21) - n30 = Identity[T=float](n24) - n28 = Mul[T=float](n30, n26) - n31 = Identity[T=float](n28) - n11 = Identity[T=float](n31) - n16 = Identity[T=float](n11) - n37 = Identity[T=float](n16) - n35 = Mul[T=float](n37, n33) - n38 = Identity[T=float](n35) - n44 = Identity[T=float](n38) - n42 = Mul[T=float](n44, n40) - n45 = Identity[T=float](n42) - n17 = Identity[T=float](n45) -} -)P"; - EXPECT_EQ(e2, DebugString(g)); + GraphDef actual; + g->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(expected, actual); + } + + ExpandInlineFunctions(lib_.get(), g.get()); + { + Scope s = Scope::NewRootScope(); + TF_ASSERT_OK(s.graph()->AddFunctionLibrary(fdef_lib_)); + auto x = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); + auto func0 = ops::Identity(s.WithOpName("Func/_0"), x); + auto x4_x2 = Call(&s, "x4/x2", "XTimesTwo", {func0}); + auto x4_y = Call(&s, "x4/y", "XTimesTwo", {x4_x2}); + auto func1 = ops::Identity(s.WithOpName("Func/_1"), x4_y); + auto func2 = ops::Identity(s.WithOpName("Func/_2"), func1); + auto y_x2 = Call(&s, "y/x2", "XTimesTwo", {func2}); + auto y_y = Call(&s, "y/y", "XTimesTwo", {y_x2}); + auto func3 = ops::Identity(s.WithOpName("Func/_3"), y_y); + auto ret = ops::_Retval(s.WithOpName("y_RetVal"), func3, 0); + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); + + GraphDef actual; + g->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(expected, actual); + } + + ExpandInlineFunctions(lib_.get(), g.get()); + GraphDef e2; + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); + auto x4_x2_two = ops::Const(s.WithOpName("x4/x2/two"), 2LL); + auto x4_y_two = ops::Const(s.WithOpName("x4/y/two"), 2LL); + auto y_x2_two = ops::Const(s.WithOpName("y/x2/two"), 2LL); + auto y_y_two = ops::Const(s.WithOpName("y/y/two"), 2LL); + auto x4_x2_scale = + ops::Cast(s.WithOpName("x4/x2/scale"), x4_x2_two, DT_FLOAT); + auto x4_y_scale = ops::Cast(s.WithOpName("x4/y/scale"), x4_y_two, DT_FLOAT); + auto y_x2_scale = ops::Cast(s.WithOpName("y/x2/scale"), y_x2_two, DT_FLOAT); + auto y_y_scale = ops::Cast(s.WithOpName("y/y/scale"), y_y_two, DT_FLOAT); + auto func0 = ops::Identity(s.WithOpName("Func/_0"), x); + auto func4 = ops::Identity(s.WithOpName("Func/_4"), func0); + auto x4_x2_y = ops::Mul(s.WithOpName("x4/x2/y"), func4, x4_x2_scale); + auto func5 = ops::Identity(s.WithOpName("Func/_5"), x4_x2_y); + auto func6 = ops::Identity(s.WithOpName("Func/_6"), func5); + auto x4_y_y = ops::Mul(s.WithOpName("x4/y/y"), func6, x4_y_scale); + auto func7 = ops::Identity(s.WithOpName("Func/_7"), x4_y_y); + auto func1 = ops::Identity(s.WithOpName("Func/_1"), func7); + auto func2 = ops::Identity(s.WithOpName("Func/_2"), func1); + auto func8 = ops::Identity(s.WithOpName("Func/_8"), func2); + auto y_x2_y = ops::Mul(s.WithOpName("y/x2/y"), func8, y_x2_scale); + auto func9 = ops::Identity(s.WithOpName("Func/_9"), y_x2_y); + auto func10 = ops::Identity(s.WithOpName("Func/_10"), func9); + auto y_y_y = ops::Mul(s.WithOpName("y/y/y"), func10, y_y_scale); + auto func11 = ops::Identity(s.WithOpName("Func/_11"), y_y_y); + auto func3 = ops::Identity(s.WithOpName("Func/_3"), func11); + auto ret = ops::_Retval(s.WithOpName("y_RetVal"), func3, 0); + TF_ASSERT_OK(s.ToGraphDef(&e2)); + + GraphDef actual; + g->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(e2, actual); + } // No further inlining. - ExpandInlineFunctions(lib_, g); - EXPECT_EQ(e2, DebugString(g)); + ExpandInlineFunctions(lib_.get(), g.get()); + { + GraphDef actual; + g->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(e2, actual); + } // Get rid of redundant Identity nodes. - RemoveIdentityNodes(g); - const char* e3 = R"P( -(n2:float) -> (n42:float) { - n18 = Const[dtype=int64, value=Tensor]() - n25 = Const[dtype=int64, value=Tensor]() - n32 = Const[dtype=int64, value=Tensor]() - n39 = Const[dtype=int64, value=Tensor]() - n19 = Cast[DstT=float, SrcT=int64](n18) - n26 = Cast[DstT=float, SrcT=int64](n25) - n33 = Cast[DstT=float, SrcT=int64](n32) - n40 = Cast[DstT=float, SrcT=int64](n39) - n21 = Mul[T=float](n2, n19) - n28 = Mul[T=float](n21, n26) - n35 = Mul[T=float](n28, n33) - n42 = Mul[T=float](n35, n40) -} -)P"; - EXPECT_EQ(e3, DebugString(g)); - delete g; + RemoveIdentityNodes(g.get()); + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); + auto x4_x2_two = ops::Const(s.WithOpName("x4/x2/two"), 2LL); + auto x4_y_two = ops::Const(s.WithOpName("x4/y/two"), 2LL); + auto y_x2_two = ops::Const(s.WithOpName("y/x2/two"), 2LL); + auto y_y_two = ops::Const(s.WithOpName("y/y/two"), 2LL); + auto x4_x2_scale = + ops::Cast(s.WithOpName("x4/x2/scale"), x4_x2_two, DT_FLOAT); + auto x4_y_scale = ops::Cast(s.WithOpName("x4/y/scale"), x4_y_two, DT_FLOAT); + auto y_x2_scale = ops::Cast(s.WithOpName("y/x2/scale"), y_x2_two, DT_FLOAT); + auto y_y_scale = ops::Cast(s.WithOpName("y/y/scale"), y_y_two, DT_FLOAT); + auto x4_x2_y = ops::Mul(s.WithOpName("x4/x2/y"), x, x4_x2_scale); + auto x4_y_y = ops::Mul(s.WithOpName("x4/y/y"), x4_x2_y, x4_y_scale); + auto y_x2_y = ops::Mul(s.WithOpName("y/x2/y"), x4_y_y, y_x2_scale); + auto y_y_y = ops::Mul(s.WithOpName("y/y/y"), y_x2_y, y_y_scale); + auto ret = ops::_Retval(s.WithOpName("y_RetVal"), y_y_y, 0); + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); + + GraphDef actual; + g->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(expected, actual); + } } TEST_F(FunctionLibraryRuntimeTest, OptimizeGraph) { Init({test::function::XTimesTwo(), test::function::XTimesFour(), test::function::XTimes16()}); - std::unique_ptr g(GetFuncBody("XTimes16", {{"T", DT_FLOAT}})); + std::unique_ptr g = GetFuncBody("XTimes16", {{"T", DT_FLOAT}}); ASSERT_TRUE(g != nullptr); - ExpandInlineFunctions(lib_, g.get()); - OptimizeGraph(lib_, &g); - const char* e0 = R"P( -(n2:float) -> (n7:float) { - n8 = Const[dtype=float, value=Tensor]() - n4 = Mul[T=float](n2, n8) - n5 = Mul[T=float](n4, n8) - n6 = Mul[T=float](n5, n8) - n7 = Mul[T=float](n6, n8) -} -)P"; - EXPECT_EQ(e0, DebugString(g.get())); + ExpandInlineFunctions(lib_.get(), g.get()); + OptimizeGraph(lib_.get(), &g); + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); + auto x4_x2_scale = ops::Const( + s.WithOpName("x4/x2/scale/_12__cf__2") + .WithDevice("/job:localhost/replica:0/task:0/cpu:0"), + 2.0f); + auto x4_x2_y = ops::Mul(s.WithOpName("x4/x2/y"), x, x4_x2_scale); + auto x4_y_y = ops::Mul(s.WithOpName("x4/y/y"), x4_x2_y, x4_x2_scale); + auto y_x2_y = ops::Mul(s.WithOpName("y/x2/y"), x4_y_y, x4_x2_scale); + auto y_y_y = ops::Mul(s.WithOpName("y/y/y"), y_x2_y, x4_x2_scale); + auto ret = ops::_Retval(s.WithOpName("y_RetVal"), y_y_y, 0); + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); + + GraphDef actual; + g->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(expected, actual); + } } TEST_F(FunctionLibraryRuntimeTest, ManySwapsNodeDef) { auto func = FDH::Create( // Creates a FunctionDef using NodeDefs - // Name + // Name "ManySwapsNodeDef", // Input {"x: float", "y: float"}, @@ -379,9 +440,9 @@ TEST_F(FunctionLibraryRuntimeTest, ManySwapsNodeDef) { // Return {{"o", "g:output"}}); Init({test::function::Swap(), func}); - std::unique_ptr g(GetFuncBody("ManySwapsNodeDef", {})); + std::unique_ptr g = GetFuncBody("ManySwapsNodeDef", {}); ASSERT_TRUE(g != nullptr); - OptimizeGraph(lib_, &g); + OptimizeGraph(lib_.get(), &g); const char* e0 = R"P( (n3:float, n2:float) -> (n3:float) { } @@ -412,24 +473,35 @@ TEST_F(FunctionLibraryRuntimeTest, ControlDeps) { {{"o"}, "Add", {"x2:z:0", "y2:z:0"}, {{"T", DT_FLOAT}}}}, {{"o", "o:z:0"}}); Init({test::function::Swap(), func}); - std::unique_ptr g(GetFuncBody("ManySwapsFirst", {})); + std::unique_ptr g = GetFuncBody("ManySwapsFirst", {}); ASSERT_TRUE(g != nullptr); - OptimizeGraph(lib_, &g); + OptimizeGraph(lib_.get(), &g); - // NOTE: We can remove n8, n9, n10, n11 with a control edge n8->n5. + // NOTE: We can remove func0, func1, func2, func9 with a control edge n8->n5. // But we don't have a pass doing that. - const char* e0 = R"P( -(n3:float, n2:float) -> (n6:float) { - n4 = Mul[T=float](n3, n3) - n8 = NoOp() @ n4 - n9 = Identity[T=float](n3) @ n8 - n10 = Identity[T=float](n2) @ n8 - n11 = NoOp() @ n9, n10 - n5 = Mul[T=float](n2, n2) @ n11 - n6 = Add[T=float](n4, n5) -} -)P"; - EXPECT_EQ(e0, DebugString(g.get())); + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); + auto y = ops::_Arg(s.WithOpName("y"), DT_FLOAT, 1); + auto x2 = ops::Mul(s.WithOpName("x2"), x, x); + auto func0 = ops::NoOp(s.WithOpName("Func/_0").WithControlDependencies(x2)); + auto func1 = ops::Identity( + s.WithOpName("Func/_1").WithControlDependencies({func0}), x); + auto func2 = ops::Identity( + s.WithOpName("Func/_2").WithControlDependencies({func0}), y); + auto func9 = ops::NoOp(s.WithOpName("Func/_9").WithControlDependencies( + {func1.output.op(), func2.output.op()})); + auto y2 = + ops::Mul(s.WithOpName("y2").WithControlDependencies({func9}), y, y); + auto o = ops::Add(s.WithOpName("o"), x2, y2); + auto ret = ops::_Retval(s.WithOpName("o_RetVal"), o, 0); + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); + + GraphDef actual; + g->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(expected, actual); + } } TEST_F(FunctionLibraryRuntimeTest, Error_NotFound) { @@ -476,84 +548,136 @@ TEST_F(FunctionLibraryRuntimeTest, Error_InstantiaionError) { TEST_F(FunctionLibraryRuntimeTest, Gradient_XTimesTwo) { Init({test::function::XTimesTwo(), test::function::XTimesFour(), test::function::XTimes16()}); - auto f = GetFuncBody("XTimesTwo", {{"T", DT_FLOAT}}); - const char* e0 = R"P( -(n4:float) -> (n5:float) { - n2 = Const[dtype=int64, value=Tensor]() - n3 = Cast[DstT=float, SrcT=int64](n2) - n5 = Mul[T=float](n4, n3) -} -)P"; - EXPECT_EQ(e0, DebugString(f)); - delete f; - std::unique_ptr g(GetGradBody("XTimesTwo", {{"T", DT_FLOAT}})); - const char* e1 = R"P( -(n4:float, n6:float) -> (n7:float) { - n2 = Const[dtype=int64, value=Tensor]() - n3 = Cast[DstT=float, SrcT=int64](n2) - n5 = Mul[T=float](n4, n3) - n7 = SymbolicGradient[Tin={float, float, float}, Tout={float, float}, f=Mul[T=float]](n4, n3, n6) -} -)P"; - EXPECT_EQ(e1, DebugString(g.get())); + std::unique_ptr f = GetFuncBody("XTimesTwo", {{"T", DT_FLOAT}}); + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); + auto two = ops::Const(s.WithOpName("two"), 2LL); + auto scale = ops::Cast(s.WithOpName("scale"), two, DT_FLOAT); + auto y = ops::Mul(s.WithOpName("y"), x, scale); + auto ret = ops::_Retval(s.WithOpName("y_RetVal"), y, 0); + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); - OptimizeGraph(lib_, &g); - const char* e2 = R"P( -(n2:float, n3:float) -> (n9:float) { - n10 = Const[dtype=float, value=Tensor]() - n11 = Const[dtype=int32, value=Tensor]() - n6 = Shape[T=float, out_type=int32](n2) - n5 = Mul[T=float](n3, n10) - n7 = BroadcastGradientArgs[T=int32](n6, n11) - n8 = Sum[T=float, Tidx=int32, keep_dims=false](n5, n7) - n9 = Reshape[T=float, Tshape=int32](n8, n6) -} -)P"; - EXPECT_EQ(e2, DebugString(g.get())); + GraphDef actual; + f->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(expected, actual); + } + + std::unique_ptr g = GetGradBody("XTimesTwo", {{"T", DT_FLOAT}}); + + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); + auto func0 = ops::_Arg(s.WithOpName("Func/_0"), DT_FLOAT, 1); + auto two = ops::Const(s.WithOpName("two"), 2LL); + auto scale = ops::Cast(s.WithOpName("scale"), two, DT_FLOAT); + auto y = ops::Mul(s.WithOpName("y"), x, scale); + NameAttrList fn; + fn.set_name("Mul"); + (*fn.mutable_attr())["T"].set_type(DT_FLOAT); + auto func1 = ops::SymbolicGradient( + s.WithOpName("Func/_1"), std::initializer_list{x, scale, func0}, + {DT_FLOAT, DT_FLOAT}, fn); + auto func2 = ops::_Retval(s.WithOpName("Func/_2"), func1[0], 0); + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); + + GraphDef actual; + g->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(expected, actual); + } + + OptimizeGraph(lib_.get(), &g); + + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); + auto func0 = ops::_Arg(s.WithOpName("Func/_0"), DT_FLOAT, 1); + auto scale = + ops::Const(s.WithOpName("scale/_5__cf__6") + .WithDevice("/job:localhost/replica:0/task:0/cpu:0"), + 2.0f); + auto func1_gx = ops::Mul(s.WithOpName("Func/_1/gx"), func0, scale); + auto func1_sx = ops::Shape(s.WithOpName("Func/_1/sx"), x); + auto const0 = + ops::Const(s.WithOpName("Func/_1/sy/_6__cf__7") + .WithDevice("/job:localhost/replica:0/task:0/cpu:0"), + 0, {0}); + auto func1_rx = ops::internal::BroadcastGradientArgs( + s.WithOpName("Func/_1/rx"), func1_sx, const0); + auto func1_sum_gx = + ops::Sum(s.WithOpName("Func/_1/sum_gx"), func1_gx, func1_rx.r0); + auto func1_dx = + ops::Reshape(s.WithOpName("Func/_1/dx"), func1_sum_gx, func1_sx); + auto func2 = ops::_Retval(s.WithOpName("Func/_2"), func1_dx, 0); + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); + + GraphDef actual; + g->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(expected, actual); + } } TEST_F(FunctionLibraryRuntimeTest, Gradient_Add) { Init({}); auto T = DT_FLOAT; - auto g = GetFuncBody("SymbolicGradient", - {{"f", FDH::FunctionRef("Add", {{"T", T}})}}); - const char* e0 = R"P( -(n7:float, n5:float, n2:float) -> (n14:float, n11:float) { - n3 = Identity[T=float](n2) - n4 = Identity[T=float](n2) - n6 = Shape[T=float, out_type=int32](n5) - n8 = Shape[T=float, out_type=int32](n7) - n9 = BroadcastGradientArgs[T=int32](n8, n6) - n10 = Sum[T=float, Tidx=int32, keep_dims=false](n3, n9:1) - n13 = Sum[T=float, Tidx=int32, keep_dims=false](n4, n9) - n11 = Reshape[T=float, Tshape=int32](n10, n6) - n14 = Reshape[T=float, Tshape=int32](n13, n8) -} -)P"; - EXPECT_EQ(e0, DebugString(g)); - delete g; + std::unique_ptr g = GetFuncBody( + "SymbolicGradient", {{"f", FDH::FunctionRef("Add", {{"T", T}})}}); + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); + auto y = ops::_Arg(s.WithOpName("y"), DT_FLOAT, 1); + auto dz = ops::_Arg(s.WithOpName("dz"), DT_FLOAT, 2); + auto gx = ops::Identity(s.WithOpName("gx"), dz); + auto gy = ops::Identity(s.WithOpName("gy"), dz); + auto sx = ops::Shape(s.WithOpName("sx"), x); + auto sy = ops::Shape(s.WithOpName("sy"), y); + auto rx = ops::internal::BroadcastGradientArgs(s.WithOpName("rx"), sx, sy); + auto sum_gx = ops::Sum(s.WithOpName("sum_gx"), gx, rx.r0); + auto sum_gy = ops::Sum(s.WithOpName("sum_gy"), gy, rx.r1); + auto dx = ops::Reshape(s.WithOpName("dx"), sum_gx, sx); + auto dy = ops::Reshape(s.WithOpName("dy"), sum_gy, sy); + auto dx_ret = ops::_Retval(s.WithOpName("dx_RetVal"), dx, 0); + auto dy_ret = ops::_Retval(s.WithOpName("dy_RetVal"), dy, 1); + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); + + GraphDef actual; + g->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(expected, actual); + } } TEST_F(FunctionLibraryRuntimeTest, Gradient_Mul) { Init({}); auto T = DT_FLOAT; - auto g = GetFuncBody("SymbolicGradient", - {{"f", FDH::FunctionRef("Mul", {{"T", T}})}}); - const char* e0 = R"P( -(n6:float, n3:float, n2:float) -> (n14:float, n11:float) { - n4 = Mul[T=float](n2, n3) - n5 = Shape[T=float, out_type=int32](n3) - n7 = Mul[T=float](n6, n2) - n8 = Shape[T=float, out_type=int32](n6) - n9 = BroadcastGradientArgs[T=int32](n8, n5) - n10 = Sum[T=float, Tidx=int32, keep_dims=false](n7, n9:1) - n13 = Sum[T=float, Tidx=int32, keep_dims=false](n4, n9) - n11 = Reshape[T=float, Tshape=int32](n10, n5) - n14 = Reshape[T=float, Tshape=int32](n13, n8) -} -)P"; - EXPECT_EQ(e0, DebugString(g)); - delete g; + std::unique_ptr g = GetFuncBody( + "SymbolicGradient", {{"f", FDH::FunctionRef("Mul", {{"T", T}})}}); + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); + auto y = ops::_Arg(s.WithOpName("y"), DT_FLOAT, 1); + auto dz = ops::_Arg(s.WithOpName("dz"), DT_FLOAT, 2); + auto gx = ops::Mul(s.WithOpName("gx"), dz, y); + auto sx = ops::Shape(s.WithOpName("sx"), x); + auto gy = ops::Mul(s.WithOpName("gy"), x, dz); + auto sy = ops::Shape(s.WithOpName("sy"), y); + auto rx = ops::internal::BroadcastGradientArgs(s.WithOpName("rx"), sx, sy); + auto sum_gx = ops::Sum(s.WithOpName("sum_gx"), gx, rx.r0); + auto sum_gy = ops::Sum(s.WithOpName("sum_gy"), gy, rx.r1); + auto dx = ops::Reshape(s.WithOpName("dx"), sum_gx, sx); + auto dy = ops::Reshape(s.WithOpName("dy"), sum_gy, sy); + auto dx_ret = ops::_Retval(s.WithOpName("dx_RetVal"), dx, 0); + auto dy_ret = ops::_Retval(s.WithOpName("dy_RetVal"), dy, 1); + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); + + GraphDef actual; + g->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(expected, actual); + } } TEST_F(FunctionLibraryRuntimeTest, Gradient_AddSum) { @@ -570,108 +694,170 @@ TEST_F(FunctionLibraryRuntimeTest, Gradient_AddSum) { }); // TestGrad = Test'(x, y) - auto grad = - FDH::Define("TestGrad", {"x:float", "y:float"}, {"dx:float", "dy:float"}, - {}, {FDH::Const("dz", 1), - {{"grad0", "grad1"}, - "SymbolicGradient", - {"x", "y", "dz"}, - { - {"f", FDH::FunctionRef("Test")}, - {"Tin", DataTypeSlice{T, T, T}}, - {"Tout", DataTypeSlice{T, T}}, - }}, - {{"dx"}, "Identity", {"grad0"}, {{"T", DT_FLOAT}}}, - {{"dy"}, "Identity", {"grad1"}, {{"T", DT_FLOAT}}}}); + auto grad = FDH::Define("TestGrad", {"x:float", "y:float"}, + {"dx:float", "dy:float"}, {}, + {FDH::Const("dz", 1), + {{"grad0", "grad1"}, + "SymbolicGradient", + {"x", "y", "dz"}, + { + {"f", FDH::FunctionRef("Test")}, + {"Tin", DataTypeSlice{T, T, T}}, + {"Tout", DataTypeSlice{T, T}}, + }}, + {{"dx"}, "Identity", {"grad0"}, {{"T", DT_FLOAT}}}, + {{"dy"}, "Identity", {"grad1"}, {{"T", DT_FLOAT}}}}); Init({test, grad}); - std::unique_ptr g(GetFuncBody("TestGrad", {})); + std::unique_ptr g = GetFuncBody("TestGrad", {}); ASSERT_TRUE(g != nullptr); - const char* e0 = R"P( -(n4:float, n3:float) -> (n8:float, n6:float) { - n2 = Const[dtype=float, value=Tensor]() - n5 = SymbolicGradient[Tin={float, float, float}, Tout={float, float}, f=Test](n4, n3, n2) - n6 = Identity[T=float](n5:1) - n8 = Identity[T=float](n5) -} -)P"; - EXPECT_EQ(e0, DebugString(g.get())); + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); + auto y = ops::_Arg(s.WithOpName("y"), DT_FLOAT, 1); + auto dz = ops::Const(s.WithOpName("dz"), 1.0f); + NameAttrList fn; + fn.set_name("Test"); + auto grad0 = ops::SymbolicGradient(s.WithOpName("grad0"), + std::initializer_list{x, y, dz}, + {DT_FLOAT, DT_FLOAT}, fn); + auto dx = ops::Identity(s.WithOpName("dx"), grad0[0]); + auto dy = ops::Identity(s.WithOpName("dy"), grad0[1]); + auto dx_retval = ops::_Retval(s.WithOpName("dx_RetVal"), dx, 0); + auto dy_retval = ops::_Retval(s.WithOpName("dy_RetVal"), dy, 1); + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); - ExpandInlineFunctions(lib_, g.get()); - const char* e1 = R"P( -(n4:float, n3:float) -> (n8:float, n6:float) { - n10 = Const[dtype=int32, value=Tensor]() - n11 = Const[dtype=int32, value=Tensor]() - n2 = Const[dtype=float, value=Tensor]() - n26 = Identity[T=float](n2) - n25 = Identity[T=float](n3) - n24 = Identity[T=float](n4) - n14 = Add[T=float](n24, n25) - n15 = Rank[T=float](n14) - n16 = Range[Tidx=int32](n11, n15, n10) - n20 = ZerosLike[T=int32](n15) - n17 = Sum[T=float, Tidx=int32, keep_dims=false](n14, n16) - n19 = SymbolicGradient[Tin={float, int32, float}, Tout={float, int32}, f=Sum[T=float, Tidx=int32, keep_dims=false]](n14, n16, n26) - n21 = SymbolicGradient[Tin={float, float, float}, Tout={float, float}, f=Add[T=float]](n24, n25, n19) - n27 = Identity[T=float](n21) - n28 = Identity[T=float](n21:1) - n8 = Identity[T=float](n27) - n6 = Identity[T=float](n28) -} -)P"; - EXPECT_EQ(e1, DebugString(g.get())); + GraphDef actual; + g->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(expected, actual); + } - OptimizeGraph(lib_, &g); - const char* e2 = R"P( -(n4:float, n3:float) -> (n25:float, n23:float) { - n2 = Const[dtype=float, value=Tensor]() - n7 = Const[dtype=int32, value=Tensor]() - n8 = Const[dtype=int32, value=Tensor]() - n19 = Shape[T=float, out_type=int32](n3) - n9 = Add[T=float](n4, n3) - n20 = Shape[T=float, out_type=int32](n4) - n10 = Rank[T=float](n9) - n14 = Shape[T=float, out_type=int32](n9) - n21 = BroadcastGradientArgs[T=int32](n20, n19) - n11 = Range[Tidx=int32](n8, n10, n7) - n12 = Shape[T=int32, out_type=int32](n11) - n13 = Fill[T=int32](n12, n7) - n15 = DynamicStitch[N=2, T=int32](n11, n11, n14, n13) - n16 = Reshape[T=float, Tshape=int32](n2, n15) - n17 = Div[T=int32](n14, n15) - n18 = Tile[T=float, Tmultiples=int32](n16, n17) - n22 = Sum[T=float, Tidx=int32, keep_dims=false](n18, n21:1) - n24 = Sum[T=float, Tidx=int32, keep_dims=false](n18, n21) - n23 = Reshape[T=float, Tshape=int32](n22, n19) - n25 = Reshape[T=float, Tshape=int32](n24, n20) -} -)P"; - EXPECT_EQ(e2, DebugString(g.get())); + ExpandInlineFunctions(lib_.get(), g.get()); + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); + auto y = ops::_Arg(s.WithOpName("y"), DT_FLOAT, 1); + auto dz = ops::Const(s.WithOpName("dz"), 1.0f); + auto grad0_zero = ops::Const(s.WithOpName("grad0/zero"), 0); + auto grad0_one = ops::Const(s.WithOpName("grad0/one"), 1); + auto func0 = ops::Identity(s.WithOpName("Func/_0"), x); + auto func1 = ops::Identity(s.WithOpName("Func/_1"), y); + auto func2 = ops::Identity(s.WithOpName("Func/_2"), dz); + auto grad0_z = ops::Add(s.WithOpName("grad0/z"), func0, func1); + auto grad0_r = ops::Rank(s.WithOpName("grad0/r"), grad0_z); + auto grad0_indices = ops::Range(s.WithOpName("grad0/indices"), grad0_zero, + grad0_r, grad0_one); + auto grad0_l = ops::Sum(s.WithOpName("grad0/l"), grad0_z, grad0_indices); + + NameAttrList sum; + sum.set_name("Sum"); + (*sum.mutable_attr())["T"].set_type(DT_FLOAT); + (*sum.mutable_attr())["Tidx"].set_type(DT_INT32); + (*sum.mutable_attr())["keep_dims"].set_b(false); + auto grad0_func1 = ops::SymbolicGradient( + s.WithOpName("grad0/Func/_1"), + std::initializer_list{grad0_z, grad0_indices, func2}, + {DT_FLOAT, DT_INT32}, sum); + + auto grad0_func2 = ops::ZerosLike(s.WithOpName("grad0/Func/_2"), grad0_r); + + NameAttrList add; + add.set_name("Add"); + (*add.mutable_attr())["T"].set_type(DT_FLOAT); + auto grad0_func3 = ops::SymbolicGradient( + s.WithOpName("grad0/Func/_3"), + std::initializer_list{func0, func1, grad0_func1[0]}, + {DT_FLOAT, DT_FLOAT}, add); + + auto func3 = ops::Identity(s.WithOpName("Func/_3"), grad0_func3[0]); + auto func4 = ops::Identity(s.WithOpName("Func/_4"), grad0_func3[1]); + auto dx = ops::Identity(s.WithOpName("dx"), func3); + auto dy = ops::Identity(s.WithOpName("dy"), func4); + auto dx_retval = ops::_Retval(s.WithOpName("dx_RetVal"), dx, 0); + auto dy_retval = ops::_Retval(s.WithOpName("dy_RetVal"), dy, 1); + + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); + + GraphDef actual; + g->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(expected, actual); + } + + OptimizeGraph(lib_.get(), &g); + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); + auto y = ops::_Arg(s.WithOpName("y"), DT_FLOAT, 1); + auto dz = ops::Const(s.WithOpName("dz"), 1.0f); + auto grad0_zero = ops::Const(s.WithOpName("grad0/zero"), 0); + auto grad0_one = ops::Const(s.WithOpName("grad0/one"), 1); + auto grad0_z = ops::Add(s.WithOpName("grad0/z"), x, y); + auto grad0_r = ops::Rank(s.WithOpName("grad0/r"), grad0_z); + auto grad0_indices = ops::Range(s.WithOpName("grad0/indices"), grad0_zero, + grad0_r, grad0_one); + auto i_shape = + ops::Shape(s.WithOpName("grad0/Func/_1/i_shape"), grad0_indices); + auto stitch_val = ops::Fill(s.WithOpName("grad0/Func/_1/stitch_val1"), + i_shape, grad0_one); + auto x_shape = ops::Shape(s.WithOpName("grad0/Func/_1/x_shape"), grad0_z); + auto y_shape = ops::DynamicStitch( + s.WithOpName("grad0/Func/_1/y_shape"), + std::initializer_list{grad0_indices, grad0_indices}, + std::initializer_list{x_shape, stitch_val}); + auto dy_reshaped = + ops::Reshape(s.WithOpName("grad0/Func/_1/dy_reshaped"), dz, y_shape); + auto tile_scaling = + ops::Div(s.WithOpName("grad0/Func/_1/tile_scaling"), x_shape, y_shape); + auto func1_dx = + ops::Tile(s.WithOpName("grad0/Func/_1/dx"), dy_reshaped, tile_scaling); + + auto sx = ops::Shape(s.WithOpName("grad0/Func/_3/sx"), x); + auto sy = ops::Shape(s.WithOpName("grad0/Func/_3/sy"), y); + auto rx = ops::internal::BroadcastGradientArgs( + s.WithOpName("grad0/Func/_3/rx"), sx, sy); + auto sum_gx = + ops::Sum(s.WithOpName("grad0/Func/_3/sum_gx"), func1_dx, rx.r0); + auto sum_gy = + ops::Sum(s.WithOpName("grad0/Func/_3/sum_gy"), func1_dx, rx.r1); + auto dx = ops::Reshape(s.WithOpName("grad0/Func/_3/dx"), sum_gx, sx); + auto dy = ops::Reshape(s.WithOpName("grad0/Func/_3/dy"), sum_gy, sy); + + auto dx_retval = ops::_Retval(s.WithOpName("dx_RetVal"), dx, 0); + auto dy_retval = ops::_Retval(s.WithOpName("dy_RetVal"), dy, 1); + + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); + + GraphDef actual; + g->ToGraphDef(&actual); + TF_EXPECT_GRAPH_EQ(expected, actual); + } } namespace { bool DoNothing(Graph* g) { return false; } -string Optimize(const std::function& pass, - const FunctionDef& fdef) { +GraphDef Optimize(const std::function& pass, + const FunctionDef& fdef) { InstantiationResult result; InstantiateAttrValueMap empty; TF_CHECK_OK(InstantiateFunction(fdef, empty, GetOpSig, &result)); - Graph* g = new Graph(OpRegistry::Global()); + std::unique_ptr g(new Graph(OpRegistry::Global())); GraphConstructorOptions opts; opts.allow_internal_ops = true; opts.expect_device_spec = false; - TF_CHECK_OK(ConvertGraphDefToGraph(opts, result.gdef, g)); - pass(g); - Graph* g1 = new Graph(OpRegistry::Global()); - CopyGraph(*g, g1); - delete g; + TF_CHECK_OK(ConvertGraphDefToGraph(opts, result.gdef, g.get())); + pass(g.get()); + std::unique_ptr g1(new Graph(OpRegistry::Global())); + CopyGraph(*g, g1.get()); + g = nullptr; GraphDef gdef; g1->ToGraphDef(&gdef); - delete g1; - return DebugString(gdef); + return gdef; } } // end namespace @@ -700,21 +886,25 @@ TEST(OptimizationTest, RemoveDeadNodes) { {{"keep_me"}, "RandomUniform", {"o"}, {{"T", T}, {"dtype", DT_FLOAT}}}, // y = Add(a, o) {{"y"}, "Add", {"a", "o"}, {{"T", T}}}}); - const char* e0 = R"S( -(x:int32) -> (y:int32) { - o = Const[dtype=int32, value=Tensor]() - keep_me = RandomUniform[T=int32, dtype=float, seed2=0, seed=0](o) - x1 = Add[T=int32](o, o) - a = Square[T=int32](x) - y = Add[T=int32](a, o) - x2 = Mul[T=int32](a, x1) - x3 = Mul[T=int32](x1, x2) -} -)S"; - EXPECT_EQ(Optimize(DoNothing, func), e0); + + GraphDef expected; + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_INT32, 0); + auto o = ops::Const(s.WithOpName("o"), 1); + auto keep_me = ops::RandomUniform(s.WithOpName("keep_me"), {o}, DT_FLOAT); + auto x1 = ops::Add(s.WithOpName("x1"), o, o); + auto a = ops::Square(s.WithOpName("a"), x); + auto y = ops::Add(s.WithOpName("y"), a, o); + auto x2 = ops::Mul(s.WithOpName("x2"), a, x1); + auto x3 = ops::Mul(s.WithOpName("x3"), x1, x2); + auto ret = ops::_Retval(s.WithOpName("y_RetVal"), y, 0); + TF_ASSERT_OK(s.ToGraphDef(&expected)); + } + TF_EXPECT_GRAPH_EQ(expected, Optimize(DoNothing, func)); // TODO(zhifengc): Comes up another test case. - EXPECT_EQ(Optimize(::tensorflow::RemoveDeadNodes, func), e0); + TF_EXPECT_GRAPH_EQ(expected, Optimize(::tensorflow::RemoveDeadNodes, func)); } TEST(OptimizationTest, RemoveIdentityNodes_Ref) { @@ -735,23 +925,19 @@ TEST(OptimizationTest, RemoveIdentityNodes_Ref) { {{"v_read"}, "Identity", {"v"}, {{"T", T}}}, // returns v + v {{"ret"}, "Add", {"v_read", "v_read"}, {{"T", T}}}}); - const char* e0 = R"S( -() -> (ret:float) { - v = VariableV2[container="", dtype=float, shape=[], shared_name=""]() - v_read = Identity[T=float](v) - ret = Add[T=float](v_read, v_read) -} -)S"; - EXPECT_EQ(Optimize(DoNothing, func), e0); - const char* e1 = R"S( -() -> (ret:float) { - v = VariableV2[container="", dtype=float, shape=[], shared_name=""]() - v_read = Identity[T=float](v) - ret = Add[T=float](v_read, v_read) -} -)S"; - EXPECT_EQ(Optimize(::tensorflow::RemoveIdentityNodes, func), e1); + GraphDef expected; + { + Scope s = Scope::NewRootScope(); + auto v = ops::Variable(s.WithOpName("v"), PartialTensorShape({}), DT_FLOAT); + auto v_read = ops::Identity(s.WithOpName("v_read"), v); + auto ret = ops::Add(s.WithOpName("ret"), v_read, v_read); + auto ret_retval = ops::_Retval(s.WithOpName("ret_RetVal"), ret, 0); + TF_ASSERT_OK(s.ToGraphDef(&expected)); + } + TF_EXPECT_GRAPH_EQ(expected, Optimize(DoNothing, func)); + TF_EXPECT_GRAPH_EQ(expected, + Optimize(::tensorflow::RemoveIdentityNodes, func)); } TEST(OptimizationTest, RemoveIdentityNodes) { @@ -782,28 +968,38 @@ TEST(OptimizationTest, RemoveIdentityNodes) { {"x3"}}, // y = Add(a, o) {{"y"}, "Add", {"a", "o"}, {{"T", T}}}}); - const char* e0 = R"S( -(x:int32) -> (y:int32) { - o = Const[dtype=int32, value=Tensor]() - a = Square[T=int32](x) - y = Add[T=int32](a, o) - x1 = Identity[T=int32](a) - x2 = Identity[T=int32](x1) - x3 = Identity[T=int32](x2) - keep_me = RandomUniform[T=int32, dtype=float, seed2=0, seed=0](o) @ x3 -} -)S"; - EXPECT_EQ(Optimize(DoNothing, func), e0); - const char* e1 = R"S( -(x:int32) -> (y:int32) { - o = Const[dtype=int32, value=Tensor]() - a = Square[T=int32](x) - y = Add[T=int32](a, o) - keep_me = RandomUniform[T=int32, dtype=float, seed2=0, seed=0](o) @ a -} -)S"; - EXPECT_EQ(Optimize(::tensorflow::RemoveIdentityNodes, func), e1); + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_INT32, 0); + auto o = ops::Const(s.WithOpName("o"), 1); + auto a = ops::Square(s.WithOpName("a"), x); + auto y = ops::Add(s.WithOpName("y"), a, o); + auto x1 = ops::Identity(s.WithOpName("x1"), a); + auto x2 = ops::Identity(s.WithOpName("x2"), x1); + auto x3 = ops::Identity(s.WithOpName("x3"), x2); + auto keep_me = ops::RandomUniform( + s.WithOpName("keep_me").WithControlDependencies(x3), {o}, DT_FLOAT); + auto ret = ops::_Retval(s.WithOpName("y_RetVal"), y, 0); + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); + TF_EXPECT_GRAPH_EQ(expected, Optimize(DoNothing, func)); + } + + { + Scope s = Scope::NewRootScope(); + auto x = ops::_Arg(s.WithOpName("x"), DT_INT32, 0); + auto o = ops::Const(s.WithOpName("o"), 1); + auto a = ops::Square(s.WithOpName("a"), x); + auto y = ops::Add(s.WithOpName("y"), a, o); + auto keep_me = ops::RandomUniform( + s.WithOpName("keep_me").WithControlDependencies(a), {o}, DT_FLOAT); + auto ret = ops::_Retval(s.WithOpName("y_RetVal"), y, 0); + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); + TF_EXPECT_GRAPH_EQ(expected, + Optimize(::tensorflow::RemoveIdentityNodes, func)); + } } TEST(OptimizationTest, RemoveListArrayConverter) { @@ -840,49 +1036,63 @@ TEST(OptimizationTest, RemoveListArrayConverter) { // Return values {{"o", "o:sum"}}); - const char* e0 = R"P( -(i:float) -> (o:float) { - zero = Const[dtype=int32, value=Tensor]() - s = Split[T=float, num_split=4](zero, i) - a = _ArrayToList[N=4, T=float, out_types={float, float, float, float}](s, s:1, s:2, s:3) - r = Mul[T=float](a:2, a:3) - l = Mul[T=float](a, a:1) - x = _ListToArray[N=2, T=float, Tin={float, float}](l, r) - o = AddN[N=2, T=float](x, x:1) -} -)P"; - EXPECT_EQ(Optimize(DoNothing, func), e0); + { + Scope scope = Scope::NewRootScope(); + auto i = ops::_Arg(scope.WithOpName("i"), DT_FLOAT, 0); + auto zero = ops::Const(scope.WithOpName("zero"), 0); + auto s = ops::Split(scope.WithOpName("s"), zero, i, 4); + auto a = ops::_ArrayToList(scope.WithOpName("a"), s.output, + {DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}); + auto r = ops::Mul(scope.WithOpName("r"), a[2], a[3]); + auto l = ops::Mul(scope.WithOpName("l"), a[0], a[1]); + auto x = ops::_ListToArray(scope.WithOpName("x"), + std::initializer_list{l, r}, DT_FLOAT, 2); + auto o = ops::AddN(scope.WithOpName("o"), x.output); + auto o_ret = ops::_Retval(scope.WithOpName("o_RetVal"), o, 0); + GraphDef expected; + TF_ASSERT_OK(scope.ToGraphDef(&expected)); + TF_EXPECT_GRAPH_EQ(expected, Optimize(DoNothing, func)); + } - const char* e1 = R"P( -(i:float) -> (o:float) { - zero = Const[dtype=int32, value=Tensor]() - s = Split[T=float, num_split=4](zero, i) - r = Mul[T=float](Func/_2, Func/_3) - l = Mul[T=float](Func/_0, Func/_1) - o = AddN[N=2, T=float](Func/_4, Func/_5) - Func/_0 = Identity[T=float](s) - Func/_1 = Identity[T=float](s:1) - Func/_2 = Identity[T=float](s:2) - Func/_3 = Identity[T=float](s:3) - Func/_4 = Identity[T=float](l) - Func/_5 = Identity[T=float](r) -} -)P"; - EXPECT_EQ(Optimize(RemoveListArrayConverter, func), e1); + { + Scope scope = Scope::NewRootScope(); + auto i = ops::_Arg(scope.WithOpName("i"), DT_FLOAT, 0); + auto zero = ops::Const(scope.WithOpName("zero"), 0); + auto s = ops::Split(scope.WithOpName("s"), zero, i, 4); + auto func_0 = ops::Identity(scope.WithOpName("Func/_0"), s[0]); + auto func_1 = ops::Identity(scope.WithOpName("Func/_1"), s[1]); + auto func_2 = ops::Identity(scope.WithOpName("Func/_2"), s[2]); + auto func_3 = ops::Identity(scope.WithOpName("Func/_3"), s[3]); + auto r = ops::Mul(scope.WithOpName("r"), func_2, func_3); + auto l = ops::Mul(scope.WithOpName("l"), func_0, func_1); + auto func_4 = ops::Identity(scope.WithOpName("Func/_4"), l); + auto func_5 = ops::Identity(scope.WithOpName("Func/_5"), r); + auto o = ops::AddN(scope.WithOpName("o"), + std::initializer_list{func_4, func_5}); + auto o_ret = ops::_Retval(scope.WithOpName("o_RetVal"), o, 0); + GraphDef expected; + TF_ASSERT_OK(scope.ToGraphDef(&expected)); + TF_EXPECT_GRAPH_EQ(expected, Optimize(RemoveListArrayConverter, func)); + } - const char* e2 = R"P( -(i:float) -> (o:float) { - zero = Const[dtype=int32, value=Tensor]() - s = Split[T=float, num_split=4](zero, i) - r = Mul[T=float](s:2, s:3) - l = Mul[T=float](s, s:1) - o = AddN[N=2, T=float](l, r) -} -)P"; - auto remove_listarray_and_identity = [](Graph* g) { - return RemoveListArrayConverter(g) && RemoveIdentityNodes(g); - }; - EXPECT_EQ(Optimize(remove_listarray_and_identity, func), e2); + { + Scope scope = Scope::NewRootScope(); + auto i = ops::_Arg(scope.WithOpName("i"), DT_FLOAT, 0); + auto zero = ops::Const(scope.WithOpName("zero"), 0); + auto s = ops::Split(scope.WithOpName("s"), zero, i, 4); + auto r = ops::Mul(scope.WithOpName("r"), s[2], s[3]); + auto l = ops::Mul(scope.WithOpName("l"), s[0], s[1]); + auto o = + ops::AddN(scope.WithOpName("o"), std::initializer_list{l, r}); + auto o_ret = ops::_Retval(scope.WithOpName("o_RetVal"), o, 0); + GraphDef expected; + TF_ASSERT_OK(scope.ToGraphDef(&expected)); + + auto remove_listarray_and_identity = [](Graph* g) { + return RemoveListArrayConverter(g) && RemoveIdentityNodes(g); + }; + TF_EXPECT_GRAPH_EQ(expected, Optimize(remove_listarray_and_identity, func)); + } } TEST(OptimizationTest, RemoveListArrayConverter_WithContolDeps) { @@ -911,33 +1121,47 @@ TEST(OptimizationTest, RemoveListArrayConverter_WithContolDeps) { {"x"}}}, {{"o", "o:sum"}}); - const char* e0 = R"P( -(i:float) -> (o:float) { - dummy = Const[dtype=int32, value=Tensor]() - x = _ListToArray[N=2, T=float, Tin={float, float}](i, i) @ dummy - o = AddN[N=2, T=float](x, x:1) @ x -} -)P"; - EXPECT_EQ(Optimize(DoNothing, func), e0); + { + Scope s = Scope::NewRootScope(); + auto i = ops::_Arg(s.WithOpName("i"), DT_FLOAT, 0); + auto dummy = ops::Const(s.WithOpName("dummy"), 0); + auto x = ops::_ListToArray(s.WithOpName("x").WithControlDependencies(dummy), + std::initializer_list{i, i}, DT_FLOAT, 2); + auto o = + ops::AddN(s.WithOpName("o").WithControlDependencies({x.output[0].op()}), + x.output); + auto o_ret = ops::_Retval(s.WithOpName("o_RetVal"), o, 0); + GraphDef expected; + TF_ASSERT_OK(s.ToGraphDef(&expected)); + TF_EXPECT_GRAPH_EQ(expected, Optimize(DoNothing, func)); + } - const char* e1 = R"P( -(i:float) -> (o:float) { - dummy = Const[dtype=int32, value=Tensor]() - o = AddN[N=2, T=float](Func/_0, Func/_1) @ Func/_3 - Func/_0 = Identity[T=float](i) @ Func/_2 - Func/_1 = Identity[T=float](i) @ Func/_2 - Func/_2 = NoOp() @ dummy - Func/_3 = NoOp() @ Func/_0, Func/_1 -} -)P"; - EXPECT_EQ(Optimize(RemoveListArrayConverter, func), e1); + GraphDef expected; + { + Scope s = Scope::NewRootScope(); + auto i = ops::_Arg(s.WithOpName("i"), DT_FLOAT, 0); + auto dummy = ops::Const(s.WithOpName("dummy"), 0); + auto func_2 = + ops::NoOp(s.WithOpName("Func/_2").WithControlDependencies(dummy)); + auto func_0 = ops::Identity( + s.WithOpName("Func/_0").WithControlDependencies({func_2}), i); + auto func_1 = ops::Identity( + s.WithOpName("Func/_1").WithControlDependencies({func_2}), i); + auto func_3 = ops::NoOp(s.WithOpName("Func/_3").WithControlDependencies( + {func_0.output.op(), func_1.output.op()})); + auto o = ops::AddN(s.WithOpName("o").WithControlDependencies({func_3}), + std::initializer_list{func_0, func_1}); + auto o_ret = ops::_Retval(s.WithOpName("o_RetVal"), o, 0); + TF_ASSERT_OK(s.ToGraphDef(&expected)); + } + TF_EXPECT_GRAPH_EQ(expected, Optimize(RemoveListArrayConverter, func)); auto remove_listarray_and_identity = [](Graph* g) { return RemoveListArrayConverter(g) && RemoveIdentityNodes(g); }; // NOTE: We are not removing Identity nodes with any control // dependencies yet. - EXPECT_EQ(Optimize(remove_listarray_and_identity, func), e1); + TF_EXPECT_GRAPH_EQ(expected, Optimize(remove_listarray_and_identity, func)); } } // end namespace tensorflow diff --git a/tensorflow/core/common_runtime/shape_refiner.cc b/tensorflow/core/common_runtime/shape_refiner.cc index 8eb383a14fe..876f34b9911 100644 --- a/tensorflow/core/common_runtime/shape_refiner.cc +++ b/tensorflow/core/common_runtime/shape_refiner.cc @@ -163,7 +163,7 @@ Status ShapeRefiner::UpdateNode(const Node* node, bool* refined) { InferenceContext* c = iter->second.get(); DCHECK_GE(e->dst_input(), 0); - if (node_context->set_input(e->dst_input(), c->output(e->src_output()))) { + if (node_context->MergeInput(e->dst_input(), c->output(e->src_output()))) { *refined = true; } @@ -174,7 +174,7 @@ Status ShapeRefiner::UpdateNode(const Node* node, bool* refined) { e->dst_input(), c->output_handle_dtype(e->src_output()))) { *refined = true; } - if (node_context->set_input_handle_shape( + if (node_context->MergeInputHandleShape( e->dst_input(), c->output_handle_shape(e->src_output()))) { *refined = true; } diff --git a/tensorflow/core/framework/attr_value_util.cc b/tensorflow/core/framework/attr_value_util.cc index 452cfdda9e6..3573cc6ec21 100644 --- a/tensorflow/core/framework/attr_value_util.cc +++ b/tensorflow/core/framework/attr_value_util.cc @@ -400,16 +400,33 @@ void SetAttrValue(gtl::ArraySlice value, AttrValue* out) { } } +// Wrapper around protocol buffer serialization that requests deterministic +// serialization, in particular for Map fields, which serialize in a random +// order by default. Returns true on success. +template +static bool DeterministicSerialization(const T& t, string* result) { + const int size = t.ByteSize(); + *result = string(size, '\0'); + ::tensorflow::protobuf::io::ArrayOutputStream array_stream(&(*result)[0], + size); + ::tensorflow::protobuf::io::CodedOutputStream output_stream(&array_stream); + output_stream.SetSerializationDeterministic(true); + t.SerializeWithCachedSizes(&output_stream); + return !output_stream.HadError() && size == output_stream.ByteCount(); +} + bool AreAttrValuesEqual(const AttrValue& a, const AttrValue& b) { string a_str, b_str; - a.SerializeToString(&a_str); - b.SerializeToString(&b_str); + DeterministicSerialization(a, &a_str); + DeterministicSerialization(b, &b_str); // Note: it should be safe to compare proto serializations of the attr // values since at most one field should be set in each (indeed, it // must be the same field if they are to compare equal). // Exception: there are multiple equivalent representations of // TensorProtos. So a return value of true implies a == b, but not the // converse. + // TODO(phawkins): this is incorrect for NameAttrList attributes that may + // contain nested AttrValue maps. return a_str == b_str; } diff --git a/tensorflow/core/framework/shape_inference.h b/tensorflow/core/framework/shape_inference.h index 71663027b3c..cebadcc5b45 100644 --- a/tensorflow/core/framework/shape_inference.h +++ b/tensorflow/core/framework/shape_inference.h @@ -191,16 +191,18 @@ class InferenceContext { return s; } - // Set the shape of the input in position idx. This requires idx to be in the - // [0, num_inputs) range. Returns true iff the stored input shape has been - // updated with a different handle. - bool set_input(int idx, ShapeHandle shape) { - if (!inputs_[idx].SameHandle(shape)) { - inputs_[idx] = shape; - return true; - } else { + // Merge the stored shape of the input in position idx with the specified + // shape. This requires idx to be in the [0, num_inputs) range. If the merge + // is successful and the new shape differs from the old one, store the new + // shape and return true. Return false otherwise. + bool MergeInput(int idx, ShapeHandle shape) { + ShapeHandle new_shape; + if (!Merge(inputs_[idx], shape, &new_shape).ok() || + inputs_[idx].SameHandle(new_shape)) { return false; } + inputs_[idx] = new_shape; + return true; } ShapeHandle input(int64 idx) const { return inputs_[idx]; } Status input(StringPiece input_name, std::vector* output) const; @@ -442,15 +444,18 @@ class InferenceContext { // propagate that information. Output handle dtypes and shapes are ignored if // the output tensor is not of type DT_RESOURCE. - // Set the shape corresponding to the resource in position idx. This requires - // idx to be in the [0, num_inputs) range. Returns true iff the stored shape - // has been updated with a different handle. - bool set_input_handle_shape(int idx, ShapeHandle shape) { - if (!input_handle_shape_[idx].SameHandle(shape)) { - input_handle_shape_[idx] = shape; - return true; + // Merge the stored shape corresponding to the input handle in position idx + // with the specified shape. This requires idx to be in the [0, num_inputs) + // range. If the merge is successful and the new shape differs from the old + // one, store the new shape and return true. Return false otherwise. + bool MergeInputHandleShape(int idx, ShapeHandle shape) { + ShapeHandle new_shape; + if (!Merge(input_handle_shape_[idx], shape, &new_shape).ok() || + input_handle_shape_[idx].SameHandle(new_shape)) { + return false; } - return false; + input_handle_shape_[idx] = shape; + return true; } // Set the type corresponding to the resource in position idx. This requires @@ -468,15 +473,24 @@ class InferenceContext { return input_handle_dtype_[idx]; } - // Set the shape corresponding to the resource in position idx. This requires - // idx to be in the [0, num_outputs) range. - // Returns true iff the stored shape has been updated with a different handle. - bool set_output_handle_shape(int idx, ShapeHandle shape) { - if (!output_handle_shape_[idx].SameHandle(shape)) { - output_handle_shape_[idx] = shape; - return true; + // Merge the stored shape corresponding to the output handle in position idx + // with the specified shape. This requires idx to be in the [0, num_outputs) + // range. If the merge is successful and the new shape differs from the old + // one, store the new shape and return true. Return false otherwise. + + bool MergeOutputHandleShape(int idx, ShapeHandle shape) { + ShapeHandle new_shape; + if (!Merge(output_handle_shape_[idx], shape, &new_shape).ok() || + output_handle_shape_[idx].SameHandle(new_shape)) { + return false; } - return false; + output_handle_shape_[idx] = shape; + return true; + } + // Overwrite the shape corresponding to the output handle in position idx with + // the specified shape. + void set_output_handle_shape(int idx, ShapeHandle shape) { + output_handle_shape_[idx] = shape; } // Set the type corresponding to the resource in position idx. This requires diff --git a/tensorflow/core/graph/algorithm.cc b/tensorflow/core/graph/algorithm.cc index 38f011ecaf1..3bfba3fc4ee 100644 --- a/tensorflow/core/graph/algorithm.cc +++ b/tensorflow/core/graph/algorithm.cc @@ -23,8 +23,8 @@ limitations under the License. namespace tensorflow { -void DFS(const Graph& g, std::function enter, - std::function leave) { +void DFS(const Graph& g, const std::function& enter, + const std::function& leave) { // Stack of work to do. struct Work { Node* node; @@ -61,15 +61,23 @@ void DFS(const Graph& g, std::function enter, } } -void ReverseDFS(const Graph& g, std::function enter, - std::function leave) { +void ReverseDFS(const Graph& g, const std::function& enter, + const std::function& leave) { + ReverseDFSFrom(g, {g.sink_node()}, enter, leave); +} + +void ReverseDFSFrom(const Graph& g, gtl::ArraySlice start, + const std::function& enter, + const std::function& leave) { // Stack of work to do. struct Work { Node* node; bool leave; // Are we entering or leaving n? }; - std::vector stack; - stack.push_back(Work{g.sink_node(), false}); + std::vector stack(start.size()); + for (int i = 0; i < start.size(); ++i) { + stack[i] = Work{start[i], false}; + } std::vector visited(g.num_node_ids(), false); while (!stack.empty()) { diff --git a/tensorflow/core/graph/algorithm.h b/tensorflow/core/graph/algorithm.h index 74aace80722..01d36e0a124 100644 --- a/tensorflow/core/graph/algorithm.h +++ b/tensorflow/core/graph/algorithm.h @@ -21,20 +21,28 @@ limitations under the License. #include #include "tensorflow/core/graph/graph.h" +#include "tensorflow/core/lib/gtl/array_slice.h" namespace tensorflow { // Perform a depth-first-search on g starting at the source node. // If enter is not empty, calls enter(n) before visiting any children of n. // If leave is not empty, calls leave(n) after visiting all children of n. -extern void DFS(const Graph& g, std::function enter, - std::function leave); +extern void DFS(const Graph& g, const std::function& enter, + const std::function& leave); // Perform a reverse depth-first-search on g starting at the sink node. // If enter is not empty, calls enter(n) before visiting any parents of n. // If leave is not empty, calls leave(n) after visiting all parents of n. -extern void ReverseDFS(const Graph& g, std::function enter, - std::function leave); +extern void ReverseDFS(const Graph& g, const std::function& enter, + const std::function& leave); + +// Perform a reverse depth-first-search on g starting at the 'start' nodes. +// If enter is not empty, calls enter(n) before visiting any parents of n. +// If leave is not empty, calls leave(n) after visiting all parents of n. +extern void ReverseDFSFrom(const Graph& g, gtl::ArraySlice start, + const std::function& enter, + const std::function& leave); // Stores in *order the post-order numbering of all nodes // in graph found via a depth first search starting at the source node. diff --git a/tensorflow/core/grappler/costs/BUILD b/tensorflow/core/grappler/costs/BUILD index e784c2df443..22f4708d032 100644 --- a/tensorflow/core/grappler/costs/BUILD +++ b/tensorflow/core/grappler/costs/BUILD @@ -90,6 +90,23 @@ cc_test( ], ) +cc_library( + name = "robust_stats", + srcs = ["robust_stats.cc"], + hdrs = ["robust_stats.h"], + visibility = ["//visibility:public"], +) + +cc_test( + name = "robust_stats_test", + srcs = ["robust_stats_test.cc"], + deps = [ + ":robust_stats", + "//tensorflow/core:test", + "//tensorflow/core:test_main", + ], +) + cc_library( name = "utils", srcs = ["utils.cc"], @@ -116,3 +133,37 @@ cc_library( "//tensorflow/core:lib", ], ) + +cc_library( + name = "virtual_scheduler", + srcs = ["virtual_scheduler.cc"], + hdrs = ["virtual_scheduler.h"], + visibility = ["//visibility:public"], + deps = [ + "//tensorflow/core:protos_all_cc", + "//tensorflow/core/grappler:grappler_item", + "//tensorflow/core/grappler:utils", + "//tensorflow/core/grappler/costs:cost_estimator", + ], +) + +cc_library( + name = "measuring_cost_estimator", + srcs = ["measuring_cost_estimator.cc"], + hdrs = ["measuring_cost_estimator.h"], + visibility = ["//visibility:public"], + deps = [ + ":robust_stats", + "//tensorflow/core:core_cpu", + "//tensorflow/core:framework", + "//tensorflow/core:lib", + "//tensorflow/core:lib_internal", + "//tensorflow/core:lib_proto_parsing", + "//tensorflow/core:protos_all_cc", + "//tensorflow/core/grappler:grappler_item", + "//tensorflow/core/grappler:grappler_item_builder", + "//tensorflow/core/grappler/clusters:cluster", + "//tensorflow/core/grappler/costs:cost_estimator", + "//tensorflow/core/kernels:ops_util", + ], +) diff --git a/tensorflow/core/grappler/costs/graph_properties.cc b/tensorflow/core/grappler/costs/graph_properties.cc index 31c1043ae69..035483ec179 100644 --- a/tensorflow/core/grappler/costs/graph_properties.cc +++ b/tensorflow/core/grappler/costs/graph_properties.cc @@ -84,8 +84,8 @@ Status GraphProperties::InferStatically() { } } } - if (qctx->set_output_handle_dtype(0, queue_type) || - qctx->set_output_handle_shape(0, queue_shp)) { + if (qctx->set_output_handle_dtype(0, queue_type) | + qctx->MergeOutputHandleShape(0, queue_shp)) { new_shapes.push(qnode); } } diff --git a/tensorflow/core/grappler/costs/graph_properties_test.cc b/tensorflow/core/grappler/costs/graph_properties_test.cc index 94b809dc44e..be5ae3c3646 100644 --- a/tensorflow/core/grappler/costs/graph_properties_test.cc +++ b/tensorflow/core/grappler/costs/graph_properties_test.cc @@ -177,10 +177,14 @@ TEST_F(GraphPropertiesTest, Queues) { auto dequeue2 = ops::QueueDequeue(root.WithOpName("Dequeue2"), q2, {DataType::DT_FLOAT}); + // Create a queue that feeds itself. auto q3 = ops::RandomShuffleQueue(root.WithOpName("Queue3"), {DataType::DT_FLOAT}); auto dequeue3 = ops::QueueDequeue(root.WithOpName("Dequeue3"), q3, {DataType::DT_FLOAT}); + auto merge3 = ops::Merge(root.WithOpName("Merge3"), {dequeue3[0], square2}); + auto enqueue3 = + ops::QueueEnqueue(root.WithOpName("Enqueue3"), q3, {merge3.output}); auto q4 = ops::RandomShuffleQueue(root.WithOpName("Queue4"), {DataType::DT_FLOAT}); @@ -227,6 +231,229 @@ TEST_F(GraphPropertiesTest, Queues) { EXPECT_EQ(7, prop4.shape().dim(1).size()); } +TEST_F(GraphPropertiesTest, Loops) { + // Test graph produced in python using: + /* + with tf.Graph().as_default(): + i = tf.constant(0) + c = lambda i: tf.less(i, 10) + b = lambda i: tf.add(i, 1) + r = tf.while_loop(c, b, [i]) + with open('/tmp/graph.txt', 'w') as f: + f.write(str(tf.get_default_graph().as_graph_def())) + */ + const string gdef_ascii = R"EOF( +node { + name: "Const" + op: "Const" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 0 + } + } + } +} +node { + name: "while/Enter" + op: "Enter" + input: "Const" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "frame_name" + value { + s: "while/while/" + } + } + attr { + key: "is_constant" + value { + b: false + } + } + attr { + key: "parallel_iterations" + value { + i: 10 + } + } +} +node { + name: "while/Merge" + op: "Merge" + input: "while/Enter" + input: "while/NextIteration" + attr { + key: "N" + value { + i: 2 + } + } + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +node { + name: "while/Less/y" + op: "Const" + input: "^while/Merge" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 10 + } + } + } +} +node { + name: "while/Less" + op: "Less" + input: "while/Merge" + input: "while/Less/y" + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +node { + name: "while/LoopCond" + op: "LoopCond" + input: "while/Less" +} +node { + name: "while/Switch" + op: "Switch" + input: "while/Merge" + input: "while/LoopCond" + attr { + key: "T" + value { + type: DT_INT32 + } + } + attr { + key: "_class" + value { + list { + s: "loc:@while/Merge" + } + } + } +} +node { + name: "while/Identity" + op: "Identity" + input: "while/Switch:1" + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +node { + name: "while/Add/y" + op: "Const" + input: "^while/Identity" + attr { + key: "dtype" + value { + type: DT_INT32 + } + } + attr { + key: "value" + value { + tensor { + dtype: DT_INT32 + tensor_shape { + } + int_val: 1 + } + } + } +} +node { + name: "while/Add" + op: "Add" + input: "while/Identity" + input: "while/Add/y" + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +node { + name: "while/NextIteration" + op: "NextIteration" + input: "while/Add" + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +node { + name: "while/Exit" + op: "Exit" + input: "while/Switch" + attr { + key: "T" + value { + type: DT_INT32 + } + } +} +versions { + producer: 11 +} + )EOF"; + + GrapplerItem item; + CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &item.graph)); + GraphProperties properties(item); + TF_CHECK_OK(properties.InferStatically()); + + const auto props = properties.GetOutputProperties("while/Exit"); + EXPECT_EQ(1, props.size()); + const OpInfo::TensorProperties& prop = props[0]; + EXPECT_EQ(DT_INT32, prop.dtype()); + EXPECT_TRUE(prop.shape().unknown_rank()); +} + } // namespace } // namespace grappler } // namespace tensorflow diff --git a/tensorflow/core/grappler/costs/measuring_cost_estimator.cc b/tensorflow/core/grappler/costs/measuring_cost_estimator.cc new file mode 100644 index 00000000000..6179dc05c1e --- /dev/null +++ b/tensorflow/core/grappler/costs/measuring_cost_estimator.cc @@ -0,0 +1,133 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/core/grappler/costs/measuring_cost_estimator.h" + +#include + +#include "tensorflow/core/grappler/clusters/cluster.h" +#include "tensorflow/core/grappler/costs/robust_stats.h" +#include "tensorflow/core/grappler/grappler_item.h" +#include "tensorflow/core/kernels/ops_util.h" +#include "tensorflow/core/lib/core/blocking_counter.h" +#include "tensorflow/core/platform/env.h" +#include "tensorflow/core/public/session.h" + +namespace tensorflow { +namespace grappler { + +MeasuringCostEstimator::MeasuringCostEstimator(Cluster* cluster, + int measurement_steps, + int measurement_threads) + : measurement_steps_(measurement_steps), + measurement_threads_(measurement_threads) { + CHECK_GE(measurement_steps, 1); + if (measurement_threads > 0) { + thread_pool_.reset(new thread::ThreadPool( + Env::Default(), SanitizeThreadSuffix("measurements"), + measurement_threads)); + } + cluster_ = cluster; +} + +Status MeasuringCostEstimator::Initialize(const GrapplerItem& item) { + feed_ = item.feed; + fetch_ = item.fetch; + return cluster_->Initialize(item); +} + +Status MeasuringCostEstimator::PredictCosts(const GraphDef& optimized_graph, + CostGraphDef* cost_graph, + Costs* costs) const { + std::vector times(measurement_steps_); + BlockingCounter barrier(measurement_steps_); + + mutex status_mu; + Status status; + + auto measurement_fn = [&](const int step) { + const Costs::MicroSeconds start = Env::Default()->NowMicros(); + + RunMetadata metadata; + const Status local_status = + cluster_->Run(optimized_graph, feed_, fetch_, &metadata); + { + mutex_lock lock(status_mu); + status.Update(local_status); + } + if (step < 0) { + // Discard the first iteration as it triggers the warmup, and therefore + // takes much longer than a normal step. + return; + } + if (!local_status.ok()) { + // Discard the data if the run wasn't sucessful. + barrier.DecrementCount(); + return; + } + + const Costs::MicroSeconds finish = Env::Default()->NowMicros(); + const double time = (finish - start).count() * 1e3; + times[step] = time; + + if (cost_graph && (step + 1 == measurement_steps_)) { + metadata.mutable_cost_graph()->Swap(cost_graph); + } + + barrier.DecrementCount(); + }; + + // Initialize the computation and warm up TensorFlow. + measurement_fn(-1); + + if (!status.ok()) { + LOG(ERROR) << "Failed to run start measurements: " + << status.error_message(); + costs->execution_time = Costs::Duration::max(); + return status; + } + + // Run "measurement_steps_" and measure the time. + if (measurement_threads_ > 0) { + for (int i = 0; i < measurement_steps_; ++i) { + thread_pool_->Schedule([i, &measurement_fn]() { measurement_fn(i); }); + } + barrier.Wait(); + } else { + for (int i = 0; i < measurement_steps_ && status.ok(); ++i) { + measurement_fn(i); + } + } + + if (!status.ok()) { + LOG(ERROR) << "Failed to measure graph performance: " + << status.error_message(); + costs->execution_time = Costs::Duration::max(); + costs->max_execution_time = Costs::Duration::max(); + costs->min_execution_time = 0; + return status; + } + + // Compute the average time of the measure steps. Use Huber statistics + // to filter out outliers. + RobustStats stats(times); + costs->execution_time = Costs::Duration(stats.mean()); + costs->max_execution_time = Costs::Duration(stats.hi()); + costs->min_execution_time = Costs::Duration(stats.lo()); + + return Status::OK(); +} +} // end namespace grappler +} // end namespace tensorflow diff --git a/tensorflow/core/grappler/costs/measuring_cost_estimator.h b/tensorflow/core/grappler/costs/measuring_cost_estimator.h new file mode 100644 index 00000000000..a84853f6c71 --- /dev/null +++ b/tensorflow/core/grappler/costs/measuring_cost_estimator.h @@ -0,0 +1,76 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_GRAPPLER_COSTS_MEASURING_COST_ESTIMATOR_H_ +#define TENSORFLOW_GRAPPLER_COSTS_MEASURING_COST_ESTIMATOR_H_ + +#include +#include +#include + +#include "tensorflow/core/framework/tensor.h" +#include "tensorflow/core/grappler/costs/cost_estimator.h" +#include "tensorflow/core/lib/core/status.h" +#include "tensorflow/core/lib/core/threadpool.h" +#include "tensorflow/core/platform/types.h" + +namespace tensorflow { +class CostGraphDef; +class GraphDef; +} // namespace tensorflow + +namespace tensorflow { +namespace grappler { + +class Cluster; +struct GrapplerItem; + +// Estimate the cost of running a Grappler item by actually running the +// corresponding TensorFlow graph on the specified cluster and measuring the +// runtimes. +class MeasuringCostEstimator : public CostEstimator { + public: + // Run the model for measurement_steps to measure its average cost. + // When measurement_threads is greater than 0, use a threadpool of as many + // threads to run the measurements; otherwise, run them serially. Does not + // take ownership of cluster. + explicit MeasuringCostEstimator(Cluster* cluster, int measurement_steps, + int measurement_threads); + ~MeasuringCostEstimator() override {} + + // Initalizes the estimator for the specified grappler item. + // This implementation always returns OK. + Status Initialize(const GrapplerItem& item) override; + + // Runs the optimized version of the graph on the cluster, measure + // the runtimes of each operation, and annotated the CostGraphDef + // with the corresponding measurements. + // Returns the average latency for the whole graph. + Status PredictCosts(const GraphDef& optimized_graph, CostGraphDef* cost_graph, + Costs* overall_cost) const override; + + private: + Cluster* cluster_; // Not owned. + int measurement_steps_; + int measurement_threads_; + std::vector> feed_; + std::vector fetch_; + std::unique_ptr thread_pool_; +}; + +} // end namespace grappler +} // end namespace tensorflow + +#endif // TENSORFLOW_GRAPPLER_COSTS_MEASURING_COST_ESTIMATOR_H_ diff --git a/tensorflow/core/grappler/costs/robust_stats.cc b/tensorflow/core/grappler/costs/robust_stats.cc new file mode 100644 index 00000000000..dba6efae0fd --- /dev/null +++ b/tensorflow/core/grappler/costs/robust_stats.cc @@ -0,0 +1,152 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/core/grappler/costs/robust_stats.h" +#include +#include + +namespace tensorflow { +namespace grappler { + +// Given a sorted vector of values, calculate the median. +// Returns 0 for an empty vector. Does not verify sortedness. +static double SortedMedian(const std::vector &values) { + const int n = values.size(); + if (n == 0) return 0.0; + if (n & 1) { + return values[n / 2]; + } else { + return (values[n / 2] + values[n / 2 - 1]) / 2.0; + } +} + +// Given a vector of values (sorted or not), calculate the median. +static double Median(std::vector &&values) { + const size_t n = values.size(); + if (n == 0) return 0; + const auto middle = values.begin() + (n / 2); + // Put the middle value in its place. + std::nth_element(values.begin(), middle, values.end()); + if (n & 1) { + return *middle; + } + // Return the average of the two elements, the max_element lower than + // *middle is found between begin and middle as a post-cond of + // nth_element. + const auto lower_middle = std::max_element(values.begin(), middle); + // Preventing overflow. We know that '*lower_middle <= *middle'. + // If both are on oposite sides of zero, the sum won't overflow, otherwise + // the difference won't overflow. + if (*lower_middle <= 0 && *middle >= 0) { + return (*lower_middle + *middle) / 2; + } + return *lower_middle + (*middle - *lower_middle) / 2; +} + +// Given a set of values, calculates the scaled Median Absolute Deviation (a +// robust approximation to the standard deviation). This is calculated as the +// median of the absolute deviations from the median, scaled by 1.4826. Its +// advantage over the standard deviation is that it is not (as) affected by +// outlier values. Returns a pair. +static std::pair ScaledMedianAbsoluteDeviation( + const std::vector &sorted_values) { + double median = SortedMedian(sorted_values); + + // Next, we calculate the absolute deviations from the median, + // find the median of the resulting data, and scale by 1.4826. + std::vector deviations; + deviations.reserve(sorted_values.size()); + for (double d : sorted_values) { + deviations.push_back(std::abs(d - median)); + } + double mad = Median(std::move(deviations)) * 1.4826; + return std::pair(median, mad); +} + +RobustStats::RobustStats(const std::vector &values) + : RobustStats(std::vector(values)) {} + +RobustStats::RobustStats(std::vector &&values) { + std::sort(values.begin(), values.end()); + lo_ = values[0]; + hi_ = values.back(); + HuberMAD(values); +} + +// Computes an updated mean using Huber's weighting function (values beyond +// the margin are weighted by margin / abs(value - mean). +double UpdateHuberMean(const std::vector &sorted_values, double mean, + double margin) { + int num_within = 0; + double sum = 0.0; + + for (double d : sorted_values) { + if (d < mean - margin) { + sum -= margin; + } else if (d > mean + margin) { + sum += margin; + } else { + sum += d; + ++num_within; + } + } + + // It is possible, for a set with an interquartile distance of 0, i.e., with + // more than half of the values at the median, to encounter the case where + // the Huber mean drifts slightly off the median and there are no values + // within the margin. In that case, just return the old mean, and the caller + // will quit. + if (num_within > 0) { + return sum / num_within; + } else { + return mean; + } +} + +// Given a list of values, this approximates the stddev using the MAD and then +// uses it to compute a Huber robust mean (sandwich mean). A margin of +// c*stddev is defined around the current mean, and values are weighted by +// margin / abs(value - mean) if outside the margin, or 1 if inside. This +// computes the mean iteratively, because each time it changes the margin +// shifts a bit. It typically settles very quickly, but it's possible for it +// to be unstable. We limit it to 10 iterations. +// +void RobustStats::HuberMAD(const std::vector &sorted_values) { + const std::pair median_mad = + ScaledMedianAbsoluteDeviation(sorted_values); + mean_ = median_mad.first; + stddev_ = median_mad.second; + + // c = 1.345 is the commonly used cutoff with 95% efficiency at the normal. + // We're using c = 1.5 to be a little more conservative, and because that's + // the default in S-plus. + // TODO(dehnert): Specialize Stats for integral types so we don't implement + // methods that don't make sense. + const double c = 1.5; + const double margin = c * stddev_; + + // Iterate 10 times, or until the Huber mean stabilizes. + // If the margin is zero, we don't want mean to drift from the median. + if (margin > 0.0) { + for (int k = 0; k < 10; ++k) { + double old_mean = mean_; + mean_ = UpdateHuberMean(sorted_values, mean_, margin); + if (mean_ == old_mean) break; + } + } +} + +} // namespace grappler +} // namespace tensorflow diff --git a/tensorflow/core/grappler/costs/robust_stats.h b/tensorflow/core/grappler/costs/robust_stats.h new file mode 100644 index 00000000000..9d8f5bc970a --- /dev/null +++ b/tensorflow/core/grappler/costs/robust_stats.h @@ -0,0 +1,42 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_GRAPPLER_COSTS_ROBUST_STATS_H_ +#define TENSORFLOW_GRAPPLER_COSTS_ROBUST_STATS_H_ + +#include +namespace tensorflow { +namespace grappler { +class RobustStats { + public: + RobustStats(const std::vector& values); + RobustStats(std::vector&& values); + + double lo() const { return lo_; } + double hi() const { return hi_; } + double mean() const { return mean_; } + + private: + void HuberMAD(const std::vector& values); + + double lo_; + double hi_; + double mean_; + double stddev_; +}; +} // namespace grappler +} // namespace tensorflow + +#endif // TENSORFLOW_GRAPPLER_COSTS_ROBUST_STATS_H_ diff --git a/tensorflow/core/grappler/costs/robust_stats_test.cc b/tensorflow/core/grappler/costs/robust_stats_test.cc new file mode 100644 index 00000000000..924097b126d --- /dev/null +++ b/tensorflow/core/grappler/costs/robust_stats_test.cc @@ -0,0 +1,63 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/core/grappler/costs/robust_stats.h" +#include "tensorflow/core/platform/test.h" + +namespace tensorflow { +namespace grappler { +namespace { + +class RobustStatsTest : public ::testing::Test { + public: + void SetUp() override { + for (double d = 1.0; d <= 5.0; d += 1.0) { + values1_.push_back(5.0 - d); + values1_.push_back(5.0 + d); + values2_.push_back(25.0 - 2 * d); + values2_.push_back(25.0 + 2 * d); + values3_.push_back(-3.0 - d); + values3_.push_back(-3.0 + d); + } + values1_.push_back(5.0); // Odd # elements, mean is 5.0 + values3_.push_back(197.0); + values3_.push_back(-203.0); // Even # elements, mean is -3.0 + } + + std::vector values1_; + std::vector values2_; + std::vector values3_; +}; + +TEST_F(RobustStatsTest, Simple) { + RobustStats s1(values1_); + EXPECT_EQ(5.0, s1.mean()); + EXPECT_EQ(0.0, s1.lo()); + EXPECT_EQ(10.0, s1.hi()); + + RobustStats s2(values2_); + EXPECT_EQ(25.0, s2.mean()); + EXPECT_EQ(15.0, s2.lo()); + EXPECT_EQ(35.0, s2.hi()); + + RobustStats s3(values3_); + EXPECT_EQ(-3.0, s3.mean()); + EXPECT_EQ(-203.0, s3.lo()); + EXPECT_EQ(197.0, s3.hi()); +} + +} // namespace +} // namespace grappler +} // namespace tensorflow diff --git a/tensorflow/core/grappler/costs/virtual_scheduler.cc b/tensorflow/core/grappler/costs/virtual_scheduler.cc new file mode 100644 index 00000000000..8f77d7677ac --- /dev/null +++ b/tensorflow/core/grappler/costs/virtual_scheduler.cc @@ -0,0 +1,215 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/core/grappler/costs/virtual_scheduler.h" +#include "tensorflow/core/framework/node_def.pb.h" +#include "tensorflow/core/grappler/utils.h" + +namespace tensorflow { +namespace grappler { +namespace { + +Costs CombineCosts(const Costs& left, const Costs& right) { + CHECK_NE(left.max_memory, kMemoryUnknown); + CHECK_NE(left.max_per_op_buffers, kMemoryUnknown); + CHECK_NE(left.max_per_op_streaming, kMemoryUnknown); + + Costs result = left; + result.execution_time += right.execution_time; + if (right.max_memory != kMemoryUnknown) { + result.max_memory += right.max_memory; + } + if (right.max_per_op_buffers != kMemoryUnknown) { + result.max_per_op_buffers = + std::max(left.max_per_op_buffers, right.max_per_op_buffers); + } + if (right.max_per_op_streaming != kMemoryUnknown) { + result.max_per_op_streaming = + std::max(left.max_per_op_streaming, right.max_per_op_streaming); + } + VLOG(2) << "costs execution_time=" << result.execution_time.count() + << " max_memory=" << result.max_memory + << " max_per_op_buffers=" << result.max_per_op_buffers + << " max_per_op_streaming=" << result.max_per_op_streaming; + return result; +} +} // namespace + +VirtualScheduler::VirtualScheduler(const GraphDef& graph, + const std::vector& fetch_nodes) + : graph_costs_(Costs::ZeroCosts()), + // TODO(dyoon): Use a better way than FIFO. + ready_nodes_(new FIFOManager()) { + // First, get the nodes that would run to output fetch_nodes. + std::vector nodes = + ComputeTransitiveFanin(graph, fetch_nodes); + + // TODO(dyoon): this is a bit inefficient as name_to_node is already built in + // ComputeTransitiveFanin(). + std::unordered_map name_to_node; + for (const auto& node : graph.node()) { + name_to_node[node.name()] = &node; + } + + // Build node_map. + for (const auto* node : nodes) { + auto& node_state = GetNodeStateOrCreateIt(node); + // TODO(dyoon): add SendRecv considering devices and control dependency. + for (const string& input : node->input()) { + const NodeDef* in = name_to_node[NodeName(input)]; + CHECK(in); + node_state.inputs.push_back(in); + auto& input_node_state = GetNodeStateOrCreateIt(in); + input_node_state.outputs.push_back(node); + } + if (node->input().empty()) { + node_state.time_ready = + Costs::Duration(); // Node without input: ready at time 0. + ready_nodes_->AddNode(node); + } + } +} + +const NodeDef* VirtualScheduler::GetCurrNode() const { + return ready_nodes_->GetCurrNode(); +} + +NodeState& VirtualScheduler::GetNodeStateOrCreateIt(const NodeDef* node) { + auto it = node_map_.find(node); + if (it == node_map_.end()) { + it = node_map_.emplace(node, NodeState()).first; + } + return it->second; +} + +bool VirtualScheduler::MarkCurrNodeExecuted(const Costs& node_costs) { + // Update graph_costs_ and per-op costs. + graph_costs_ = CombineCosts(graph_costs_, node_costs); + const auto* node = GetCurrNode(); + const auto& op_name = node->op(); + + auto it = op_to_cost_.find(op_name); + if (it == op_to_cost_.end()) { + it = op_to_cost_.emplace(op_name, Costs::ZeroCosts()).first; + } + auto& op_cost = it->second; + op_cost = CombineCosts(op_cost, node_costs); + + // Update node and device states. + auto& node_state = node_map_[node]; + auto& device = device_[node->device()]; + device.nodes_executed.push_back(node); + // Node is scheduled when the device is available AND all the inputs are + // ready; hence, time_scheduled is time_ready if time_ready > device curr + // time. + node_state.time_scheduled = + std::max(device.GetCurrTime(), node_state.time_ready); + // Override device curr time with the time_scheduled. + device.device_costs.execution_time = node_state.time_scheduled; + device.device_costs = CombineCosts(device.device_costs, node_costs); + auto curr_time = device.GetCurrTime(); + node_state.time_finished = curr_time; + + // Update device's per-op cost. + { + auto it = device.op_to_cost.find(op_name); + if (it == device.op_to_cost.end()) { + it = device.op_to_cost.emplace(op_name, Costs::ZeroCosts()).first; + } + auto& op_cost = it->second; + op_cost = CombineCosts(op_cost, node_costs); + + VLOG(2) << "Op scheduled -- name: " << node->name() + << ", op: " << node->op() << ", device: " << node->device() + << ", ready: " << node_state.time_ready.count() + << ", scheduled: " << node_state.time_scheduled.count() + << ", finished: " << node_state.time_finished.count(); + + // Increment num_inputs_ready of the output nodes. + for (auto* output : node_state.outputs) { + auto& output_state = node_map_[output]; + output_state.num_inputs_ready++; + if (output_state.num_inputs_ready == output_state.inputs.size()) { + // This output node is now ready. + output_state.time_ready = curr_time; + ready_nodes_->AddNode(output); + } + } + + // Increment num_outputs_executed of the input nodes. + for (auto* input : node_state.inputs) { + auto& input_state = node_map_[input]; + input_state.num_outputs_executed++; + if (input_state.num_outputs_executed == input_state.outputs.size()) { + // All the outputs are executed; no reference to this input nodel + input_state.time_no_reference = curr_time; + // TODO(dyoon): collect device memory usage; note that this input node + // use device memory between time_scheduled and time_no_reference. + } + } + } + + // Remove the current node; assume FIFO. + ready_nodes_->RemoveCurrNode(); + return !ready_nodes_->Empty(); // True if not empty. +} + +Costs VirtualScheduler::Summary() const { + // Print out basic execution summary. + VLOG(1) << "Expected execution time: " << graph_costs_.execution_time.count(); + VLOG(1) << "Expected max memory: " << graph_costs_.max_memory; + VLOG(1) << "Expected max per-op buffers: " << graph_costs_.max_per_op_buffers; + VLOG(1) << "Expected max per-op streaming buffers: " + << graph_costs_.max_per_op_streaming; + + VLOG(1) << "Per-op execution time:"; + for (const auto& op_cost_pair : op_to_cost_) { + const auto& op = op_cost_pair.first; + const auto& cost = op_cost_pair.second.execution_time.count(); + if (cost) { // Skip printing out zero-cost ops. + VLOG(1) << " + " << op << " : " << cost; + } + } + + // Print per device summary + VLOG(1) << "Devices:"; + Costs critical_path_costs = Costs::ZeroCosts(); + + for (const auto& device : device_) { + const auto& name = device.first; + const auto& state = device.second; + VLOG(1) << "Device = " << name + << ", num_nodes = " << state.nodes_executed.size() + << ", execution_time = " << state.GetCurrTime().count(); + VLOG(1) << "Per-op execution time:"; + for (const auto& op_cost_pair : state.op_to_cost) { + const auto& op = op_cost_pair.first; + const auto& cost = op_cost_pair.second.execution_time.count(); + if (cost) { // Skip printing out zero-cost ops. + VLOG(1) << " + " << op << " : " << cost; + } + } + if (critical_path_costs.execution_time <= state.GetCurrTime()) { + critical_path_costs = state.device_costs; + } + } + + VLOG(1) << "Critical path execution time: " + << critical_path_costs.execution_time.count(); + return critical_path_costs; +} + +} // end namespace grappler +} // end namespace tensorflow diff --git a/tensorflow/core/grappler/costs/virtual_scheduler.h b/tensorflow/core/grappler/costs/virtual_scheduler.h new file mode 100644 index 00000000000..b7785c94e04 --- /dev/null +++ b/tensorflow/core/grappler/costs/virtual_scheduler.h @@ -0,0 +1,116 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef THIRD_PARTY_TENSORFLOW_CORE_GRAPPLER_COSTS_VIRTUAL_SCHEDULER_H_ +#define THIRD_PARTY_TENSORFLOW_CORE_GRAPPLER_COSTS_VIRTUAL_SCHEDULER_H_ + +#include +#include +#include + +#include "tensorflow/core/grappler/costs/cost_estimator.h" +#include "tensorflow/core/grappler/grappler_item.h" + +namespace tensorflow { +namespace grappler { + +namespace { +struct NodeState { + std::vector inputs; + std::vector outputs; + int num_inputs_ready; + int num_outputs_executed; + Costs::Duration time_ready; + Costs::Duration time_scheduled; + Costs::Duration time_finished; + Costs::Duration time_no_reference; + + // Node will be ready to be executed at time_ready, scheduled at + // time_scheduled, and finishes execution at time_finished. + // Between time_scheduled and time_no_reference, the node's output tensor + // needs to be on the device, using up device memory. + + NodeState() { + num_inputs_ready = 0; + num_outputs_executed = 0; + time_ready = Costs::Duration::max(); + time_scheduled = Costs::Duration::max(); + time_finished = Costs::Duration::max(); + time_no_reference = Costs::Duration::max(); + } +}; + +struct DeviceState { + std::vector nodes_executed; + Costs device_costs; + std::map op_to_cost; // Per-op cost. + + DeviceState() { device_costs = Costs::ZeroCosts(); } + + Costs::Duration GetCurrTime() const { return device_costs.execution_time; } +}; + +// ReadyNodeManager (abstract class): +// Keeps ready nodes and picks the best one to be scheduled. +class ReadyNodeManager { + public: + ReadyNodeManager() {} + virtual ~ReadyNodeManager() {} + virtual void AddNode(const NodeDef* node) = 0; + virtual const NodeDef* GetCurrNode() const = 0; + virtual void RemoveCurrNode() = 0; + virtual bool Empty() const = 0; +}; + +class FIFOManager : public ReadyNodeManager { + public: + FIFOManager() : ReadyNodeManager() {} + ~FIFOManager() override {} + void AddNode(const NodeDef* node) override { nodes_.push_back(node); } + const NodeDef* GetCurrNode() const override { return nodes_.front(); } + void RemoveCurrNode() override { nodes_.pop_front(); } + bool Empty() const override { return nodes_.empty(); } + + private: + std::list nodes_; +}; +} // namespace + +// The virtual scheduler emulates execution of nodes in a graph, considering +// dependencies, device, etc. +class VirtualScheduler { + public: + VirtualScheduler(const GraphDef& graph, + const std::vector& fetch_nodes); + + const NodeDef* GetCurrNode() const; + bool MarkCurrNodeExecuted(const Costs& node_costs); + + Costs Summary() const; + + private: + NodeState& GetNodeStateOrCreateIt(const NodeDef* node); + + Costs graph_costs_; // Graph cost. + std::map op_to_cost_; // Per-op cost. + std::unique_ptr ready_nodes_; + std::unordered_map node_map_; + std::unordered_map device_; +}; + +} // namespace grappler +} // end namespace tensorflow + +#endif // THIRD_PARTY_TENSORFLOW_CORE_GRAPPLER_COSTS_VIRTUAL_SCHEDULER_H_ diff --git a/tensorflow/core/kernels/BUILD b/tensorflow/core/kernels/BUILD index 29b4d63bbf8..0847d1279b8 100644 --- a/tensorflow/core/kernels/BUILD +++ b/tensorflow/core/kernels/BUILD @@ -2109,7 +2109,9 @@ tf_kernel_library( tf_kernel_library( name = "matrix_triangular_solve_op", prefix = "matrix_triangular_solve_op", - deps = LINALG_DEPS, + deps = LINALG_DEPS + if_cuda([ + "//tensorflow/core/platform/default/build_config:cublas_plugin", + ]), ) tf_kernel_library( @@ -2350,6 +2352,8 @@ tf_kernel_library( "//conditions:default": [], }) + if_mkl([ "//third_party/mkl:intel_binary_blob", + ]) + if_cuda([ + "//tensorflow/core/platform/default/build_config:cublas_plugin", ]), ) @@ -2630,6 +2634,7 @@ tf_kernel_library( ], "//conditions:default": [], }) + if_cuda([ + "//tensorflow/core/platform/default/build_config:cublas_plugin", "//tensorflow/core/platform/default/build_config:cudnn_plugin", ]), ) diff --git a/tensorflow/core/kernels/depthwise_conv_op_gpu.cu.cc b/tensorflow/core/kernels/depthwise_conv_op_gpu.cu.cc index 5377d09ec69..b16adf6102b 100644 --- a/tensorflow/core/kernels/depthwise_conv_op_gpu.cu.cc +++ b/tensorflow/core/kernels/depthwise_conv_op_gpu.cu.cc @@ -24,28 +24,32 @@ limitations under the License. #if !defined(_MSC_VER) #define UNROLL _Pragma("unroll") +#define NOUNROLL _Pragma("nounroll") #else #define UNROLL +#define NOUNROLL #endif namespace tensorflow { -namespace { - -typedef Eigen::GpuDevice GPUDevice; +using Eigen::GpuDevice; // A Cuda kernel to compute the depthwise convolution forward pass // in NHWC format. -template +template __global__ void DepthwiseConv2dGPUKernelNHWC(const DepthwiseArgs args, const T* input, const T* filter, T* output, int num_outputs) { const int in_rows = args.in_rows; const int in_cols = args.in_cols; const int in_depth = args.in_depth; - const int filter_rows = args.filter_rows; - const int filter_cols = args.filter_cols; - const int depth_multiplier = args.depth_multiplier; + const int filter_rows = + kKnownFilterHeight < 0 ? args.filter_rows : kKnownFilterHeight; + const int filter_cols = + kKnownFilterWidth < 0 ? args.filter_cols : kKnownFilterWidth; + const int depth_multiplier = + kKnownDepthMultiplier < 0 ? args.depth_multiplier : kKnownDepthMultiplier; const int stride = args.stride; const int pad_rows = args.pad_rows; const int pad_cols = args.pad_cols; @@ -114,16 +118,20 @@ __global__ void DepthwiseConv2dGPUKernelNHWC(const DepthwiseArgs args, // A Cuda kernel to compute the depthwise convolution forward pass // in NCHW format. -template +template __global__ void DepthwiseConv2dGPUKernelNCHW(const DepthwiseArgs args, const T* input, const T* filter, T* output, int num_outputs) { const int in_rows = args.in_rows; const int in_cols = args.in_cols; const int in_depth = args.in_depth; - const int filter_rows = args.filter_rows; - const int filter_cols = args.filter_cols; - const int depth_multiplier = args.depth_multiplier; + const int filter_rows = + kKnownFilterHeight < 0 ? args.filter_rows : kKnownFilterHeight; + const int filter_cols = + kKnownFilterWidth < 0 ? args.filter_cols : kKnownFilterWidth; + const int depth_multiplier = + kKnownDepthMultiplier < 0 ? args.depth_multiplier : kKnownDepthMultiplier; const int stride = args.stride; const int pad_rows = args.pad_rows; const int pad_cols = args.pad_cols; @@ -235,29 +243,41 @@ __global__ void DepthwiseConv2dGPUKernelNCHW(const DepthwiseArgs args, } } -} // namespace +template +void LaunchDepthwiseConv2dGPU(const GpuDevice& d, const DepthwiseArgs args, + const T* input, const T* filter, T* output, + TensorFormat data_format) { + const int num_outputs = + args.batch * args.out_rows * args.out_cols * args.out_depth; + CudaLaunchConfig config = GetCudaLaunchConfig(num_outputs, d); + if (data_format == FORMAT_NHWC) { + DepthwiseConv2dGPUKernelNHWC + <<>>( + args, input, filter, output, num_outputs); + } else if (data_format == FORMAT_NCHW) { + DepthwiseConv2dGPUKernelNCHW + <<>>( + args, input, filter, output, num_outputs); + } else { + assert(false); + } +} // A simple launch pad to launch the Cuda kernel for depthwise convolution. template struct DepthwiseConv2dGPULaunch { - static void Run(const GPUDevice& d, const DepthwiseArgs args, const T* input, + static void Run(const GpuDevice& d, const DepthwiseArgs args, const T* input, const T* filter, T* output, TensorFormat data_format) { - // In this kernel, each thread is computing the gradients from one element - // in the out_backprop. Note that one element in the out_backprop can map - // to multiple filter elements. - const int num_outputs = - args.batch * args.out_rows * args.out_cols * args.out_depth; - CudaLaunchConfig config = GetCudaLaunchConfig(num_outputs, d); - if (data_format == FORMAT_NHWC) { - DepthwiseConv2dGPUKernelNHWC - <<>>( - args, input, filter, output, num_outputs); - } else if (data_format == FORMAT_NCHW) { - DepthwiseConv2dGPUKernelNCHW - <<>>( - args, input, filter, output, num_outputs); + if (args.filter_rows == 3 && args.filter_cols == 3 && + args.depth_multiplier == 1) { + LaunchDepthwiseConv2dGPU(d, args, input, filter, output, + data_format); } else { - assert(false); + LaunchDepthwiseConv2dGPU(d, args, input, filter, output, + data_format); } } }; @@ -266,18 +286,20 @@ template struct DepthwiseConv2dGPULaunch; template struct DepthwiseConv2dGPULaunch; // A Cuda kernel to compute the depthwise convolution backprop w.r.t. input. -template +template __global__ void DepthwiseConv2dBackpropInputGPUKernelNHWC( const DepthwiseArgs args, const T* out_backprop, const T* filter, T* in_backprop, int num_in_backprop) { const int in_rows = args.in_rows; const int in_cols = args.in_cols; const int in_depth = args.in_depth; - const int filter_rows = args.filter_rows; - const int filter_cols = args.filter_cols; - const int depth_multiplier = KNOWN_DEPTH_MULTIPLIER == -1 - ? args.depth_multiplier - : KNOWN_DEPTH_MULTIPLIER; + const int filter_rows = + kKnownFilterHeight < 0 ? args.filter_rows : kKnownFilterHeight; + const int filter_cols = + kKnownFilterWidth < 0 ? args.filter_cols : kKnownFilterWidth; + const int depth_multiplier = + kKnownDepthMultiplier < 0 ? args.depth_multiplier : kKnownDepthMultiplier; const int stride = args.stride; const int pad_rows = args.pad_rows; const int pad_cols = args.pad_cols; @@ -301,14 +323,12 @@ __global__ void DepthwiseConv2dBackpropInputGPUKernelNHWC( tf_max(0, (in_c - filter_cols + pad_cols + stride) / stride); const int out_c_end = tf_min(out_cols - 1, (in_c + pad_cols) / stride); -#pragma nounroll - for (int out_r = out_r_start; out_r <= out_r_end; ++out_r) { + NOUNROLL for (int out_r = out_r_start; out_r <= out_r_end; ++out_r) { const int f_r = in_r + pad_rows - out_r * stride; const int temp_out_backprop_offset = out_depth * out_cols * (out_r + out_rows * b); const int temp_filter_offset = filter_cols * f_r; -#pragma nounroll - for (int out_c = out_c_start; out_c <= out_c_end; ++out_c) { + NOUNROLL for (int out_c = out_c_start; out_c <= out_c_end; ++out_c) { const int f_c = in_c + pad_cols - out_c * stride; int filter_offset = depth_multiplier * (in_d + in_depth * (f_c + temp_filter_offset)); @@ -328,7 +348,8 @@ __global__ void DepthwiseConv2dBackpropInputGPUKernelNHWC( } } -template +template __global__ void __launch_bounds__(1024) DepthwiseConv2dBackpropInputGPUKernelNCHW(const DepthwiseArgs args, const T* out_backprop, @@ -337,9 +358,12 @@ __global__ void __launch_bounds__(1024) const int in_rows = args.in_rows; const int in_cols = args.in_cols; const int in_depth = args.in_depth; - const int filter_rows = args.filter_rows; - const int filter_cols = args.filter_cols; - const int depth_multiplier = args.depth_multiplier; + const int filter_rows = + kKnownFilterHeight < 0 ? args.filter_rows : kKnownFilterHeight; + const int filter_cols = + kKnownFilterWidth < 0 ? args.filter_cols : kKnownFilterWidth; + const int depth_multiplier = + kKnownDepthMultiplier < 0 ? args.depth_multiplier : kKnownDepthMultiplier; const int stride = args.stride; const int pad_rows = args.pad_rows; const int pad_cols = args.pad_cols; @@ -395,34 +419,52 @@ __global__ void __launch_bounds__(1024) } } +template +void LaunchDepthwiseConv2dBackpropInputGPU(const GpuDevice& d, + const DepthwiseArgs args, + const T* out_backprop, + const T* filter, T* in_backprop, + TensorFormat data_format) { + const int num_in_backprop = + args.batch * args.in_rows * args.in_cols * args.in_depth; + CudaLaunchConfig config = GetCudaLaunchConfig(num_in_backprop, d); + // Increase block count for when there are more warps/SM than threads/SM. + // TODO(csigg): this is pretty arbitraty and should be generalized using + // cudaOccupancyMaxPotentialBlockSize(). + config.block_count *= 4; + if (data_format == FORMAT_NHWC) { + DepthwiseConv2dBackpropInputGPUKernelNHWC< + T, kKnownFilterWidth, kKnownFilterHeight, kKnownDepthMultiplier> + <<>>( + args, out_backprop, filter, in_backprop, num_in_backprop); + } else if (data_format == FORMAT_NCHW) { + DepthwiseConv2dBackpropInputGPUKernelNCHW< + T, kKnownFilterWidth, kKnownFilterHeight, kKnownDepthMultiplier> + <<>>( + args, out_backprop, filter, in_backprop, num_in_backprop); + } else { + assert(false); + } +} + // A simple launch pad to launch the Cuda kernel for depthwise convolution. template struct DepthwiseConv2dBackpropInputGPULaunch { - static void Run(const GPUDevice& d, const DepthwiseArgs args, + static void Run(const GpuDevice& d, const DepthwiseArgs args, const T* out_backprop, const T* filter, T* in_backprop, TensorFormat data_format) { - const int num_in_backprop = - args.batch * args.in_rows * args.in_cols * args.in_depth; - - CudaLaunchConfig config = GetCudaLaunchConfig(num_in_backprop, d); - // Increase block count for when there are more warps/SM than threads/SM. - config.block_count *= 4; - if (data_format == FORMAT_NHWC) { - if (args.depth_multiplier == 1) { - DepthwiseConv2dBackpropInputGPUKernelNHWC - <<>>( - args, out_backprop, filter, in_backprop, num_in_backprop); + if (args.depth_multiplier == 1) { + if (args.filter_rows == 3 && args.filter_cols == 3) { + LaunchDepthwiseConv2dBackpropInputGPU( + d, args, out_backprop, filter, in_backprop, data_format); } else { - DepthwiseConv2dBackpropInputGPUKernelNHWC - <<>>( - args, out_backprop, filter, in_backprop, num_in_backprop); + LaunchDepthwiseConv2dBackpropInputGPU( + d, args, out_backprop, filter, in_backprop, data_format); } - } else if (data_format == FORMAT_NCHW) { - DepthwiseConv2dBackpropInputGPUKernelNCHW - <<>>( - args, out_backprop, filter, in_backprop, num_in_backprop); } else { - assert(false); + LaunchDepthwiseConv2dBackpropInputGPU( + d, args, out_backprop, filter, in_backprop, data_format); } } }; @@ -431,16 +473,20 @@ template struct DepthwiseConv2dBackpropInputGPULaunch; template struct DepthwiseConv2dBackpropInputGPULaunch; // A Cuda kernel to compute the depthwise convolution backprop w.r.t. filter. -template +template __global__ void DepthwiseConv2dBackpropFilterGPUKernelNHWC( const DepthwiseArgs args, const T* out_backprop, const T* input, T* filter_backprop, int num_out_backprop) { const int in_rows = args.in_rows; const int in_cols = args.in_cols; const int in_depth = args.in_depth; - const int filter_rows = args.filter_rows; - const int filter_cols = args.filter_cols; - const int depth_multiplier = args.depth_multiplier; + const int filter_rows = + kKnownFilterHeight < 0 ? args.filter_rows : kKnownFilterHeight; + const int filter_cols = + kKnownFilterWidth < 0 ? args.filter_cols : kKnownFilterWidth; + const int depth_multiplier = + kKnownDepthMultiplier < 0 ? args.depth_multiplier : kKnownDepthMultiplier; const int stride = args.stride; const int pad_rows = args.pad_rows; const int pad_cols = args.pad_cols; @@ -518,16 +564,20 @@ __global__ void DepthwiseConv2dBackpropFilterGPUKernelNHWC( } // A Cuda kernel to compute the depthwise convolution backprop w.r.t. filter. -template +template __global__ void DepthwiseConv2dBackpropFilterGPUKernelNCHW( const DepthwiseArgs args, const T* out_backprop, const T* input, T* filter_backprop, int num_out_backprop) { const int in_rows = args.in_rows; const int in_cols = args.in_cols; const int in_depth = args.in_depth; - const int filter_rows = args.filter_rows; - const int filter_cols = args.filter_cols; - const int depth_multiplier = args.depth_multiplier; + const int filter_rows = + kKnownFilterHeight < 0 ? args.filter_rows : kKnownFilterHeight; + const int filter_cols = + kKnownFilterWidth < 0 ? args.filter_cols : kKnownFilterWidth; + const int depth_multiplier = + kKnownDepthMultiplier < 0 ? args.depth_multiplier : kKnownDepthMultiplier; const int stride = args.stride; const int pad_rows = args.pad_rows; const int pad_cols = args.pad_cols; @@ -610,28 +660,44 @@ __global__ void DepthwiseConv2dBackpropFilterGPUKernelNCHW( } } +template +void LaunchDepthwiseConv2dBackpropFilterGPU(const GpuDevice& d, + const DepthwiseArgs args, + const T* out_backprop, + const T* input, T* filter_backprop, + TensorFormat data_format) { + const int num_out_backprop = + args.batch * args.out_rows * args.out_cols * args.out_depth; + CudaLaunchConfig config = GetCudaLaunchConfig(num_out_backprop, d); + if (data_format == FORMAT_NHWC) { + DepthwiseConv2dBackpropFilterGPUKernelNHWC< + T, kKnownFilterWidth, kKnownFilterHeight, kKnownDepthMultiplier> + <<>>( + args, out_backprop, input, filter_backprop, num_out_backprop); + } else if (data_format == FORMAT_NCHW) { + DepthwiseConv2dBackpropFilterGPUKernelNCHW< + T, kKnownFilterWidth, kKnownFilterHeight, kKnownDepthMultiplier> + <<>>( + args, out_backprop, input, filter_backprop, num_out_backprop); + } else { + assert(false); + } +} + // A simple launch pad to launch the Cuda kernel for depthwise convolution. template struct DepthwiseConv2dBackpropFilterGPULaunch { - static void Run(const GPUDevice& d, const DepthwiseArgs args, + static void Run(const GpuDevice& d, const DepthwiseArgs args, const T* out_backprop, const T* input, T* filter_backprop, TensorFormat data_format) { - // In this kernel, each thread is computing the gradients for one element in - // the out_backprop. - const int num_out_backprop = - args.batch * args.out_rows * args.out_cols * args.out_depth; - CudaLaunchConfig config = GetCudaLaunchConfig(num_out_backprop, d); - - if (data_format == FORMAT_NHWC) { - DepthwiseConv2dBackpropFilterGPUKernelNHWC - <<>>( - args, out_backprop, input, filter_backprop, num_out_backprop); - } else if (data_format == FORMAT_NCHW) { - DepthwiseConv2dBackpropFilterGPUKernelNCHW - <<>>( - args, out_backprop, input, filter_backprop, num_out_backprop); + if (args.filter_rows == 3 && args.filter_cols == 3 && + args.depth_multiplier == 1) { + LaunchDepthwiseConv2dBackpropFilterGPU( + d, args, out_backprop, input, filter_backprop, data_format); } else { - assert(false); + LaunchDepthwiseConv2dBackpropFilterGPU( + d, args, out_backprop, input, filter_backprop, data_format); } } }; diff --git a/tensorflow/docs_src/install/install_java.md b/tensorflow/docs_src/install/install_java.md index a20fccffd52..5304779c004 100644 --- a/tensorflow/docs_src/install/install_java.md +++ b/tensorflow/docs_src/install/install_java.md @@ -220,6 +220,10 @@ And the following comand line executes the `HelloTF` program on Windows:
java -cp libtensorflow-1.1.0-rc2.jar;. -Djava.library.path=jni HelloTF
+And the following comand line executes the `HelloTF` program on Windows: + +
java -cp libtensorflow-1.1.0-rc2.jar;. -Djava.library.path=jni HelloTF
+ If the program prints Hello from version, you've successfully installed TensorFlow for Java and are ready to use the API. If the program outputs something else, check diff --git a/tensorflow/docs_src/performance/benchmarks.md b/tensorflow/docs_src/performance/benchmarks.md index bfb47d9f908..19d37794ab8 100644 --- a/tensorflow/docs_src/performance/benchmarks.md +++ b/tensorflow/docs_src/performance/benchmarks.md @@ -3,9 +3,9 @@ ## Overview A selection of image classification models were tested across multiple platforms -to create a point of reference for the TensorFlow community. The methodology, -links to the benchmark scripts, and commands to reproduce the results are in the -[Appendix](#appendix). +to create a point of reference for the TensorFlow community. The +[Methodology](#methodology) section details how the test were executed and has +links to the scripts used. ## Results for image classification models @@ -120,19 +120,19 @@ VGG16 | replicated (with NCCL) | n/a GPUs | InceptionV3 | ResNet-50 | ResNet-152 | Alexnet | VGG16 ---- | ----------- | --------- | ---------- | ------- | ----- -1 | 142 | 238 | 95.6 | 2987 | 132 -2 | 284 | 479 | 187 | 5658 | 259 -4 | 569 | 948 | 374 | 10509 | 511 -8 | 1131 | 1886 | 744 | 17822 | 959 + 1 | 142 | 238 | 95.6 | 2987 | 154 + 2 | 284 | 479 | 187 | 5658 | 295 + 4 | 569 | 948 | 374 | 10509 | 584 + 8 | 1131 | 1886 | 744 | 17822 | 1081 **Training real data** GPUs | InceptionV3 | ResNet-50 | ResNet-152 | Alexnet | VGG16 ---- | ----------- | --------- | ---------- | ------- | ----- -1 | 142 | 239 | 95.5 | 2890 | 132 -2 | 278 | 468 | 187 | 4448 | 245 -4 | 551 | 938 | 373 | 7105 | 466 -8 | 1079 | 1802 | 721 | N/A | 794 + 1 | 142 | 239 | 95.5 | 2890 | 154 + 2 | 278 | 468 | 187 | 4448 | 284 + 4 | 551 | 938 | 373 | 7105 | 534 + 8 | 1079 | 1802 | 721 | N/A | 898 Training AlexNet with real data on 8 GPUs was excluded from the graph and table above due to it maxing out the input pipeline. @@ -145,19 +145,19 @@ The results below are all with a batch size of 32. GPUs | InceptionV3 | ResNet-50 | ResNet-152 | VGG16 ---- | ----------- | --------- | ---------- | ----- -1 | 128 | 210 | 85.3 | 124 -2 | 259 | 412 | 166 | 241 -4 | 520 | 827 | 330 | 470 -8 | 995 | 1623 | 643 | 738 + 1 | 128 | 210 | 85.3 | 144 + 2 | 259 | 412 | 166 | 281 + 4 | 520 | 827 | 330 | 549 + 8 | 995 | 1623 | 643 | 820 **Training real data** GPUs | InceptionV3 | ResNet-50 | ResNet-152 | VGG16 ---- | ----------- | --------- | ---------- | ----- -1 | 130 | 208 | 85.0 | 124 -2 | 257 | 403 | 163 | 221 -4 | 507 | 814 | 325 | 401 -8 | 966 | 1525 | 641 | 619 + 1 | 130 | 208 | 85.0 | 144 + 2 | 257 | 403 | 163 | 253 + 4 | 507 | 814 | 325 | 457 + 8 | 966 | 1525 | 641 | 690 ## Details for Google Compute Engine (NVIDIA® Tesla® K80) @@ -198,19 +198,19 @@ The configuration used for each model was `variable_update` equal to GPUs | InceptionV3 | ResNet-50 | ResNet-152 | Alexnet | VGG16 ---- | ----------- | --------- | ---------- | ------- | ----- -1 | 30.5 | 56.8 | 20.8 | 656 | 30.3 -2 | 57.8 | 107 | 39.1 | 1210 | 56.2 -4 | 116 | 212 | 77.2 | 2330 | 106 -8 | 227 | 419 | 151 | 4640 | 222 + 1 | 30.5 | 56.8 | 20.8 | 656 | 35.4 + 2 | 57.8 | 107 | 39.1 | 1209 | 64.8 + 4 | 116 | 212 | 77.2 | 2328 | 120 + 8 | 227 | 419 | 151 | 4640 | 234 **Training real data** GPUs | InceptionV3 | ResNet-50 | ResNet-152 | Alexnet | VGG16 ---- | ----------- | --------- | ---------- | ------- | ----- - 1 | 30.6 | 56.7 | 20.7 | 639 | 30.2 - 2 | 58.4 | 107 | 39.0 | 1136 | 55.5 - 4 | 115 | 211 | 77.3 | 2067 | 106 - 8 | 225 | 422 | 151 | 4056 | 213 + 1 | 30.6 | 56.7 | 20.7 | 639 | 34.2 + 2 | 58.4 | 107 | 39.0 | 1136 | 62.9 + 4 | 115 | 211 | 77.3 | 2067 | 118 + 8 | 225 | 422 | 151 | 4056 | 230 ### Other Results @@ -227,10 +227,10 @@ GPUs | InceptionV3 (batch size 32) | ResNet-50 (batch size 32) GPUs | InceptionV3 (batch size 32) | ResNet-50 (batch size 32) ---- | --------------------------- | ------------------------- - 1 | 29.5 | 53.6 - 2 | 55.4 | 102 - 4 | 110 | 201 - 8 | 216 | 387 + 1 | 29.5 | 53.6 + 2 | 55.4 | 102 + 4 | 110 | 201 + 8 | 216 | 387 ## Details for Amazon EC2 (NVIDIA® Tesla® K80) @@ -279,19 +279,19 @@ VGG16 | parameter_server | gpu GPUs | InceptionV3 | ResNet-50 | ResNet-152 | Alexnet | VGG16 ---- | ----------- | --------- | ---------- | ------- | ----- -1 | 30.8 | 56.3 | 20.9 | 684 | 32.4 -2 | 58.7 | 108 | 39.3 | 1244 | 61.5 -4 | 117 | 217 | 79.1 | 2479 | 123 -8 | 230 | 419 | 156 | 4853 | 234 + 1 | 30.8 | 56.3 | 20.9 | 684 | 36.3 + 2 | 58.7 | 108 | 39.3 | 1244 | 69.4 + 4 | 117 | 217 | 79.1 | 2479 | 141 + 8 | 230 | 419 | 156 | 4853 | 260 **Training real data** GPUs | InceptionV3 | ResNet-50 | ResNet-152 | Alexnet | VGG16 ---- | ----------- | --------- | ---------- | ------- | ----- -1 | 30.5 | 56.0 | 20.6 | 674 | 32.0 -2 | 58.7 | 107 | 39.0 | 1227 | 61.0 -4 | 118 | 205 | 77.9 | 2201 | 120 -8 | 228 | 405 | 152 | N/A | 191 + 1 | 30.5 | 56.0 | 20.6 | 674 | 36.3 + 2 | 59.0 | 107 | 39.0 | 1227 | 67.5 + 4 | 118 | 205 | 77.9 | 2201 | 136 + 8 | 228 | 405 | 152 | N/A | 242 Training AlexNet with real data on 8 GPUs was excluded from the graph and table above due to our EFS setup not providing enough throughput. @@ -393,63 +393,17 @@ GPUs | InceptionV3 (batch size 32) | ResNet-50 (batch size 32) 32 | 820 | 1265 64 | 1608 | 2623 -## Appendix -### Executing benchmark tests +## Methodology -The [benchmark code](https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks) -was created to be used for benchmarking TensorFlow as well as used as a tool to -test hardware platforms. Techniques used in the benchmark scripts are detailed -in @{$performance_models$High-Performance Models}. +This [script](https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks) +was run on the various platforms to generate the above results. +@{$performance_models$High-Performance Models} details techniques in the script +along with examples of how to execute the script. -There are two ways to execute the benchmark code: - -1. Execute [tf_cnn_benchmarks.py](https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py) - directly. -2. Utilize the [scripts](https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks/main.py) - that helps pick the correct config for each platform executes - `tf_cnn_benchmarks.py`. - -The wrapper is suggested as a starting point. Then investigate the variety of -options available in `tf_cnn_benchmarks.py`. Below are a couple examples of -using the wrapper. - -**Single Server** -This example illustrates training ResNet-50 on a single instance with 8 GPUs. -The `system` flag is used to determine the optimal configuration. The -supported values are gce, aws, and dgx1. If `system` is not passed, the best -config for the most widely available hardware is used. - -```bash -python main.py --model=resnet50 --num_gpus=8 -python main.py --system=aws --model=resnet50 --num_gpus=8 -``` - -**Distributed** -This example illustrates training ResNet-50 on 2 hosts, e.g. host_0 (10.0.0.1) -and host_1 (10.0.0.2), with 8 GPUs each on AWS (Amazon EC2). - -```bash -# Run the following commands on host_0 (10.0.0.1): - $ python main.py --system=aws --model=resnet50 --job_name=worker - --hosts=10.0.0.1,10.0.0.2 --task_index=0 - - $ python main.py --system=aws --model=resnet50 --job_name=ps - --hosts=10.0.0.1,10.0.0.2 --task_index=0 - -# Run the following commands on host_1 (10.0.0.2): - $ python main.py --system=aws --model=resnet50 --job_name=worker - --hosts=10.0.0.1,10.0.0.2 --task_index=1 - - $ python main.py --system=aws --model=resnet50 --job_name=ps - --hosts=10.0.0.1,10.0.0.2 --task_index=1 -``` - -### Methodology - -Unless otherwise stated, each test is run 5 times and then the times are -averaged together. GPUs are run in their default state on the given platform. -For NVIDIA® Tesla® K80 this means leaving on [GPU -Boost](https://devblogs.nvidia.com/parallelforall/increase-performance-gpu-boost-k80-autoboost/) -unless it has been turned off by the provider. For a given test, 10 warmup steps -are done and then the next 100 steps are averaged. +In order to create results that are as repeatable as possible, each test was run +5 times and then the times were averaged together. GPUs are run in their default +state on the given platform. For NVIDIA® Tesla® K80 this means leaving on [GPU +Boost](https://devblogs.nvidia.com/parallelforall/increase-performance-gpu-boost-k80-autoboost/). +For each test, 10 warmup steps are done and then the next 100 steps are +averaged. diff --git a/tensorflow/docs_src/performance/index.md b/tensorflow/docs_src/performance/index.md index 746dc0c74fe..7c1cd152d37 100644 --- a/tensorflow/docs_src/performance/index.md +++ b/tensorflow/docs_src/performance/index.md @@ -9,7 +9,7 @@ deeper with techniques detailed in @{$performance_models$High-Performance Models practices for optimizing your TensorFlow code. * @{$performance_models$High-Performance Models}, which contains a collection - advanced techniques to build highly scalable models targeting different + of advanced techniques to build highly scalable models targeting different system types and network topologies. * @{$benchmarks$Benchmarks}, which contains a collection of benchmark diff --git a/tensorflow/docs_src/performance/performance_models.md b/tensorflow/docs_src/performance/performance_models.md index 70c415a024e..d415c29aa13 100644 --- a/tensorflow/docs_src/performance/performance_models.md +++ b/tensorflow/docs_src/performance/performance_models.md @@ -14,8 +14,8 @@ input pipeline issues and best practices. We found that using @{tf.FIFOQueue} and @{tf.train.queue_runner} could not saturate multiple current generation GPUs when using large inputs and processing with higher samples per second, such as training ImageNet with [AlexNet](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf). -This is due to the the use of Python threads as its underlying implementation. -The overhead of Python threads is too large. +This is due to the use of Python threads as its underlying implementation. The +overhead of Python threads is too large. Another approach, which we have implemented in the [scripts](https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks), @@ -327,3 +327,96 @@ free. The downside is that all the weights read are from the previous training step. So it is a different algorithm from SGD. But it is possible to improve its convergence by adjusting learning rate and other hyperparameters. + +## Executing the script + +This section lists the core command line arguments and a few basic examples for +executing the main script +([tf_cnn_benchmarks.py](https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py)). + +> Note: `tf_cnn_benchmarks.py` uses the config `force_gpu_compatible`, +> which was introduced after TensorFlow 1.1. Until TensorFlow 1.2 is released +> building from source is advised. + +#### Base command line arguments + +* **`model`**: Model to use, e.g. `resnet50`, `inception3`, `vgg16`, and + `alexnet`. +* **`num_gpus`**: Number of GPUs to use. +* **`data_dir`**: Path to data to process. If not set, synthetic data is used. + To use Imagenet data use these + [instructions(https://github.com/tensorflow/models/tree/master/inception#getting-started) + as a starting point. +* **`batch_size`**: Batch size for each GPU. +* **`variable_update`**: The method for managing variables: `parameter_server` + ,`replicated`, `distributed_replicated`, `independent` +* **`local_parameter_device`**: Device to use as parameter server: `cpu` or + `gpu`. + +#### Single instance examples + +```bash +# VGG16 training ImageNet with 8 GPUs using arguments that optimize for +# Google Compute Engine. +python tf_cnn_benchmarks.py --local_parameter_device=cpu --num_gpus=8 \ +--batch_size=32 --model=vgg16 --data_dir=/home/ubuntu/imagenet/train \ +--variable_update=parameter_server --nodistortions + +# VGG16 training synthetic ImageNet data with 8 GPUs using arguments that +# optimize for the NVIDIA DGX-1. +python tf_cnn_benchmarks.py --local_parameter_device=gpu --num_gpus=8 \ +--batch_size=64 --model=vgg16 --variable_update=replicated --use_nccl=True + +# VGG16 training ImageNet data with 8 GPUs using arguments that optimize for +# Amazon EC2. +python tf_cnn_benchmarks.py --local_parameter_device=gpu --num_gpus=8 \ +--batch_size=64 --model=vgg16 --variable_update=parameter_server + +# ResNet-50 training ImageNet data with 8 GPUs using arguments that optimize for +# Amazon EC2. +python tf_cnn_benchmarks.py --local_parameter_device=gpu --num_gpus=8 \ +--batch_size=64 --model=resnet50 --variable_update=replicated --use_nccl=False + +``` + +#### Distributed command line arguments + +* **`ps_hosts`**: Comma separated list of hosts to use as parameter servers + in the format of ```:port```, e.g. ```10.0.0.2:50000```. +* **`worker_hosts`**: Comma separated list of hosts to use as workers in the + format of ```:port```, e.g. ```10.0.0.2:50001```. +* **`task_index`**: Index of the host in the list of `ps_hosts` or + `worker_hosts` being started. +* **`job_name`**: Type of job, e.g `ps` or `worker` + +#### Distributed examples + +Below is an example of training ResNet-50 on 2 hosts: host_0 (10.0.0.1) and +host_1 (10.0.0.2). The example uses synthetic data. To use real data pass the +`--data_dir` argument. + +```bash +# Run the following commands on host_0 (10.0.0.1): +python tf_cnn_benchmarks.py --local_parameter_device=gpu --num_gpus=8 \ +--batch_size=64 --model=resnet50 --variable_update=distributed_replicated \ +--job_name=worker --ps_hosts=10.0.0.1:50000,10.0.0.2:50000 \ +--worker_hosts=10.0.0.1:50001,10.0.0.2:50001 --task_index=0 + +python tf_cnn_benchmarks.py --local_parameter_device=gpu --num_gpus=8 \ +--batch_size=64 --model=resnet50 --variable_update=distributed_replicated \ +--job_name=ps --ps_hosts=10.0.0.1:50000,10.0.0.2:50000 \ +--worker_hosts=10.0.0.1:50001,10.0.0.2:50001 --task_index=0 + + +# Run the following commands on host_1 (10.0.0.2): +python tf_cnn_benchmarks.py --local_parameter_device=gpu --num_gpus=8 \ +--batch_size=64 --model=resnet50 --variable_update=distributed_replicated \ +--job_name=worker --ps_hosts=10.0.0.1:50000,10.0.0.2:50000 \ +--worker_hosts=10.0.0.1:50001,10.0.0.2:50001 --task_index=1 + +python tf_cnn_benchmarks.py --local_parameter_device=gpu --num_gpus=8 \ +--batch_size=64 --model=resnet50 --variable_update=distributed_replicated \ +--job_name=ps --ps_hosts=10.0.0.1:50000,10.0.0.2:50000 \ +--worker_hosts=10.0.0.1:50001,10.0.0.2:50001 --task_index=1 + +``` diff --git a/tensorflow/docs_src/programmers_guide/variable_scope.md b/tensorflow/docs_src/programmers_guide/variable_scope.md index 5084acbab97..f4d2b3f37b8 100644 --- a/tensorflow/docs_src/programmers_guide/variable_scope.md +++ b/tensorflow/docs_src/programmers_guide/variable_scope.md @@ -5,7 +5,7 @@ in the way described in the @{$variables$Variables HowTo}. But when building complex models you often need to share large sets of variables and you might want to initialize all of them in one place. This tutorial shows how this can be done using `tf.variable_scope()` and -the `tf.get_variable()`. +`tf.get_variable()`. ## The Problem @@ -368,6 +368,6 @@ sequence-to-sequence models. File | What's in it? --- | --- -`models/tutorials/image/cifar10/cifar10.py` | Model for detecting objects in images. -`models/tutorials/rnn/rnn_cell.py` | Cell functions for recurrent neural networks. -`models/tutorials/rnn/seq2seq.py` | Functions for building sequence-to-sequence models. +`tutorials/image/cifar10/cifar10.py` | Model for detecting objects in images. +`tutorials/rnn/rnn_cell.py` | Cell functions for recurrent neural networks. +`tutorials/rnn/seq2seq.py` | Functions for building sequence-to-sequence models. diff --git a/tensorflow/docs_src/tutorials/deep_cnn.md b/tensorflow/docs_src/tutorials/deep_cnn.md index d6a136fee47..f60c8fd7701 100644 --- a/tensorflow/docs_src/tutorials/deep_cnn.md +++ b/tensorflow/docs_src/tutorials/deep_cnn.md @@ -83,7 +83,7 @@ for details. It consists of 1,068,298 learnable parameters and requires about ## Code Organization The code for this tutorial resides in -[`tensorflow_models/tutorials/image/cifar10/`](https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10/). +[`models/tutorials/image/cifar10/`](https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10/). File | Purpose --- | --- diff --git a/tensorflow/python/debug/wrappers/framework.py b/tensorflow/python/debug/wrappers/framework.py index 50645c1c874..0d8616a69fb 100644 --- a/tensorflow/python/debug/wrappers/framework.py +++ b/tensorflow/python/debug/wrappers/framework.py @@ -348,12 +348,6 @@ class BaseDebugWrapperSession(session.SessionInterface): _check_type(sess, session.BaseSession) - # TODO(cais): Remove this check once tfdbg is integrated with GrpcSession. - if sess.sess_str: - raise NotImplementedError( - "Non-DirectSession support is not available from TensorFlow " - "Debugger yet (sess_str=%s)" % sess.sess_str) - # The session being wrapped. self._sess = sess self._thread_name_filter_pattern = (re.compile(thread_name_filter) diff --git a/tensorflow/python/debug/wrappers/framework_test.py b/tensorflow/python/debug/wrappers/framework_test.py index 1d69c7769a2..fd0efcd925f 100644 --- a/tensorflow/python/debug/wrappers/framework_test.py +++ b/tensorflow/python/debug/wrappers/framework_test.py @@ -384,18 +384,6 @@ class DebugWrapperSessionTest(test_util.TensorFlowTestCase): ["a_init", "b_init"], [datum.node_name for datum in dump.dumped_tensor_data]) - def testUsingNonDirectSessionRaisesNotImplementedError(self): - # TODO(cais): Remove this test once tfdbg is integrated with GrpcSession. - fake_non_direct_session = session.Session() - fake_non_direct_session._target = "foo" - - with self.assertRaisesRegexp( - NotImplementedError, - r"Non-DirectSession support is not available from TensorFlow Debugger " - r"yet \(sess_str=foo\)"): - TestDebugWrapperSession( - fake_non_direct_session, self._dump_root, self._observer) - if __name__ == "__main__": googletest.main() diff --git a/tensorflow/python/feature_column/feature_column.py b/tensorflow/python/feature_column/feature_column.py index 7d8a42080d7..a96052a3ae5 100644 --- a/tensorflow/python/feature_column/feature_column.py +++ b/tensorflow/python/feature_column/feature_column.py @@ -139,6 +139,82 @@ from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import nest +def make_input_layer(features, + feature_columns, + weight_collections=None, + trainable=True): + """Returns a dense `Tensor` as input layer based on given `feature_columns`. + + Generally a single example in training data is described with FeatureColumns. + At the first layer of the model, this column oriented data should be converted + to a single `Tensor`. + + Example: + + ```python + price = numeric_column('price') + keywords_embedded = embedding_column( + categorical_column_with_hash_bucket("keywords", 10K), dimensions=16) + all_feature_columns = [price, keywords_embedded, ...] + dense_tensor = make_input_layer(features, all_feature_columns) + for units in [128, 64, 32]: + dense_tensor = tf.layers.dense(dense_tensor, units, tf.nn.relu) + prediction = tf.layers.dense(dense_tensor, 1) + ``` + + Args: + features: A mapping from key to tensors. `FeatureColumn`s look up via these + keys. For example `numeric_column('price') will look at 'price' key in + this dict. Values can be a `SparseTensor` or a `Tensor` depends on + corresponding `FeatureColumn`. + feature_columns: An iterable containing all the `FeatureColumn`s. All items + should be instances of classes derived from `_DenseColumn` such as + `numeric_column`, `embedding_column`, `bucketized_column`, + `indicator_column`. If you have categorical features, you can wrap them + with with an `embedding_column` or `indicator_column`. + weight_collections: A list of collection names to which the Variable will be + added. Note that, variables will also be added to collections + `tf.GraphKeys.GLOBAL_VARIABLES` and `ops.GraphKeys.MODEL_VARIABLES`. + trainable: If `True` also add the variable to the graph collection + `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). + + Returns: + A `Tensor` which represents input layer of a model. Its shape + is (batch_size, first_layer_dimension) and its dtype is `float32`. + first_layer_dimension is determined based on given `feature_columns`. + + Raises: + ValueError: if an item in `feature_columns` is not a `_DenseColumn`. + """ + _check_feature_columns(feature_columns) + for column in feature_columns: + if not isinstance(column, _DenseColumn): + raise ValueError( + 'Items of feature_columns must be a _DenseColumn. ' + 'You can wrap a categorical column with an ' + 'embedding_column or indicator_column. Given: {}'.format(column)) + weight_collections = list(weight_collections or []) + if ops.GraphKeys.GLOBAL_VARIABLES not in weight_collections: + weight_collections.append(ops.GraphKeys.GLOBAL_VARIABLES) + if ops.GraphKeys.MODEL_VARIABLES not in weight_collections: + weight_collections.append(ops.GraphKeys.MODEL_VARIABLES) + with variable_scope.variable_scope( + None, default_name='make_input_layer', values=features.values()): + builder = _LazyBuilder(features) + output_tensors = [] + for column in sorted(feature_columns, key=lambda x: x.name): + with variable_scope.variable_scope(None, default_name=column.name): + tensor = column._get_dense_tensor( # pylint: disable=protected-access + builder, + weight_collections=weight_collections, + trainable=trainable) + num_elements = column._variable_shape.num_elements() # pylint: disable=protected-access + batch_size = array_ops.shape(tensor)[0] + tensor = array_ops.reshape(tensor, shape=(batch_size, num_elements)) + output_tensors.append(tensor) + return array_ops.concat(output_tensors, 1) + + def make_linear_model(features, feature_columns, units=1, @@ -156,10 +232,21 @@ def make_linear_model(features, while `make_input_layer` explicitly requires wrapping each of them with an `embedding_column` or an `indicator_column`. + Example: + + ```python + price = numeric_column('price') + price_buckets = bucketized_column(price, boundaries=[0., 10., 100., 1000.]) + keywords = categorical_column_with_hash_bucket("keywords", 10K) + all_feature_columns = [price_buckets, keywords, ...] + prediction = make_linear_model(features, all_feature_columns) + ``` + Args: - features: A mapping from key to tensors. 'string' key means a base feature. - It can have `_FeatureColumn` as a key too. That means that FeatureColumn - is already transformed by the input pipeline. + features: A mapping from key to tensors. `FeatureColumn`s look up via these + keys. For example `numeric_column('price')` will look at 'price' key in + this dict. Values are `Tensor` or `SparseTensor` depending on + corresponding `FeatureColumn`. feature_columns: An iterable containing all the FeatureColumns. All items should be instances of classes derived from FeatureColumn. units: units: An integer, dimensionality of the output space. Default @@ -191,22 +278,23 @@ def make_linear_model(features, raise ValueError('Items of feature_columns must be either a _DenseColumn ' 'or _CategoricalColumn. Given: {}'.format(column)) weight_collections = list(weight_collections or []) - weight_collections += [ - ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.MODEL_VARIABLES - ] + if ops.GraphKeys.GLOBAL_VARIABLES not in weight_collections: + weight_collections.append(ops.GraphKeys.GLOBAL_VARIABLES) + if ops.GraphKeys.MODEL_VARIABLES not in weight_collections: + weight_collections.append(ops.GraphKeys.MODEL_VARIABLES) with variable_scope.variable_scope( None, default_name='make_linear_model', values=features.values()): weigthed_sums = [] builder = _LazyBuilder(features) for column in sorted(feature_columns, key=lambda x: x.name): with variable_scope.variable_scope(None, default_name=column.name): - if isinstance(column, _DenseColumn): - weigthed_sums.append(_create_dense_column_weighted_sum( - column, builder, units, weight_collections, trainable)) - else: + if isinstance(column, _CategoricalColumn): weigthed_sums.append(_create_categorical_column_weighted_sum( column, builder, units, sparse_combiner, weight_collections, trainable)) + else: + weigthed_sums.append(_create_dense_column_weighted_sum( + column, builder, units, weight_collections, trainable)) predictions_no_bias = math_ops.add_n( weigthed_sums, name='weighted_sum_no_bias') bias = variable_scope.get_variable( @@ -228,7 +316,8 @@ def numeric_column(key, normalizer_fn=None): """Represents real valued or numerical features. - An example: + Example: + ```python price = numeric_column('price') all_feature_columns = [price, ...] @@ -237,7 +326,7 @@ def numeric_column(key, # or bucketized_price = bucketized_column(price, boundaries=[...]) all_feature_columns = [bucketized_price, ...] - linear_prediction, _, _ = make_linear_model(features, all_feature_columns) + linear_prediction = make_linear_model(features, all_feature_columns) ``` @@ -291,6 +380,56 @@ def numeric_column(key, normalizer_fn=normalizer_fn) +def bucketized_column(source_column, boundaries): + """Represents discretized dense input. + + Buckets include the left boundary, and exclude the right boundary. Namely, + `boundaries=[0., 1., 2.]` generates buckets `(-inf, 0.)`, `[0., 1.)`, + `[1., 2.)`, and `[2., +inf)`. + + Example: + + ```python + price = numeric_column('price') + bucketized_price = bucketized_column(price, boundaries=[...]) + all_feature_columns = [bucketized_price, ...] + linear_prediction = make_linear_model(features, all_feature_columns) + + # or + all_feature_columns = [bucketized_price, ...] + dense_tensor = make_input_layer(features, all_feature_columns) + ``` + + Args: + source_column: A one-dimensional dense column which is generated with + `numeric_column`. + boundaries: A sorted list or tuple of floats specifying the boundaries. + + Returns: + A `_BucketizedColumn`. + + Raises: + ValueError: If `source_column` is not a numeric column, or if it is not + one-dimensional. + ValueError: If `boundaries` is not a sorted list or tuple. + """ + if not isinstance(source_column, _NumericColumn): + raise ValueError( + 'source_column must be a column generated with numeric_column(). ' + 'Given: {}'.format(source_column)) + if len(source_column.shape) > 1: + raise ValueError( + 'source_column must be one-dimensional column. ' + 'Given: {}'.format(source_column)) + if (not boundaries or + not (isinstance(boundaries, list) or isinstance(boundaries, tuple))): + raise ValueError('boundaries must be a sorted list.') + for i in range(len(boundaries) - 1): + if boundaries[i] >= boundaries[i + 1]: + raise ValueError('boundaries must be a sorted list.') + return _BucketizedColumn(source_column, tuple(boundaries)) + + def categorical_column_with_hash_bucket(key, hash_bucket_size, dtype=dtypes.string): @@ -300,11 +439,12 @@ def categorical_column_with_hash_bucket(key, want to distribute your inputs into a finite number of buckets by hashing. output_id = Hash(input_feature_string) % bucket_size - An example: + Example: + ```python keywords = categorical_column_with_hash_bucket("keywords", 10K) - linear_prediction, _, _ = make_linear_model(features, all_feature_columns) all_feature_columns = [keywords, ...] + linear_prediction = make_linear_model(features, all_feature_columns) # or keywords_embedded = embedding_column(keywords, 16) @@ -422,7 +562,7 @@ class _DenseColumn(_FeatureColumn): @abc.abstractproperty def _variable_shape(self): - """Returns shape of variable which is compatible with _get_dense_tensor.""" + """Returns a `TensorShape` of variable compatible with _get_dense_tensor.""" pass @abc.abstractmethod @@ -431,6 +571,7 @@ class _DenseColumn(_FeatureColumn): The output of this function will be used by model-buildier-functions. For example the pseudo code of `make_input_layer` will be like that: + ```python def make_input_layer(features, feature_columns, ...): outputs = [fc._get_dense_tensor(...) for fc in feature_columns] @@ -454,7 +595,7 @@ def _create_dense_column_weighted_sum( builder, weight_collections=weight_collections, trainable=trainable) - num_elements = tensor_shape.TensorShape(column._variable_shape).num_elements() # pylint: disable=protected-access + num_elements = column._variable_shape.num_elements() # pylint: disable=protected-access batch_size = array_ops.shape(tensor)[0] tensor = array_ops.reshape(tensor, shape=(batch_size, num_elements)) weight = variable_scope.get_variable( @@ -566,12 +707,15 @@ class _LazyBuilder(object): """Creates a `_LazyBuilder`. Args: - features: A mapping from feature column to tensors. A `string` key + features: A mapping from feature column to objects that are `Tensor` or + `SparseTensor`, or can be converted to same via + `sparse_tensor.convert_to_tensor_or_sparse_tensor`. A `string` key signifies a base feature (not-transformed). A `FeatureColumn` key means that this `Tensor` is the output of an existing `FeatureColumn` which can be reused. """ - self._columns_to_tensors = features.copy() + self._features = features.copy() + self._feature_tensors = {} def get(self, key): """Returns a `Tensor` for the given key. @@ -591,9 +735,16 @@ class _LazyBuilder(object): ValueError: if key is not found or a transformed `Tensor` cannot be computed. """ - if key in self._columns_to_tensors: - # Feature_column is already transformed or it's a raw feature. - return self._columns_to_tensors[key] + if key in self._feature_tensors: + # FeatureColumn is already transformed or converted. + return self._feature_tensors[key] + + if key in self._features: + # FeatureColumn is a raw feature. + feature_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor( + self._features[key]) + self._feature_tensors[key] = feature_tensor + return feature_tensor if not isinstance(key, (str, _FeatureColumn)): raise TypeError('"key" must be either a "str" or "_FeatureColumn". ' @@ -604,11 +755,13 @@ class _LazyBuilder(object): column = key logging.debug('Transforming feature_column %s.', column) - transformed = column._transform_feature(self) # pylint: disable=protected-access + # pylint: disable=protected-access + transformed = column._transform_feature(self) + # pylint: enable=protected-access if transformed is None: raise ValueError('Column {} is not supported.'.format(column.name)) - self._columns_to_tensors[column] = transformed - return self._columns_to_tensors[column] + self._feature_tensors[column] = transformed + return transformed def _check_feature_columns(feature_columns): @@ -660,7 +813,7 @@ class _NumericColumn(_DenseColumn, @property def _variable_shape(self): - return self.shape + return tensor_shape.TensorShape(self.shape) def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): del weight_collections @@ -668,6 +821,74 @@ class _NumericColumn(_DenseColumn, return inputs.get(self) +class _BucketizedColumn(_DenseColumn, _CategoricalColumn, + collections.namedtuple('_BucketizedColumn', [ + 'source_column', 'boundaries'])): + """See `bucketized_column`.""" + + @property + def name(self): + return '{}_bucketized'.format(self.source_column.name) + + @property + def _parse_example_config(self): + return self.source_column._parse_example_config # pylint: disable=protected-access + + def _transform_feature(self, inputs): + source_tensor = inputs.get(self.source_column) + return math_ops._bucketize( # pylint: disable=protected-access + source_tensor, + boundaries=self.boundaries) + + @property + def _variable_shape(self): + return tensor_shape.TensorShape( + tuple(self.source_column.shape) + (len(self.boundaries) + 1,)) + + def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): + del weight_collections + del trainable + input_tensor = inputs.get(self) + return array_ops.one_hot( + indices=math_ops.to_int64(input_tensor), + depth=len(self.boundaries) + 1, + on_value=1., + off_value=0.) + + @property + def _num_buckets(self): + # By construction, source_column is always one-dimensional. + return (len(self.boundaries) + 1) * self.source_column.shape[0] + + def _get_sparse_tensors(self, inputs, weight_collections=None, + trainable=None): + input_tensor = inputs.get(self) + batch_size = array_ops.shape(input_tensor)[0] + # By construction, source_column is always one-dimensional. + source_dimension = self.source_column.shape[0] + + i1 = array_ops.reshape( + array_ops.tile( + array_ops.expand_dims(math_ops.range(0, batch_size), 1), + [1, source_dimension]), + (-1,)) + i2 = array_ops.tile(math_ops.range(0, source_dimension), [batch_size]) + # Flatten the bucket indices and unique them across dimensions + # E.g. 2nd dimension indices will range from k to 2*k-1 with k buckets + bucket_indices = ( + array_ops.reshape(input_tensor, (-1,)) + + (len(self.boundaries) + 1) * i2) + + indices = math_ops.to_int64(array_ops.transpose(array_ops.stack((i1, i2)))) + dense_shape = math_ops.to_int64(array_ops.stack( + [batch_size, source_dimension])) + sparse_tensor = sparse_tensor_lib.SparseTensor( + indices=indices, + values=bucket_indices, + dense_shape=dense_shape) + return _CategoricalColumn.IdWeightPair(sparse_tensor, None) + + def _create_tuple(shape, value): """Returns a tuple with given shape and filled with value.""" if shape: diff --git a/tensorflow/python/feature_column/feature_column_test.py b/tensorflow/python/feature_column/feature_column_test.py index eefe3b02978..bc626533104 100644 --- a/tensorflow/python/feature_column/feature_column_test.py +++ b/tensorflow/python/feature_column/feature_column_test.py @@ -65,7 +65,7 @@ class LazyColumnTest(test.TestCase): def _parse_example_config(self): pass - builder = fc._LazyBuilder(features={'a': constant_op.constant([[2], [3.]])}) + builder = fc._LazyBuilder(features={'a': [[2], [3.]]}) column = TransformCounter() self.assertEqual(0, column.num_transform) builder.get(column) @@ -88,7 +88,7 @@ class LazyColumnTest(test.TestCase): def _parse_example_config(self): pass - builder = fc._LazyBuilder(features={'a': constant_op.constant([[2], [3.]])}) + builder = fc._LazyBuilder(features={'a': [[2], [3.]]}) column = Transformer() self.assertEqual('Output', builder.get(column)) self.assertEqual('Output', builder.get(column)) @@ -108,13 +108,13 @@ class LazyColumnTest(test.TestCase): def _parse_example_config(self): pass - features = {'a': constant_op.constant([[2], [3.]])} + features = {'a': [[2], [3.]]} builder = fc._LazyBuilder(features=features) builder.get(Transformer()) self.assertEqual(['a'], list(features.keys())) def test_error_if_feature_is_not_found(self): - builder = fc._LazyBuilder(features={'a': constant_op.constant([[2], [3.]])}) + builder = fc._LazyBuilder(features={'a': [[2], [3.]]}) with self.assertRaisesRegexp(ValueError, 'bbb is not in features dictionary'): builder.get('bbb') @@ -135,7 +135,7 @@ class LazyColumnTest(test.TestCase): def _parse_example_config(self): pass - builder = fc._LazyBuilder(features={'a': constant_op.constant([[2], [3.]])}) + builder = fc._LazyBuilder(features={'a': [[2], [3.]]}) with self.assertRaisesRegexp(ValueError, 'NotAProperColumn is not supported'): builder.get(NotAProperColumn()) @@ -145,13 +145,13 @@ class LazyColumnTest(test.TestCase): class NotAFeatureColumn(object): pass - builder = fc._LazyBuilder(features={'a': constant_op.constant([[2], [3.]])}) + builder = fc._LazyBuilder(features={'a': [[2], [3.]]}) with self.assertRaisesRegexp( TypeError, '"key" must be either a "str" or "_FeatureColumn".'): builder.get(NotAFeatureColumn()) -class NumericalColumnTest(test.TestCase): +class NumericColumnTest(test.TestCase): def test_defaults(self): a = fc.numeric_column('aaa') @@ -273,7 +273,7 @@ class NumericalColumnTest(test.TestCase): price = fc.numeric_column('price', shape=[2], normalizer_fn=_increment_two) builder = fc._LazyBuilder({ - 'price': constant_op.constant([[1., 2.], [5., 6.]]) + 'price': [[1., 2.], [5., 6.]] }) output = builder.get(price) with self.test_session(): @@ -286,7 +286,7 @@ class NumericalColumnTest(test.TestCase): price = fc.numeric_column('price', shape=[2], normalizer_fn=_increment_two) builder = fc._LazyBuilder({ - 'price': constant_op.constant([[1., 2.], [5., 6.]]) + 'price': [[1., 2.], [5., 6.]] }) self.assertEqual(builder.get(price), price._get_dense_tensor(builder)) @@ -315,7 +315,7 @@ class NumericalColumnTest(test.TestCase): def test_make_linear_model(self): price = fc.numeric_column('price') with ops.Graph().as_default(): - features = {'price': constant_op.constant([[1.], [5.]])} + features = {'price': [[1.], [5.]]} predictions = fc.make_linear_model(features, [price]) bias = get_linear_model_bias() price_var = get_linear_model_column_var(price) @@ -327,6 +327,231 @@ class NumericalColumnTest(test.TestCase): self.assertAllClose([[10.], [50.]], predictions.eval()) +class BucketizedColumnTest(test.TestCase): + + def test_invalid_source_column_type(self): + a = fc.categorical_column_with_hash_bucket('aaa', hash_bucket_size=10) + with self.assertRaisesRegexp( + ValueError, + 'source_column must be a column generated with numeric_column'): + fc.bucketized_column(a, boundaries=[0, 1]) + + def test_invalid_source_column_shape(self): + a = fc.numeric_column('aaa', shape=[2, 3]) + with self.assertRaisesRegexp( + ValueError, 'source_column must be one-dimensional column'): + fc.bucketized_column(a, boundaries=[0, 1]) + + def test_invalid_boundaries(self): + a = fc.numeric_column('aaa') + with self.assertRaisesRegexp( + ValueError, 'boundaries must be a sorted list'): + fc.bucketized_column(a, boundaries=None) + with self.assertRaisesRegexp( + ValueError, 'boundaries must be a sorted list'): + fc.bucketized_column(a, boundaries=1.) + with self.assertRaisesRegexp( + ValueError, 'boundaries must be a sorted list'): + fc.bucketized_column(a, boundaries=[1, 0]) + with self.assertRaisesRegexp( + ValueError, 'boundaries must be a sorted list'): + fc.bucketized_column(a, boundaries=[1, 1]) + + def test_name(self): + a = fc.numeric_column('aaa', dtype=dtypes.int32) + b = fc.bucketized_column(a, boundaries=[0, 1]) + self.assertEqual('aaa_bucketized', b.name) + + def test_parse_config(self): + a = fc.numeric_column('aaa', shape=[2], dtype=dtypes.int32) + b = fc.bucketized_column(a, boundaries=[0, 1]) + self.assertEqual({ + 'aaa': parsing_ops.FixedLenFeature((2,), dtype=dtypes.int32) + }, b._parse_example_config) + + def test_variable_shape(self): + a = fc.numeric_column('aaa', shape=[2], dtype=dtypes.int32) + b = fc.bucketized_column(a, boundaries=[0, 1]) + # Column 'aaa` has shape [2] times three buckets -> variable_shape=[2, 3]. + self.assertAllEqual((2, 3), b._variable_shape) + + def test_num_buckets(self): + a = fc.numeric_column('aaa', shape=[2], dtype=dtypes.int32) + b = fc.bucketized_column(a, boundaries=[0, 1]) + # Column 'aaa` has shape [2] times three buckets -> num_buckets=6. + self.assertEqual(6, b._num_buckets) + + def test_parse_example(self): + price = fc.numeric_column('price', shape=[2]) + bucketized_price = fc.bucketized_column(price, boundaries=[0, 50]) + data = example_pb2.Example(features=feature_pb2.Features( + feature={ + 'price': + feature_pb2.Feature(float_list=feature_pb2.FloatList( + value=[20., 110.])) + })) + features = parsing_ops.parse_example( + serialized=[data.SerializeToString()], + features=bucketized_price._parse_example_config) + self.assertIn('price', features) + with self.test_session(): + self.assertAllEqual([[20., 110.]], features['price'].eval()) + + def test_transform_feature(self): + price = fc.numeric_column('price', shape=[2]) + bucketized_price = fc.bucketized_column(price, boundaries=[0, 2, 4, 6]) + with ops.Graph().as_default(): + builder = fc._LazyBuilder({ + 'price': [[-1., 1.], [5., 6.]] + }) + transformed_tensor = builder.get(bucketized_price) + with _initialized_session(): + self.assertAllEqual([[0, 1], [3, 4]], transformed_tensor.eval()) + + def test_get_dense_tensor_one_input_value(self): + """Tests _get_dense_tensor() for input with shape=[1].""" + price = fc.numeric_column('price', shape=[1]) + bucketized_price = fc.bucketized_column(price, boundaries=[0, 2, 4, 6]) + with ops.Graph().as_default(): + builder = fc._LazyBuilder({ + 'price': [[-1.], [1.], [5.], [6.]] + }) + with _initialized_session(): + bucketized_price_tensor = bucketized_price._get_dense_tensor(builder) + self.assertAllClose( + # One-hot tensor. + [[[1., 0., 0., 0., 0.]], + [[0., 1., 0., 0., 0.]], + [[0., 0., 0., 1., 0.]], + [[0., 0., 0., 0., 1.]]], + bucketized_price_tensor.eval()) + + def test_get_dense_tensor_two_input_values(self): + """Tests _get_dense_tensor() for input with shape=[2].""" + price = fc.numeric_column('price', shape=[2]) + bucketized_price = fc.bucketized_column(price, boundaries=[0, 2, 4, 6]) + with ops.Graph().as_default(): + builder = fc._LazyBuilder({ + 'price': [[-1., 1.], [5., 6.]] + }) + with _initialized_session(): + bucketized_price_tensor = bucketized_price._get_dense_tensor(builder) + self.assertAllClose( + # One-hot tensor. + [[[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.]], + [[0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.]]], + bucketized_price_tensor.eval()) + + def test_get_sparse_tensors_one_input_value(self): + """Tests _get_sparse_tensors() for input with shape=[1].""" + price = fc.numeric_column('price', shape=[1]) + bucketized_price = fc.bucketized_column(price, boundaries=[0, 2, 4, 6]) + with ops.Graph().as_default(): + builder = fc._LazyBuilder({ + 'price': [[-1.], [1.], [5.], [6.]] + }) + with _initialized_session() as sess: + id_weight_pair = bucketized_price._get_sparse_tensors(builder) + self.assertIsNone(id_weight_pair.weight_tensor) + id_tensor_value = sess.run(id_weight_pair.id_tensor) + self.assertAllEqual( + [[0, 0], [1, 0], [2, 0], [3, 0]], id_tensor_value.indices) + self.assertAllEqual([0, 1, 3, 4], id_tensor_value.values) + self.assertAllEqual([4, 1], id_tensor_value.dense_shape) + + def test_get_sparse_tensors_two_input_values(self): + """Tests _get_sparse_tensors() for input with shape=[2].""" + price = fc.numeric_column('price', shape=[2]) + bucketized_price = fc.bucketized_column(price, boundaries=[0, 2, 4, 6]) + with ops.Graph().as_default(): + builder = fc._LazyBuilder({ + 'price': [[-1., 1.], [5., 6.]] + }) + with _initialized_session() as sess: + id_weight_pair = bucketized_price._get_sparse_tensors(builder) + self.assertIsNone(id_weight_pair.weight_tensor) + id_tensor_value = sess.run(id_weight_pair.id_tensor) + self.assertAllEqual( + [[0, 0], [0, 1], [1, 0], [1, 1]], id_tensor_value.indices) + # Values 0-4 correspond to the first column of the input price. + # Values 5-9 correspond to the second column of the input price. + self.assertAllEqual([0, 6, 3, 9], id_tensor_value.values) + self.assertAllEqual([2, 2], id_tensor_value.dense_shape) + + def test_sparse_tensor_input_not_supported(self): + price = fc.numeric_column('price') + bucketized_price = fc.bucketized_column(price, boundaries=[0, 1]) + builder = fc._LazyBuilder({ + 'price': + sparse_tensor.SparseTensor( + indices=[[0, 0]], values=[0.3], dense_shape=[1, 1]) + }) + with self.assertRaisesRegexp(ValueError, 'must be a Tensor'): + bucketized_price._transform_feature(builder) + + def test_deep_copy(self): + a = fc.numeric_column('aaa', shape=[2]) + a_bucketized = fc.bucketized_column(a, boundaries=[0, 1]) + a_bucketized_copy = copy.deepcopy(a_bucketized) + self.assertEqual(a_bucketized_copy.name, 'aaa_bucketized') + self.assertAllEqual(a_bucketized_copy._variable_shape, (2, 3)) + self.assertEqual(a_bucketized_copy.boundaries, (0, 1)) + + def test_make_linear_model_one_input_value(self): + """Tests make_linear_model() for input with shape=[1].""" + price = fc.numeric_column('price', shape=[1]) + bucketized_price = fc.bucketized_column(price, boundaries=[0, 2, 4, 6]) + with ops.Graph().as_default(): + features = {'price': [[-1.], [1.], [5.], [6.]]} + predictions = fc.make_linear_model(features, [bucketized_price]) + bias = get_linear_model_bias() + bucketized_price_var = get_linear_model_column_var(bucketized_price) + with _initialized_session() as sess: + self.assertAllClose([0.], bias.eval()) + # One weight variable per bucket, all initialized to zero. + self.assertAllClose( + [[0.], [0.], [0.], [0.], [0.]], bucketized_price_var.eval()) + self.assertAllClose([[0.], [0.], [0.], [0.]], predictions.eval()) + sess.run(bucketized_price_var.assign( + [[10.], [20.], [30.], [40.], [50.]])) + # price -1. is in the 0th bucket, whose weight is 10. + # price 1. is in the 1st bucket, whose weight is 20. + # price 5. is in the 3rd bucket, whose weight is 40. + # price 6. is in the 4th bucket, whose weight is 50. + self.assertAllClose([[10.], [20.], [40.], [50.]], predictions.eval()) + sess.run(bias.assign([1.])) + self.assertAllClose([[11.], [21.], [41.], [51.]], predictions.eval()) + + def test_make_linear_model_two_input_values(self): + """Tests make_linear_model() for input with shape=[2].""" + price = fc.numeric_column('price', shape=[2]) + bucketized_price = fc.bucketized_column(price, boundaries=[0, 2, 4, 6]) + with ops.Graph().as_default(): + features = {'price': [[-1., 1.], [5., 6.]]} + predictions = fc.make_linear_model(features, [bucketized_price]) + bias = get_linear_model_bias() + bucketized_price_var = get_linear_model_column_var(bucketized_price) + with _initialized_session() as sess: + self.assertAllClose([0.], bias.eval()) + # One weight per bucket per input column, all initialized to zero. + self.assertAllClose( + [[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.]], + bucketized_price_var.eval()) + self.assertAllClose([[0.], [0.]], predictions.eval()) + sess.run(bucketized_price_var.assign( + [[10.], [20.], [30.], [40.], [50.], + [60.], [70.], [80.], [90.], [100.]])) + # 1st example: + # price -1. is in the 0th bucket, whose weight is 10. + # price 1. is in the 6th bucket, whose weight is 70. + # 2nd example: + # price 5. is in the 3rd bucket, whose weight is 40. + # price 6. is in the 9th bucket, whose weight is 100. + self.assertAllClose([[80.], [140.]], predictions.eval()) + sess.run(bias.assign([1.])) + self.assertAllClose([[81.], [141.]], predictions.eval()) + + class SparseColumnHashedTest(test.TestCase): def test_defaults(self): @@ -396,15 +621,15 @@ class SparseColumnHashedTest(test.TestCase): float_fc = fc.categorical_column_with_hash_bucket( 'a_float', 10, dtype=dtypes.string) int_tensor = sparse_tensor.SparseTensor( - values=constant_op.constant([101]), + values=[101], indices=[[0, 0]], dense_shape=[1, 1]) string_tensor = sparse_tensor.SparseTensor( - values=constant_op.constant(['101']), + values=['101'], indices=[[0, 0]], dense_shape=[1, 1]) float_tensor = sparse_tensor.SparseTensor( - values=constant_op.constant([101.]), + values=[101.], indices=[[0, 0]], dense_shape=[1, 1]) builder = fc._LazyBuilder({ @@ -520,7 +745,7 @@ class MakeLinearModelTest(test.TestCase): def test_dense_bias(self): price = fc.numeric_column('price') with ops.Graph().as_default(): - features = {'price': constant_op.constant([[1.], [5.]])} + features = {'price': [[1.], [5.]]} predictions = fc.make_linear_model(features, [price]) bias = get_linear_model_bias() price_var = get_linear_model_column_var(price) @@ -567,10 +792,63 @@ class MakeLinearModelTest(test.TestCase): sess.run(price_var.assign([[10.]])) self.assertAllClose([[1015.], [10065.]], predictions.eval()) + def test_dense_and_sparse_column(self): + """When the column is both dense and sparse, uses sparse tensors.""" + + class _DenseAndSparseColumn(fc._DenseColumn, fc._CategoricalColumn): + + @property + def name(self): + return 'dense_and_sparse_column' + + @property + def _parse_example_config(self): + return {self.name: parsing_ops.VarLenFeature(self.dtype)} + + def _transform_feature(self, inputs): + return inputs.get(self.name) + + @property + def _variable_shape(self): + raise ValueError('Should not use this method.') + + def _get_dense_tensor(self, inputs, weight_collections=None, + trainable=None): + raise ValueError('Should not use this method.') + + @property + def _num_buckets(self): + return 4 + + def _get_sparse_tensors(self, inputs, weight_collections=None, + trainable=None): + sp_tensor = sparse_tensor.SparseTensor( + indices=[[0, 0], [1, 0], [1, 1]], + values=[2, 0, 3], + dense_shape=[2, 2]) + return fc._CategoricalColumn.IdWeightPair(sp_tensor, None) + + dense_and_sparse_column = _DenseAndSparseColumn() + with ops.Graph().as_default(): + sp_tensor = sparse_tensor.SparseTensor( + values=['omar', 'stringer', 'marlo'], + indices=[[0, 0], [1, 0], [1, 1]], + dense_shape=[2, 2]) + features = {dense_and_sparse_column.name: sp_tensor} + predictions = fc.make_linear_model(features, [dense_and_sparse_column]) + bias = get_linear_model_bias() + dense_and_sparse_column_var = get_linear_model_column_var( + dense_and_sparse_column) + with _initialized_session() as sess: + sess.run(dense_and_sparse_column_var.assign( + [[10.], [100.], [1000.], [10000.]])) + sess.run(bias.assign([5.])) + self.assertAllClose([[1005.], [10015.]], predictions.eval()) + def test_dense_multi_output(self): price = fc.numeric_column('price') with ops.Graph().as_default(): - features = {'price': constant_op.constant([[1.], [5.]])} + features = {'price': [[1.], [5.]]} predictions = fc.make_linear_model(features, [price], units=3) bias = get_linear_model_bias() price_var = get_linear_model_column_var(price) @@ -607,7 +885,7 @@ class MakeLinearModelTest(test.TestCase): def test_dense_multi_dimension(self): price = fc.numeric_column('price', shape=2) with ops.Graph().as_default(): - features = {'price': constant_op.constant([[1., 2.], [5., 6.]])} + features = {'price': [[1., 2.], [5., 6.]]} predictions = fc.make_linear_model(features, [price]) price_var = get_linear_model_column_var(price) with _initialized_session() as sess: @@ -635,7 +913,7 @@ class MakeLinearModelTest(test.TestCase): def test_dense_multi_dimension_multi_output(self): price = fc.numeric_column('price', shape=2) with ops.Graph().as_default(): - features = {'price': constant_op.constant([[1., 2.], [5., 6.]])} + features = {'price': [[1., 2.], [5., 6.]]} predictions = fc.make_linear_model(features, [price], units=3) bias = get_linear_model_bias() price_var = get_linear_model_column_var(price) @@ -650,7 +928,7 @@ class MakeLinearModelTest(test.TestCase): def test_raises_if_shape_mismatch(self): price = fc.numeric_column('price', shape=2) with ops.Graph().as_default(): - features = {'price': constant_op.constant([[1.], [5.]])} + features = {'price': [[1.], [5.]]} predictions = fc.make_linear_model(features, [price]) with _initialized_session(): with self.assertRaisesRegexp(Exception, 'requested shape has 4'): @@ -659,7 +937,7 @@ class MakeLinearModelTest(test.TestCase): def test_dense_reshaping(self): price = fc.numeric_column('price', shape=[1, 2]) with ops.Graph().as_default(): - features = {'price': constant_op.constant([[[1., 2.]], [[5., 6.]]])} + features = {'price': [[[1., 2.]], [[5., 6.]]]} predictions = fc.make_linear_model(features, [price]) bias = get_linear_model_bias() price_var = get_linear_model_column_var(price) @@ -675,8 +953,8 @@ class MakeLinearModelTest(test.TestCase): price2 = fc.numeric_column('price2') with ops.Graph().as_default(): features = { - 'price1': constant_op.constant([[1., 2.], [5., 6.]]), - 'price2': constant_op.constant([[3.], [4.]]) + 'price1': [[1., 2.], [5., 6.]], + 'price2': [[3.], [4.]] } predictions = fc.make_linear_model(features, [price1, price2]) bias = get_linear_model_bias() @@ -695,7 +973,7 @@ class MakeLinearModelTest(test.TestCase): def test_dense_collection(self): price = fc.numeric_column('price') with ops.Graph().as_default() as g: - features = {'price': constant_op.constant([[1.], [5.]])} + features = {'price': [[1.], [5.]]} fc.make_linear_model(features, [price], weight_collections=['my-vars']) my_vars = g.get_collection('my-vars') bias = get_linear_model_bias() @@ -720,7 +998,7 @@ class MakeLinearModelTest(test.TestCase): def test_dense_trainable_default(self): price = fc.numeric_column('price') with ops.Graph().as_default() as g: - features = {'price': constant_op.constant([[1.], [5.]])} + features = {'price': [[1.], [5.]]} fc.make_linear_model(features, [price]) bias = get_linear_model_bias() price_var = get_linear_model_column_var(price) @@ -744,7 +1022,7 @@ class MakeLinearModelTest(test.TestCase): def test_dense_trainable_false(self): price = fc.numeric_column('price') with ops.Graph().as_default() as g: - features = {'price': constant_op.constant([[1.], [5.]])} + features = {'price': [[1.], [5.]]} fc.make_linear_model(features, [price], trainable=False) trainable_vars = g.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES) self.assertEqual([], trainable_vars) @@ -796,5 +1074,89 @@ class MakeLinearModelTest(test.TestCase): self.assertIn('wire_cast', my_vars[2].name) +class MakeInputLayerTest(test.TestCase): + + def test_should_be_dense_column(self): + with self.assertRaisesRegexp(ValueError, 'must be a _DenseColumn'): + fc.make_input_layer( + features={'a': [[0]]}, + feature_columns=[ + fc.categorical_column_with_hash_bucket('wire_cast', 4) + ]) + + def test_does_not_support_dict_columns(self): + with self.assertRaisesRegexp( + ValueError, 'Expected feature_columns to be iterable, found dict.'): + fc.make_input_layer( + features={'a': [[0]]}, feature_columns={'a': fc.numeric_column('a')}) + + def test_raises_if_duplicate_name(self): + with self.assertRaisesRegexp( + ValueError, 'Duplicate feature column name found for columns'): + fc.make_input_layer( + features={'a': [[0]]}, + feature_columns=[fc.numeric_column('a'), + fc.numeric_column('a')]) + + def test_one_column(self): + price = fc.numeric_column('price') + with ops.Graph().as_default(): + features = {'price': [[1.], [5.]]} + net = fc.make_input_layer(features, [price]) + with _initialized_session(): + self.assertAllClose([[1.], [5.]], net.eval()) + + def test_multi_dimension(self): + price = fc.numeric_column('price', shape=2) + with ops.Graph().as_default(): + features = {'price': [[1., 2.], [5., 6.]]} + net = fc.make_input_layer(features, [price]) + with _initialized_session(): + self.assertAllClose([[1., 2.], [5., 6.]], net.eval()) + + def test_raises_if_shape_mismatch(self): + price = fc.numeric_column('price', shape=2) + with ops.Graph().as_default(): + features = {'price': [[1.], [5.]]} + net = fc.make_input_layer(features, [price]) + with _initialized_session(): + with self.assertRaisesRegexp(Exception, 'requested shape has 4'): + net.eval() + + def test_reshaping(self): + price = fc.numeric_column('price', shape=[1, 2]) + with ops.Graph().as_default(): + features = {'price': [[[1., 2.]], [[5., 6.]]]} + net = fc.make_input_layer(features, [price]) + with _initialized_session(): + self.assertAllClose([[1., 2.], [5., 6.]], net.eval()) + + def test_multi_column(self): + price1 = fc.numeric_column('price1', shape=2) + price2 = fc.numeric_column('price2') + with ops.Graph().as_default(): + features = { + 'price1': [[1., 2.], [5., 6.]], + 'price2': [[3.], [4.]] + } + net = fc.make_input_layer(features, [price1, price2]) + with _initialized_session(): + self.assertAllClose([[1., 2., 3.], [5., 6., 4.]], net.eval()) + + def test_column_order(self): + price_a = fc.numeric_column('price_a') + price_b = fc.numeric_column('price_b') + with ops.Graph().as_default(): + features = { + 'price_a': [[1.]], + 'price_b': [[3.]], + } + net1 = fc.make_input_layer(features, [price_a, price_b]) + net2 = fc.make_input_layer(features, [price_b, price_a]) + with _initialized_session(): + self.assertAllClose([[1., 3.]], net1.eval()) + self.assertAllClose([[1., 3.]], net2.eval()) + + if __name__ == '__main__': test.main() diff --git a/tensorflow/python/framework/meta_graph.py b/tensorflow/python/framework/meta_graph.py index 26344d38528..7b13fcfbdf2 100644 --- a/tensorflow/python/framework/meta_graph.py +++ b/tensorflow/python/framework/meta_graph.py @@ -422,14 +422,15 @@ def import_scoped_meta_graph(meta_graph_or_file, graph=None, import_scope=None, input_map=None, - unbound_inputs_col_name="unbound_inputs"): - """Recreates a`Graph` saved in a `MetaGraphDef` proto. + unbound_inputs_col_name="unbound_inputs", + restore_collections_predicate=(lambda key: True)): + """Recreates a `Graph` saved in a `MetaGraphDef` proto. This function takes a `MetaGraphDef` protocol buffer as input. If the argument is a file containing a `MetaGraphDef` protocol buffer , it constructs a protocol buffer from the file content. The function then adds all the nodes from the `graph_def` field to the - current graph, recreates all the collections, and returns a saver + current graph, recreates the desired collections, and returns a saver constructed from the `saver_def` field. In combination with `export_scoped_meta_graph()`, this function can be used to @@ -453,6 +454,10 @@ def import_scoped_meta_graph(meta_graph_or_file, `Tensor` objects. The values of the named input tensors in the imported graph will be re-mapped to the respective `Tensor` values. unbound_inputs_col_name: Collection name for looking up unbound inputs. + restore_collections_predicate: a predicate on collection names. A collection + named c (i.e whose key is c) will be restored iff + 1) `restore_collections_predicate(c)` is True, and + 2) `c != unbound_inputs_col_name`. Returns: A dictionary of all the `Variables` imported into the name scope. @@ -503,6 +508,8 @@ def import_scoped_meta_graph(meta_graph_or_file, # Don't add unbound_inputs to the new graph. if key == unbound_inputs_col_name: continue + if not restore_collections_predicate(key): + continue kind = col_def.WhichOneof("kind") if kind is None: diff --git a/tensorflow/python/framework/meta_graph_test.py b/tensorflow/python/framework/meta_graph_test.py index f8056ade3e4..49d59977846 100644 --- a/tensorflow/python/framework/meta_graph_test.py +++ b/tensorflow/python/framework/meta_graph_test.py @@ -335,6 +335,66 @@ class ScopedMetaGraphTest(test.TestCase): for a, b in zip(orig_meta_graphs, new_meta_graphs): test_util.assert_meta_graph_protos_equal(self, a, b) + def testScopedImportWithSelectedCollections(self): + meta_graph_filename = os.path.join( + _TestDir("selected_collections_import"), "meta_graph.pb") + + graph = ops.Graph() + # Add a variable to populate two collections. The functionality tested is + # not specific to variables, but using variables in the test is convenient. + with graph.as_default(): + variables.Variable(initial_value=1.0, trainable=True) + self.assertTrue( + all([ + graph.get_collection(key) + for key in + [ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.TRAINABLE_VARIABLES] + ])) + meta_graph.export_scoped_meta_graph( + filename=meta_graph_filename, graph=graph) + + def _test_import(include_collection_keys, omit_collection_keys): + assert set(include_collection_keys).isdisjoint(omit_collection_keys) + newgraph = ops.Graph() + import_scope = "some_scope_name" + + def _restore_collections_predicate(collection_key): + return (collection_key in include_collection_keys and + collection_key not in omit_collection_keys) + + meta_graph.import_scoped_meta_graph( + meta_graph_filename, + graph=newgraph, + import_scope=import_scope, + restore_collections_predicate=_restore_collections_predicate) + collection_values = [ + newgraph.get_collection(name=key, scope=import_scope) + for key in include_collection_keys + ] + self.assertTrue(all(collection_values)) + collection_values = [ + newgraph.get_collection(name=key, scope=import_scope) + for key in omit_collection_keys + ] + self.assertFalse(any(collection_values)) + + _test_import( + include_collection_keys=[ + ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.TRAINABLE_VARIABLES + ], + omit_collection_keys=[]) + _test_import( + include_collection_keys=[ops.GraphKeys.GLOBAL_VARIABLES], + omit_collection_keys=[ops.GraphKeys.TRAINABLE_VARIABLES]) + _test_import( + include_collection_keys=[ops.GraphKeys.TRAINABLE_VARIABLES], + omit_collection_keys=[ops.GraphKeys.GLOBAL_VARIABLES]) + _test_import( + include_collection_keys=[], + omit_collection_keys=[ + ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.TRAINABLE_VARIABLES + ]) + def _testScopedExportWithQueue(self, test_dir, exported_filename): graph = ops.Graph() with graph.as_default(): diff --git a/tensorflow/python/kernel_tests/depthwise_conv_op_test.py b/tensorflow/python/kernel_tests/depthwise_conv_op_test.py index a881ed0dc9a..2fc34bd4d17 100644 --- a/tensorflow/python/kernel_tests/depthwise_conv_op_test.py +++ b/tensorflow/python/kernel_tests/depthwise_conv_op_test.py @@ -113,10 +113,9 @@ class DepthwiseConv2DTest(test.TestCase): total_size_1 *= s for s in filter_in_sizes: total_size_2 *= s - # Initializes the input tensor with array containing incrementing - # numbers from 1. + # Initializes the input and filter tensor with numbers incrementing from 1. x1 = [f * 1.0 for f in range(1, total_size_1 + 1)] - x2 = [1.0 for f in range(1, total_size_2 + 1)] + x2 = [f * 1.0 for f in range(1, total_size_2 + 1)] with self.test_session(use_gpu=use_gpu) as sess: t1 = constant_op.constant(x1, shape=tensor_in_sizes) t1.set_shape(tensor_in_sizes) @@ -147,8 +146,9 @@ class DepthwiseConv2DTest(test.TestCase): native_result = sess.run(conv_native) interface_result = sess.run(conv_interface) - print("diff matrix:", - np.amax(np.ravel(native_result) - np.ravel(interface_result))) + print("depthwise conv_2d: ", tensor_in_sizes, "*", filter_in_sizes, + ", stride:", stride, ", padding: ", padding, ", max diff: ", + np.amax(np.absolute(native_result - interface_result))) self.assertArrayNear( np.ravel(native_result), np.ravel(interface_result), 1e-5) self.assertShapeEqual(native_result, conv_native) diff --git a/tensorflow/python/kernel_tests/sparse_add_op_test.py b/tensorflow/python/kernel_tests/sparse_add_op_test.py index 874dcbabf10..555c16194e1 100644 --- a/tensorflow/python/kernel_tests/sparse_add_op_test.py +++ b/tensorflow/python/kernel_tests/sparse_add_op_test.py @@ -88,6 +88,7 @@ class SparseAddTest(test.TestCase): for sp_a in (self._SparseTensorValue_3x3(), self._SparseTensor_3x3()): for sp_b in (self._SparseTensorValue_3x3(), self._SparseTensor_3x3()): sp_sum = sparse_ops.sparse_add(sp_a, sp_b) + self.assertAllEqual((3, 3), sp_sum.get_shape()) sum_out = sess.run(sp_sum) diff --git a/tensorflow/python/kernel_tests/sparse_ops_test.py b/tensorflow/python/kernel_tests/sparse_ops_test.py index 06d5cbaf2d0..bad11a29df0 100644 --- a/tensorflow/python/kernel_tests/sparse_ops_test.py +++ b/tensorflow/python/kernel_tests/sparse_ops_test.py @@ -328,6 +328,12 @@ class SparseResetShapeTest(test_util.TensorFlowTestCase): return sparse_tensor.SparseTensorValue(self._IND_2_5_6, self._VAL_2_5_6, self._SHP_2_5_6) + def testStaticShapeInfoPreservedWhenNewShapeIsProvidedAndStatic(self): + sp_input = self._SparseTensor_2x5x6() + new_shape = np.array([3, 6, 7], dtype=np.int64) + sp_output = sparse_ops.sparse_reset_shape(sp_input, new_shape) + self.assertAllEqual([3, 6, 7], sp_output.get_shape()) + def testBasic(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensor_2x5x6() @@ -397,14 +403,21 @@ class SparseResetShapeTest(test_util.TensorFlowTestCase): with self.assertRaisesOpError("x == y did not hold element-wise"): sess.run(out, feed_dict={new_shape: np.array([3, 7], dtype=np.int64)}) - def testInvalidDimensionSize(self): + def testInvalidDimensionSizeStatic(self): + sp_input = self._SparseTensor_2x5x6() + new_shape = np.array([3, 7, 5], dtype=np.int64) + + with self.assertRaisesRegexp(ValueError, "should have dimension sizes"): + sparse_ops.sparse_reset_shape(sp_input, new_shape) + + def testInvalidDimensionSizeDynamic(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensor_2x5x6() - new_shape = np.array([3, 7, 5], dtype=np.int64) + new_shape = array_ops.placeholder(dtype=dtypes.int32) out = sparse_ops.sparse_reset_shape(sp_input, new_shape) with self.assertRaisesOpError("x <= y did not hold element-wise"): - sess.run(out) + sess.run(out, feed_dict={new_shape: [3, 7, 5]}) def testInvalidDimensionSizeInputUnavailableInGraphConstruction(self): sp_input = array_ops.sparse_placeholder(dtype=dtypes.int32) diff --git a/tensorflow/python/kernel_tests/sparse_reorder_op_test.py b/tensorflow/python/kernel_tests/sparse_reorder_op_test.py index 5136cdadead..18335d665af 100644 --- a/tensorflow/python/kernel_tests/sparse_reorder_op_test.py +++ b/tensorflow/python/kernel_tests/sparse_reorder_op_test.py @@ -48,6 +48,13 @@ class SparseReorderTest(test.TestCase): shape = np.array([5, 6]).astype(np.int64) return sparse_tensor.SparseTensorValue(ind, val, shape) + def testStaticShapeInfoPreserved(self): + sp_input = sparse_tensor.SparseTensor.from_value( + self._SparseTensorValue_5x6(np.arange(6))) + self.assertAllEqual((5, 6), sp_input.get_shape()) + sp_output = sparse_ops.sparse_reorder(sp_input) + self.assertAllEqual((5, 6), sp_output.get_shape()) + def testAlreadyInOrder(self): with self.test_session(use_gpu=False) as sess: input_val = self._SparseTensorValue_5x6(np.arange(6)) diff --git a/tensorflow/python/kernel_tests/sparse_reshape_op_test.py b/tensorflow/python/kernel_tests/sparse_reshape_op_test.py index 1bb05aa3b2a..42874ea9b7a 100644 --- a/tensorflow/python/kernel_tests/sparse_reshape_op_test.py +++ b/tensorflow/python/kernel_tests/sparse_reshape_op_test.py @@ -50,6 +50,13 @@ class SparseReshapeTest(test.TestCase): shape = np.array([2, 3, 4]) return sparse_tensor.SparseTensorValue(ind, val, shape) + def testStaticShapeInfoPreserved(self): + sp_input = sparse_tensor.SparseTensor.from_value( + self._SparseTensorValue_5x6()) + self.assertAllEqual((5, 6), sp_input.get_shape()) + sp_output = sparse_ops.sparse_reshape(sp_input, shape=(1, 5, 2, 3)) + self.assertAllEqual((1, 5, 2, 3), sp_output.get_shape()) + def testSameShape(self): with self.test_session(use_gpu=False) as sess: input_val = self._SparseTensorValue_5x6() @@ -180,6 +187,12 @@ class SparseReshapeTest(test.TestCase): with self.assertRaisesOpError("only one output shape size may be -1"): sess.run(sp_output, {sp_input: input_val}) + def testProvideStaticallyMismatchedSizes(self): + input_val = self._SparseTensorValue_5x6() + sp_input = sparse_tensor.SparseTensor.from_value(input_val) + with self.assertRaisesRegexp(ValueError, "Cannot reshape"): + sparse_ops.sparse_reshape(sp_input, [4, 7]) + def testFeedMismatchedSizes(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() diff --git a/tensorflow/python/kernel_tests/variable_scope_test.py b/tensorflow/python/kernel_tests/variable_scope_test.py index 69d1a6f60e1..245dcc96db7 100644 --- a/tensorflow/python/kernel_tests/variable_scope_test.py +++ b/tensorflow/python/kernel_tests/variable_scope_test.py @@ -774,6 +774,11 @@ class VariableScopeTest(test.TestCase): self.assertEqual([v.name for v in scope.global_variables()], ["foo/b:0"]) + def testGetVariableWithRefDtype(self): + v = variable_scope.get_variable("v", shape=[3, 4], dtype=dtypes.float32) + # Ensure it is possible to do get_variable with a _ref dtype passed in. + _ = variable_scope.get_variable("w", shape=[5, 6], dtype=v.dtype) + def axis0_into1_partitioner(shape=None, **unused_kwargs): part = [1] * len(shape) diff --git a/tensorflow/python/layers/base.py b/tensorflow/python/layers/base.py index f6b816333ea..cfcd844800c 100644 --- a/tensorflow/python/layers/base.py +++ b/tensorflow/python/layers/base.py @@ -335,7 +335,7 @@ class Layer(object): def add_variable(self, name, shape, dtype=None, initializer=None, regularizer=None, trainable=True): - """Adds a new variable to the layer. + """Adds a new variable to the layer, or gets an existing one; returns it. Arguments: name: variable name. @@ -424,7 +424,6 @@ class Layer(object): self.build(input_shapes[0]) else: self.build(input_shapes) - self.built = True if 'scope' in tf_inspect.getargspec(self.call).args: kwargs['scope'] = scope outputs = self.call(inputs, *args, **kwargs) @@ -443,6 +442,7 @@ class Layer(object): # Update global default collections. _add_elements_to_collection(self.updates, ops.GraphKeys.UPDATE_OPS) + self.built = True return outputs @property diff --git a/tensorflow/python/layers/base_test.py b/tensorflow/python/layers/base_test.py index 9acf1c05e2a..9e2457a4891 100644 --- a/tensorflow/python/layers/base_test.py +++ b/tensorflow/python/layers/base_test.py @@ -153,6 +153,36 @@ class BaseLayerTest(test.TestCase): self.assertEqual(layer.built, True) self.assertEqual(outputs.op.name, 'my_layer/Square') + def testFirstCallCanCreateVariablesButSecondCanNotWhenBuildEmpty(self): + + class MyLayer(base_layers.Layer): + + def build(self, _): + # Do not mark the layer as built. + pass + + def call(self, inputs): + self.my_var = self.add_variable('my_var', [2, 2]) + if self.built: + # Skip creating on the first call; try to create after it's + # built. This is expected to fail. + self.add_variable('this_will_break_on_second_call', [2, 2]) + return inputs + math_ops.square(self.my_var) + + layer = MyLayer(name='my_layer') + inputs = random_ops.random_uniform((2,), seed=1) + outputs = layer.apply(inputs) + self.assertEqual(layer.built, True) + self.assertEqual(outputs.op.name, 'my_layer/add') + self.assertListEqual( + [v.name for v in layer.variables], ['my_layer/my_var:0']) + with self.assertRaisesRegexp(ValueError, + 'my_layer/this_will_break_on_second_call'): + layer.apply(inputs) + # The list of variables hasn't changed. + self.assertListEqual( + [v.name for v in layer.variables], ['my_layer/my_var:0']) + def testDeepCopy(self): class MyLayer(base_layers.Layer): diff --git a/tensorflow/python/layers/convolutional.py b/tensorflow/python/layers/convolutional.py index eebb7fc6547..1dc07525df4 100644 --- a/tensorflow/python/layers/convolutional.py +++ b/tensorflow/python/layers/convolutional.py @@ -145,6 +145,7 @@ class _Conv(base.Layer): dtype=self.dtype) else: self.bias = None + self.built = True def call(self, inputs): outputs = nn.convolution( @@ -837,6 +838,7 @@ class SeparableConv2D(Conv2D): dtype=self.dtype) else: self.bias = None + self.built = True def call(self, inputs): if self.data_format == 'channels_first': @@ -1070,6 +1072,7 @@ class Conv2DTranspose(Conv2D): dtype=self.dtype) else: self.bias = None + self.built = True def call(self, inputs): inputs_shape = array_ops.shape(inputs) @@ -1297,6 +1300,7 @@ class Conv3DTranspose(Conv3D): dtype=self.dtype) else: self.bias = None + self.built = True def call(self, inputs): inputs_shape = array_ops.shape(inputs) diff --git a/tensorflow/python/layers/core.py b/tensorflow/python/layers/core.py index 49f6499ca47..1ec4e51e5ea 100644 --- a/tensorflow/python/layers/core.py +++ b/tensorflow/python/layers/core.py @@ -130,6 +130,7 @@ class Dense(base.Layer): trainable=True) else: self.bias = None + self.built = True def call(self, inputs): inputs = ops.convert_to_tensor(inputs, dtype=self.dtype) diff --git a/tensorflow/python/layers/normalization.py b/tensorflow/python/layers/normalization.py index 2970ddb8ce1..f92ea9b05f5 100644 --- a/tensorflow/python/layers/normalization.py +++ b/tensorflow/python/layers/normalization.py @@ -201,6 +201,7 @@ class BatchNormalization(base.Layer): 'renorm_stddev_weight', ()) finally: self._scope.set_partitioner(partitioner) + self.built = True def _renorm_correction_and_moments(self, mean, variance, training): """Returns the correction and update values for renorm.""" @@ -399,7 +400,9 @@ def batch_normalization(inputs, training: Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (normalized with statistics of the current batch) or in inference mode - (normalized with moving statistics). + (normalized with moving statistics). **NOTE**: make sure to set this + parameter correctly, or else your training/inference will not work + properly. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). name: String, the name of the layer. diff --git a/tensorflow/python/layers/pooling.py b/tensorflow/python/layers/pooling.py index b8193729239..a1dfab09de3 100644 --- a/tensorflow/python/layers/pooling.py +++ b/tensorflow/python/layers/pooling.py @@ -71,6 +71,7 @@ class _Pooling1D(base.Layer): if len(input_shape) != 3: raise ValueError('Inputs should have rank 3. ' 'Received input shape:', str(input_shape)) + self.built = True def call(self, inputs): # There is no TF op for 1D pooling, hence we make the inputs 4D. @@ -261,6 +262,7 @@ class _Pooling2D(base.Layer): if len(input_shape) != 4: raise ValueError('Inputs should have rank 4. ' 'Received input shape:', str(input_shape)) + self.built = True def call(self, inputs): if self.data_format == 'channels_last': @@ -448,6 +450,7 @@ class _Pooling3D(base.Layer): if len(input_shape) != 5: raise ValueError('Inputs should have rank 5. ' 'Received input shape:', str(input_shape)) + self.built = True def call(self, inputs): pool_shape = (1,) + self.pool_size + (1,) diff --git a/tensorflow/python/ops/data_flow_ops.py b/tensorflow/python/ops/data_flow_ops.py index 6395451e2ae..95e803e2aa0 100644 --- a/tensorflow/python/ops/data_flow_ops.py +++ b/tensorflow/python/ops/data_flow_ops.py @@ -21,7 +21,6 @@ from __future__ import print_function import collections import hashlib -import re import threading import six @@ -56,6 +55,7 @@ def _as_type_list(dtypes): def _as_shape_list(shapes, dtypes, unknown_dim_allowed=False, unknown_rank_allowed=False): """Convert shapes to a list of tuples of int (or None).""" + del dtypes if unknown_dim_allowed: if (not isinstance(shapes, collections.Sequence) or not shapes @@ -925,16 +925,18 @@ class Barrier(object): If barrier has no completed elements, this operation will block until there are 'num_elements' elements to take. + TODO(b/25743580): the semantics of `allow_small_batch` are experimental + and may be extended to other cases in the future. + + TODO(ebrevdo): If a take_many(allow_small_batch=True) is blocking + already when the barrier is closed, it will block for ever. Fix this + by using asynchronous operations. + Args: num_elements: The number of elements to take. allow_small_batch: If the barrier is closed, don't block if there are less completed elements than requested, but instead return all available completed elements. - TODO(b/25743580): the semantics of `allow_small_batch` are experimental - and may be extended to other cases in the future. - TODO(ebrevdo): If a take_many(allow_small_batch=True) is blocking - already when the barrier is closed, it will block for ever. Fix this - by using asynchronous operations. timeout: This specifies the number of milliseconds to block before returning with DEADLINE_EXCEEDED. (This option is not supported yet.) diff --git a/tensorflow/python/ops/sparse_ops.py b/tensorflow/python/ops/sparse_ops.py index f8eb34aa5eb..0140a27aaa7 100644 --- a/tensorflow/python/ops/sparse_ops.py +++ b/tensorflow/python/ops/sparse_ops.py @@ -51,6 +51,7 @@ import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor +from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops @@ -288,12 +289,21 @@ def sparse_add(a, b, thresh=0): if all(isinstance(inp, sparse_classes) for inp in [a, b]): a = _convert_to_sparse_tensor(a) + b = _convert_to_sparse_tensor(b) thresh = ops.convert_to_tensor( thresh, dtype=a.values.dtype.real_dtype, name="thresh") output_ind, output_val, output_shape = (gen_sparse_ops._sparse_add( a.indices, a.values, a.dense_shape, b.indices, b.values, b.dense_shape, thresh)) + + # Attempt to get output_shape statically. + a.get_shape().assert_is_compatible_with(b.get_shape()) + static_shape = array_ops.broadcast_static_shape( + a.get_shape(), b.get_shape()) + if static_shape.is_fully_defined(): + output_shape = static_shape.as_list() + return sparse_tensor.SparseTensor(output_ind, output_val, output_shape) else: # swap to make `a` the SparseTensor. @@ -368,8 +378,12 @@ def sparse_reorder(sp_input, name=None): reordered_ind, reordered_val = (gen_sparse_ops._sparse_reorder( sp_input.indices, sp_input.values, sp_input.dense_shape, name=name)) - return sparse_tensor.SparseTensor(reordered_ind, reordered_val, - array_ops.identity(sp_input.dense_shape)) + if sp_input.get_shape().is_fully_defined(): + dense_shape = sp_input.get_shape().as_list() + else: + dense_shape = array_ops.identity(sp_input.dense_shape) + + return sparse_tensor.SparseTensor(reordered_ind, reordered_val, dense_shape) def sparse_reshape(sp_input, shape, name=None): @@ -416,13 +430,30 @@ def sparse_reshape(sp_input, shape, name=None): Raises: TypeError: If `sp_input` is not a `SparseTensor`. + ValueError: If argument `shape` requests a `SparseTensor` with a different + number of elements than `sp_input`. """ sp_input = _convert_to_sparse_tensor(sp_input) + shape = ops.convert_to_tensor(shape, dtype=dtypes.int64) with ops.name_scope(name, "SparseReshape", [sp_input]) as name: reshaped_ind, reshaped_shape = gen_sparse_ops._sparse_reshape( sp_input.indices, sp_input.dense_shape, shape, name=name) + reshaped_shape_const = tensor_util.constant_value(shape) + if (reshaped_shape_const is not None + and sp_input.get_shape().is_fully_defined()): + # Don't deal with inferred dimensions. That would add significant code. + if all(n >= 0 for n in reshaped_shape_const): + reshaped_size = np.prod(reshaped_shape_const) + in_shape_size = np.prod(sp_input.get_shape().as_list()) + if reshaped_size != in_shape_size: + raise ValueError( + "Cannot reshape a tensor with %d elements to shape %s " + "(%d elements)." + % (in_shape_size, reshaped_shape_const, reshaped_size)) + reshaped_shape = reshaped_shape_const + return sparse_tensor.SparseTensor( reshaped_ind, array_ops.identity(sp_input.values), reshaped_shape) @@ -986,6 +1017,8 @@ def sparse_reset_shape(sp_input, new_shape=None): TypeError: If `sp_input` is not a `SparseTensor`. ValueError: If `new_shape` represents a tensor with a different rank from that of `sp_input` (if shapes are known when graph is constructed). + ValueError: If `new_shape` is determined during graph build to have + dimension sizes that are too small. OpError: - If `new_shape` has dimension sizes that are too small. - If shapes are not known during graph construction time, and during run @@ -1009,14 +1042,27 @@ def sparse_reset_shape(sp_input, new_shape=None): # error before the sparse_tensor.SparseTensor catches it. output_shape_tensor.get_shape()[0].merge_with(in_shape.get_shape()[0]) - # For cases where shape is not known during graph construction. - output_shape_tensor = control_flow_ops.with_dependencies( - [check_ops.assert_equal( - array_ops.shape(in_shape), array_ops.shape(output_shape_tensor))], - output_shape_tensor) - output_shape_tensor = control_flow_ops.with_dependencies( - [check_ops.assert_less_equal(in_shape, output_shape_tensor)], + output_shape_tensor_const = tensor_util.constant_value( output_shape_tensor) + # For cases where all shapes are known during graph construction + if (output_shape_tensor_const is not None + and sp_input.get_shape().is_fully_defined()): + in_shape_const = np.array(sp_input.get_shape().as_list()) + if not np.all(in_shape_const <= output_shape_tensor_const): + raise ValueError( + "Requested new_shape should have dimension sizes >= sp_input.shape." + " Found new_shape (%s), sp_input.shape (%s)." + % (in_shape_const, output_shape_tensor_const)) + output_shape_tensor = output_shape_tensor_const + else: + # For cases where shape is not known during graph construction. + output_shape_tensor = control_flow_ops.with_dependencies( + [check_ops.assert_equal( + array_ops.shape(in_shape), array_ops.shape(output_shape_tensor))], + output_shape_tensor) + output_shape_tensor = control_flow_ops.with_dependencies( + [check_ops.assert_less_equal(in_shape, output_shape_tensor)], + output_shape_tensor) return sparse_tensor.SparseTensor(in_indices, in_values, output_shape_tensor) diff --git a/tensorflow/python/ops/variable_scope.py b/tensorflow/python/ops/variable_scope.py index 76719f35b80..a29ddfa9f2f 100644 --- a/tensorflow/python/ops/variable_scope.py +++ b/tensorflow/python/ops/variable_scope.py @@ -280,6 +280,17 @@ class _VariableStore(object): raise ValueError( "Passed a custom_getter which is not callable: %s" % custom_getter) + # If a *_ref type is passed in an error would be triggered further down the + # stack. We prevent this using base_dtype to get a non-ref version of the + # type, before doing anything else. When _ref types are removed in favour of + # resources, this line can be removed. + try: + dtype = dtype.base_dtype + except AttributeError: + # .base_dtype not existing means that we will try and use the raw dtype + # which was passed in - this might be a NumPy type which is valid. + pass + # This is the main logic of get_variable. However, custom_getter # may override this logic. So we save it as a callable and pass # it to custom_getter. @@ -1281,7 +1292,7 @@ def _pure_variable_scope(name_or_scope, well-defined semantics. Defaults to False (will later change to True). Yields: - A scope that can be to captured and reused. + A scope that can be captured and reused. Raises: ValueError: when trying to reuse within a create scope, or create within diff --git a/tensorflow/python/tools/saved_model_cli.py b/tensorflow/python/tools/saved_model_cli.py index 9dfafb77e7d..2fea29d961e 100644 --- a/tensorflow/python/tools/saved_model_cli.py +++ b/tensorflow/python/tools/saved_model_cli.py @@ -56,20 +56,22 @@ Example output: To show all available information in the SavedModel: $saved_model_cli show --dir /tmp/saved_model --all -'run' command usage: saved_model_cli run [-h] --dir DIR --tag_set TAG_SET - --signature_def SIGNATURE_DEF_KEY --inputs INPUTS - [--outdir OUTDIR] [--overwrite] +usage: saved_model_cli run [-h] --dir DIR --tag_set TAG_SET --signature_def + SIGNATURE_DEF_KEY [--inputs INPUTS] + [--input_exprs INPUT_EXPRS] [--outdir OUTDIR] + [--overwrite] [--tf_debug] + Examples: To run input tensors from files through a MetaGraphDef and save the output tensors to files: $saved_model_cli run --dir /tmp/saved_model --tag_set serve - --signature_def serving_default --inputs x:0=/tmp/124.npz,x2=/tmp/123.npy - --outdir /tmp/out + --signature_def serving_default --inputs x=/tmp/124.npz + --input_exprs 'x2=np.ones((6,2))' --outdir /tmp/out To observe the intermediate Tensor values in the runtime graph, use the --tf_debug flag, e.g.: $saved_model_cli run --dir /tmp/saved_model --tag_set serve - --signature_def serving_default --inputs x:0=/tmp/124.npz,x2=/tmp/123.npy + --signature_def serving_default --inputs 'x=/tmp/124.npz;x2=/tmp/123.npy' --outdir /tmp/out --tf_debug To build this tool from source, run: @@ -367,7 +369,7 @@ def run_saved_model_with_feed_dict(saved_model_dir, tag_set, signature_def_key, output_full_path)) -def preprocess_input_arg_string(inputs_str): +def preprocess_inputs_arg_string(inputs_str): """Parses input arg into dictionary that maps input to file/variable tuple. Parses input string in the format of, for example, @@ -375,74 +377,94 @@ def preprocess_input_arg_string(inputs_str): dictionary looks like {'input_key1': (filename1, variable_name1), 'input_key2': (file2, None)} - , which maps input keys to a tuple of file name and varaible name(None if + , which maps input keys to a tuple of file name and variable name(None if empty). Args: - inputs_str: A string that specified where to load inputs. Each input is - separated by comma. - * If the command line arg for inputs is quoted and contains - whitespace(s), all whitespaces will be ignored. + inputs_str: A string that specified where to load inputs. Inputs are + separated by semicolons. * For each input key: - 'input=filename<[variable_name]>' - * The "[variable_name]" key is optional. Will be set to None if not - specified. + '=' or + '=[]' + * The optional 'variable_name' key will be set to None if not specified. Returns: - A dictionary that maps input keys to a tuple of file name and varaible name. + A dictionary that maps input keys to a tuple of file name and variable name. Raises: - RuntimeError: An error when the given input is in a bad format. + RuntimeError: An error when the given input string is in a bad format. """ input_dict = {} - inputs_raw = inputs_str.split(',') + inputs_raw = inputs_str.split(';') for input_raw in filter(bool, inputs_raw): # skip empty strings - # Remove quotes and whitespaces - input_raw = input_raw.replace('"', '').replace('\'', '').replace(' ', '') - # Format of input=filename[variable_name]' - match = re.match(r'^([\w\-]+)=([\w\-.\/]+)\[([\w\-]+)\]$', input_raw) + match = re.match(r'([^=]+)=([^\[\]]+)\[([^\[\]]+)\]$', input_raw) + if match: - input_dict[match.group(1)] = (match.group(2), match.group(3)) + input_dict[match.group(1)] = match.group(2), match.group(3) else: # Format of input=filename' - match = re.match(r'^([\w\-]+)=([\w\-.\/]+)$', input_raw) + match = re.match(r'([^=]+)=([^\[\]]+)$', input_raw) if match: - input_dict[match.group(1)] = (match.group(2), None) + input_dict[match.group(1)] = match.group(2), None else: raise RuntimeError( - 'Input \"%s\" format is incorrect. Please follow \"--inputs ' - 'input_key=file_name[variable_name]\" or input_key=file_name' % - input_raw) + '--inputs "%s" format is incorrect. Please follow' + '"=", or' + '"=[]"' % input_raw) return input_dict -def load_inputs_from_input_arg_string(inputs_str): - """Parses input arg string and load inputs into a dictionary. +def preprocess_input_exprs_arg_string(input_exprs_str): + """Parses input arg into dictionary that maps input key to python expression. - Parses input string in the format of, for example, - "input1=filename1[variable_name1],input2=filename2" into a - dictionary looks like - {'input1:0': ndarray_saved_as_variable_name1_in_filename1 , - 'input2:0': ndarray_saved_in_filename2} - , which maps input keys to a numpy ndarray loaded from file. See Args section - for more details on inputs format. + Parses input string in the format of 'input_key=' into a + dictionary that maps each input_key to its python expression. + + Args: + input_exprs_str: A string that specifies python expression for input keys. + Each input is separated by semicolon. For each input key: + 'input_key=' + + Returns: + A dictionary that maps input keys to python expressions. + + Raises: + RuntimeError: An error when the given input string is in a bad format. + """ + input_dict = {} + + for input_raw in filter(bool, input_exprs_str.split(';')): + if '=' not in input_exprs_str: + raise RuntimeError('--input_exprs "%s" format is incorrect. Please follow' + '"="' % input_exprs_str) + input_key, expr = input_raw.split('=') + input_dict[input_key] = expr + + return input_dict + + +def load_inputs_from_input_arg_string(inputs_str, input_exprs_str): + """Parses input arg strings and create inputs feed_dict. + + Parses '--inputs' string for inputs to be loaded from file, and parses + '--input_exprs' string for inputs to be evaluated from python expression. Args: inputs_str: A string that specified where to load inputs. Each input is - separated by comma. - * If the command line arg for inputs is quoted and contains - whitespace(s), all whitespaces will be ignored. + separated by semicolon. * For each input key: - 'input=filename[variable_name]' + '=' or + '=[]' + * The optional 'variable_name' key will be set to None if not specified. * File specified by 'filename' will be loaded using numpy.load. Inputs can be loaded from only .npy, .npz or pickle files. * The "[variable_name]" key is optional depending on the input file type as descripted in more details below. When loading from a npy file, which always contains a numpy ndarray, the content will be directly assigned to the specified input tensor. If a - varaible_name is specified, it will be ignored and a warning will be + variable_name is specified, it will be ignored and a warning will be issued. When loading from a npz zip file, user can specify which variable within the zip file to load for the input tensor inside the square brackets. If @@ -453,10 +475,12 @@ def load_inputs_from_input_arg_string(inputs_str): to the specified input tensor, else SavedModel CLI will assume a dictionary is stored in the pickle file and the value corresponding to the variable_name will be used. + input_exprs_str: A string that specified python expressions for inputs. + * In the format of: '='. + * numpy module is available as np. Returns: - A dictionary that maps input tensor keys to a numpy ndarray loaded from - file. + A dictionary that maps input tensor keys to numpy ndarrays. Raises: RuntimeError: An error when a key is specified, but the input file contains @@ -466,13 +490,14 @@ def load_inputs_from_input_arg_string(inputs_str): """ tensor_key_feed_dict = {} - for input_tensor_key, ( - filename, - variable_name) in preprocess_input_arg_string(inputs_str).items(): + inputs = preprocess_inputs_arg_string(inputs_str) + input_exprs = preprocess_input_exprs_arg_string(input_exprs_str) + + for input_tensor_key, (filename, variable_name) in inputs.items(): + data = np.load(filename) + # When a variable_name key is specified for the input file if variable_name: - data = np.load(filename) - # if file contains a single ndarray, ignore the input name if isinstance(data, np.ndarray): warnings.warn( @@ -488,7 +513,6 @@ def load_inputs_from_input_arg_string(inputs_str): (filename, variable_name)) # When no key is specified for the input file. else: - data = np.load(filename) # Check if npz file only contains a single numpy ndarray. if isinstance(data, np.lib.npyio.NpzFile): variable_name_list = data.files @@ -500,6 +524,16 @@ def load_inputs_from_input_arg_string(inputs_str): else: tensor_key_feed_dict[input_tensor_key] = data + # When input is a python expression: + for input_tensor_key, py_expr in input_exprs.items(): + if input_tensor_key in tensor_key_feed_dict: + warnings.warn( + 'input_key %s has been specified with both --inputs and --input_exprs' + ' options. Value in --input_exprs will be used.' % input_tensor_key) + + # ast.literal_eval does not work with numpy expressions + tensor_key_feed_dict[input_tensor_key] = eval(py_expr) # pylint: disable=eval-used + return tensor_key_feed_dict @@ -531,7 +565,8 @@ def run(args): Args: args: A namespace parsed from command line. """ - tensor_key_feed_dict = load_inputs_from_input_arg_string(args.inputs) + tensor_key_feed_dict = load_inputs_from_input_arg_string( + args.inputs, args.input_exprs) run_saved_model_with_feed_dict(args.dir, args.tag_set, args.signature_def, tensor_key_feed_dict, args.outdir, args.overwrite, tf_debug=args.tf_debug) @@ -559,7 +594,7 @@ def create_parser(): 'MetaGraphDef specified by its tag-set:\n' '$saved_model_cli show --dir /tmp/saved_model --tag_set serve\n' 'For a MetaGraphDef with multiple tags in the tag-set, all tags must be ' - 'passed in, separated by \',\':\n' + 'passed in, separated by \';\':\n' '$saved_model_cli show --dir /tmp/saved_model --tag_set serve,gpu\n\n' 'To show all inputs and outputs TensorInfo for a specific' ' SignatureDef specified by the SignatureDef key in a' @@ -601,7 +636,7 @@ def create_parser(): '$saved_model_cli show --dir /tmp/saved_model --tag_set serve' '--signature_def serving_default ' '--inputs input1_key=/tmp/124.npz[x],input2_key=/tmp/123.npy' - '--outdir=/out\n\n' + '--input_exprs \'input3_key=np.ones(2)\' --outdir=/out\n\n' 'For more information about input file format, please see:\n' 'https://www.tensorflow.org/programmers_guide/saved_model_cli\n') parser_run = subparsers.add_parser( @@ -622,10 +657,15 @@ def create_parser(): required=True, metavar='SIGNATURE_DEF_KEY', help='key of SignatureDef to run') - msg = ('inputs in the format of \'input_key=filename[variable_name]\', ' - 'separated by \',\'. Inputs can only be loaded from .npy, .npz or ' - 'pickle files. Please use input keys instead of input names.') - parser_run.add_argument('--inputs', type=str, required=True, help=msg) + msg = ('Loading inputs from files, in the format of \'=,' + ' or \'=[]\', separated by \';\'.' + ' The file format can only be from .npy, .npz or pickle.') + parser_run.add_argument('--inputs', type=str, default='', help=msg) + msg = ('Specifying inputs by python expressions, in the format of' + ' "=\'\'", separated by \';\'. ' + 'numpy module is available as \'np\'. ' + 'Will override duplicate input_keys from --inputs option.') + parser_run.add_argument('--input_exprs', type=str, default='', help=msg) parser_run.add_argument( '--outdir', type=str, @@ -649,6 +689,8 @@ def create_parser(): def main(): parser = create_parser() args = parser.parse_args() + if not args.inputs and not args.input_exprs: + args.error('At least one of --inputs and --input_exprs is required') args.func(args) diff --git a/tensorflow/python/tools/saved_model_cli_test.py b/tensorflow/python/tools/saved_model_cli_test.py index a321ada2dd5..1c7a44b3ebd 100644 --- a/tensorflow/python/tools/saved_model_cli_test.py +++ b/tensorflow/python/tools/saved_model_cli_test.py @@ -201,28 +201,37 @@ Method name is: tensorflow/serving/predict""" self.assertEqual(err.getvalue().strip(), '') def testInputPreProcessFormats(self): - input_str = 'input1=/path/file.txt[ab3], input2=file2,,' - input_dict = saved_model_cli.preprocess_input_arg_string(input_str) + input_str = 'input1=/path/file.txt[ab3];input2=file2' + input_expr_str = 'input3=np.zeros([2,2]);input4=[4,5]' + input_dict = saved_model_cli.preprocess_inputs_arg_string(input_str) + input_expr_dict = saved_model_cli.preprocess_input_exprs_arg_string( + input_expr_str) self.assertTrue(input_dict['input1'] == ('/path/file.txt', 'ab3')) self.assertTrue(input_dict['input2'] == ('file2', None)) - - def testInputPreProcessQuoteAndWhitespace(self): - input_str = '\' input1 = file[v_1]\', input2=file ["sd"] ' - input_dict = saved_model_cli.preprocess_input_arg_string(input_str) - self.assertTrue(input_dict['input1'] == ('file', 'v_1')) - self.assertTrue(input_dict['input2'] == ('file', 'sd')) + self.assertTrue(input_expr_dict['input3'] == 'np.zeros([2,2])') + self.assertTrue(input_expr_dict['input4'] == '[4,5]') self.assertTrue(len(input_dict) == 2) + self.assertTrue(len(input_expr_dict) == 2) + + def testInputPreProcessFileNames(self): + input_str = (r'inputx=C:\Program Files\data.npz[v:0];' + r'input:0=c:\PROGRA~1\data.npy') + input_dict = saved_model_cli.preprocess_inputs_arg_string(input_str) + print(input_dict) + self.assertTrue(input_dict['inputx'] == (r'C:\Program Files\data.npz', + 'v:0')) + self.assertTrue(input_dict['input:0'] == (r'c:\PROGRA~1\data.npy', None)) def testInputPreProcessErrorBadFormat(self): input_str = 'inputx=file[[v1]v2' with self.assertRaises(RuntimeError): - saved_model_cli.preprocess_input_arg_string(input_str) + saved_model_cli.preprocess_inputs_arg_string(input_str) input_str = 'inputx:file' with self.assertRaises(RuntimeError): - saved_model_cli.preprocess_input_arg_string(input_str) - input_str = 'inputx=file(v_1)' + saved_model_cli.preprocess_inputs_arg_string(input_str) + input_str = 'inputx:np.zeros((5))' with self.assertRaises(RuntimeError): - saved_model_cli.preprocess_input_arg_string(input_str) + saved_model_cli.preprocess_input_exprs_arg_string(input_str) def testInputParserNPY(self): x0 = np.array([[1], [2]]) @@ -231,8 +240,8 @@ Method name is: tensorflow/serving/predict""" input1_path = os.path.join(test.get_temp_dir(), 'input1.npy') np.save(input0_path, x0) np.save(input1_path, x1) - input_str = 'x0=' + input0_path + '[x0],x1=' + input1_path - feed_dict = saved_model_cli.load_inputs_from_input_arg_string(input_str) + input_str = 'x0=' + input0_path + '[x0];x1=' + input1_path + feed_dict = saved_model_cli.load_inputs_from_input_arg_string(input_str, '') self.assertTrue(np.all(feed_dict['x0'] == x0)) self.assertTrue(np.all(feed_dict['x1'] == x1)) @@ -240,8 +249,8 @@ Method name is: tensorflow/serving/predict""" x0 = np.array([[1], [2]]) input_path = os.path.join(test.get_temp_dir(), 'input.npz') np.savez(input_path, a=x0) - input_str = 'x=' + input_path + '[a],y=' + input_path - feed_dict = saved_model_cli.load_inputs_from_input_arg_string(input_str) + input_str = 'x=' + input_path + '[a];y=' + input_path + feed_dict = saved_model_cli.load_inputs_from_input_arg_string(input_str, '') self.assertTrue(np.all(feed_dict['x'] == x0)) self.assertTrue(np.all(feed_dict['y'] == x0)) @@ -258,25 +267,50 @@ Method name is: tensorflow/serving/predict""" pickle.dump(pkl1, f) with open(input_path2, 'wb') as f: pickle.dump(pkl2, f) - input_str = 'x=' + input_path0 + '[b],y=' + input_path1 + '[c],' + input_str = 'x=' + input_path0 + '[b];y=' + input_path1 + '[c];' input_str += 'z=' + input_path2 - feed_dict = saved_model_cli.load_inputs_from_input_arg_string(input_str) + feed_dict = saved_model_cli.load_inputs_from_input_arg_string(input_str, '') self.assertTrue(np.all(feed_dict['x'] == pkl0['b'])) self.assertTrue(np.all(feed_dict['y'] == pkl1)) self.assertTrue(np.all(feed_dict['z'] == pkl2)) - def testInputParserQuoteAndWhitespace(self): + def testInputParserPythonExpression(self): + x1 = np.ones([2, 10]) + x2 = np.array([[1], [2], [3]]) + x3 = np.mgrid[0:5, 0:5] + x4 = [[3], [4]] + input_expr_str = ('x1=np.ones([2,10]);x2=np.array([[1],[2],[3]]);' + 'x3=np.mgrid[0:5,0:5];x4=[[3],[4]]') + feed_dict = saved_model_cli.load_inputs_from_input_arg_string( + '', input_expr_str) + self.assertTrue(np.all(feed_dict['x1'] == x1)) + self.assertTrue(np.all(feed_dict['x2'] == x2)) + self.assertTrue(np.all(feed_dict['x3'] == x3)) + self.assertTrue(np.all(feed_dict['x4'] == x4)) + + def testInputParserBoth(self): x0 = np.array([[1], [2]]) - x1 = np.array(range(6)).reshape(2, 3) - input0_path = os.path.join(test.get_temp_dir(), 'input0.npy') - input1_path = os.path.join(test.get_temp_dir(), 'input1.npy') - np.save(input0_path, x0) - np.save(input1_path, x1) - input_str = '"x0=' + input0_path + '[x0] , x1 = ' + input1_path + '"' - feed_dict = saved_model_cli.load_inputs_from_input_arg_string(input_str) + input_path = os.path.join(test.get_temp_dir(), 'input.npz') + np.savez(input_path, a=x0) + x1 = np.ones([2, 10]) + input_str = 'x0=' + input_path + '[a]' + input_expr_str = 'x1=np.ones([2,10])' + feed_dict = saved_model_cli.load_inputs_from_input_arg_string( + input_str, input_expr_str) self.assertTrue(np.all(feed_dict['x0'] == x0)) self.assertTrue(np.all(feed_dict['x1'] == x1)) + def testInputParserBothDuplicate(self): + x0 = np.array([[1], [2]]) + input_path = os.path.join(test.get_temp_dir(), 'input.npz') + np.savez(input_path, a=x0) + x1 = np.ones([2, 10]) + input_str = 'x0=' + input_path + '[a]' + input_expr_str = 'x0=np.ones([2,10])' + feed_dict = saved_model_cli.load_inputs_from_input_arg_string( + input_str, input_expr_str) + self.assertTrue(np.all(feed_dict['x0'] == x1)) + def testInputParserErrorNoName(self): x0 = np.array([[1], [2]]) x1 = np.array(range(5)) @@ -284,7 +318,7 @@ Method name is: tensorflow/serving/predict""" np.savez(input_path, a=x0, b=x1) input_str = 'x=' + input_path with self.assertRaises(RuntimeError): - saved_model_cli.load_inputs_from_input_arg_string(input_str) + saved_model_cli.load_inputs_from_input_arg_string(input_str, '') def testInputParserErrorWrongName(self): x0 = np.array([[1], [2]]) @@ -293,7 +327,7 @@ Method name is: tensorflow/serving/predict""" np.savez(input_path, a=x0, b=x1) input_str = 'x=' + input_path + '[c]' with self.assertRaises(RuntimeError): - saved_model_cli.load_inputs_from_input_arg_string(input_str) + saved_model_cli.load_inputs_from_input_arg_string(input_str, '') def testRunCommandExistingOutdir(self): self.parser = saved_model_cli.create_parser() diff --git a/tensorflow/python/training/supervisor.py b/tensorflow/python/training/supervisor.py index 93e64b4ab0b..277c11386dd 100644 --- a/tensorflow/python/training/supervisor.py +++ b/tensorflow/python/training/supervisor.py @@ -994,7 +994,7 @@ class SVSummaryThread(coordinator.LooperThread): summary_strs = self._sess.run(self._sv.summary_op) global_step = None if self._sv.summary_writer: - logging.info("Recording summary at step %d.", global_step) + logging.info("Recording summary at step %s.", global_step) self._sv.summary_writer.add_summary(summary_strs, global_step) diff --git a/tensorflow/stream_executor/cuda/cuda_driver.cc b/tensorflow/stream_executor/cuda/cuda_driver.cc index e441321fc86..9b8e23babd6 100644 --- a/tensorflow/stream_executor/cuda/cuda_driver.cc +++ b/tensorflow/stream_executor/cuda/cuda_driver.cc @@ -227,7 +227,7 @@ string ToString(CUresult result) { // created by StreamExecutor (to ensure that the CUDA runtime didn't create a // context behind our backs). CUcontext CurrentContext() { - CUcontext current = CUDADriver::CurrentContextOrDie(); + CUcontext current = CUDADriver::CurrentContextOrDie(); if (current != nullptr && !CreatedContexts::Has(current)) { LOG(FATAL) << "current context was not created by the StreamExecutor " "cuda_driver API: " @@ -480,27 +480,56 @@ bool DeviceOptionsToContextFlags(DeviceOptions device_options, int *flags) { CUdevice device, DeviceOptions device_options, CudaContext** context) { *context = nullptr; - CUcontext former_context = CurrentContext(); - if (former_context != nullptr) { - LOG(WARNING) << "creating context when one is currently active; existing: " - << former_context; - } - int flags = 0; if (!DeviceOptionsToContextFlags(device_options, &flags)) { LOG(WARNING) << "could not convert all device options into context flags"; } CUresult res; + CUcontext former_context; CUcontext new_context; { // TODO(leary) Need to see if NVIDIA can expunge the leakiness in their // context creation: see http://b/13248943 #if CUDA_VERSION >= 7000 - res = cuDevicePrimaryCtxSetFlags(device, flags); + { + unsigned int former_primary_context_flags; + int former_primary_context_is_active; + CHECK_EQ(CUDA_SUCCESS, + cuDevicePrimaryCtxGetState(device, &former_primary_context_flags, + &former_primary_context_is_active)); + if (former_primary_context_flags != flags) { + if (former_primary_context_is_active) { + LOG(ERROR) + << "The primary context is active and has a different flag set (" + << former_primary_context_flags << ") than the desired flag set (" + << flags << ")."; + } else { + CHECK_EQ(CUDA_SUCCESS, cuDevicePrimaryCtxSetFlags(device, flags)); + } + } + } + + former_context = CUDADriver::CurrentContextOrDie(); res = cuDevicePrimaryCtxRetain(&new_context, device); + if (former_context != nullptr) { + if (former_context == new_context) { + VLOG(2) << "The primary context " << former_context + << " exists before initializing the StreamExecutor."; + } else { + LOG(WARNING) << "A non-primary context " << former_context + << " exists before initializing the StreamExecutor. We " + "haven't verified StreamExecutor works with that."; + } + } #else + former_context = CurrentContext(); + if (former_context != nullptr) { + LOG(WARNING) + << "creating context when one is currently active; existing: " + << former_context; + } res = cuCtxCreate(&new_context, flags, device); #endif } diff --git a/tensorflow/tools/benchmark/benchmark_model.cc b/tensorflow/tools/benchmark/benchmark_model.cc index c2e41e49187..8c480f8d9db 100644 --- a/tensorflow/tools/benchmark/benchmark_model.cc +++ b/tensorflow/tools/benchmark/benchmark_model.cc @@ -334,8 +334,8 @@ int Main(int argc, char** argv) { Flag("show_memory", &show_memory, "whether to list stats by memory used"), Flag("memory_limit", &memory_limit, "how many items to show by memory used"), - Flag("show_type", &show_time, "whether to list stats by op type"), - Flag("show_summary", &show_time, + Flag("show_type", &show_type, "whether to list stats by op type"), + Flag("show_summary", &show_summary, "whether to show a summary of the stats"), Flag("show_flops", &show_flops, "whether to estimate the model's FLOPs"), Flag("warmup_runs", &warmup_runs, "how many runs to initialize model"), diff --git a/tensorflow/tools/dist_test/server/BUILD b/tensorflow/tools/dist_test/server/BUILD index 9d008ec9ce5..865af8dd7b2 100644 --- a/tensorflow/tools/dist_test/server/BUILD +++ b/tensorflow/tools/dist_test/server/BUILD @@ -9,7 +9,7 @@ exports_files(["LICENSE"]) load("//tensorflow:tensorflow.bzl", "py_test") -py_library( +py_binary( name = "grpc_tensorflow_server", srcs = [ "grpc_tensorflow_server.py", diff --git a/tensorflow/tools/dist_test/server/grpc_tensorflow_server.py b/tensorflow/tools/dist_test/server/grpc_tensorflow_server.py old mode 100755 new mode 100644 index 2d774577b6d..bd6700a0b1f --- a/tensorflow/tools/dist_test/server/grpc_tensorflow_server.py +++ b/tensorflow/tools/dist_test/server/grpc_tensorflow_server.py @@ -36,6 +36,7 @@ from __future__ import print_function import argparse import sys +from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import tensorflow_server_pb2 from tensorflow.python.platform import app from tensorflow.python.training import server_lib @@ -103,8 +104,11 @@ def main(unused_args): raise ValueError("Invalid task_id: %d" % FLAGS.task_id) server_def.task_index = FLAGS.task_id + config = config_pb2.ConfigProto(gpu_options=config_pb2.GPUOptions( + per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)) + # Create GRPC Server instance - server = server_lib.Server(server_def) + server = server_lib.Server(server_def, config=config) # join() is blocking, unlike start() server.join() @@ -137,6 +141,11 @@ if __name__ == "__main__": default=0, help="Task index, e.g., 0" ) + parser.add_argument( + "--gpu_memory_fraction", + type=float, + default=1.0, + help="Fraction of GPU memory allocated",) parser.add_argument( "--verbose", type="bool", @@ -145,5 +154,6 @@ if __name__ == "__main__": default=False, help="Verbose mode" ) + FLAGS, unparsed = parser.parse_known_args() app.run(main=main, argv=[sys.argv[0]] + unparsed) diff --git a/third_party/ortools.BUILD b/third_party/ortools.BUILD index 1ebc8aa0be8..61191e3d271 100644 --- a/third_party/ortools.BUILD +++ b/third_party/ortools.BUILD @@ -7,10 +7,7 @@ exports_files(["LICENSE-2.0.txt"]) native.cc_library( name = "linear_solver_glop", deps = [ - "@ortools_archive//linear_solver:linear_solver_glop", - ], + "@ortools_archive//linear_solver:linear_solver_glop", + ], visibility = ["//visibility:public"], ) - - - diff --git a/tools/tf_env_collect.sh b/tools/tf_env_collect.sh index f1260316614..abeebeadea4 100755 --- a/tools/tf_env_collect.sh +++ b/tools/tf_env_collect.sh @@ -1,4 +1,18 @@ #!/usr/bin/env bash +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== set -u # Check for undefined variables