diff --git a/tensorflow/contrib/learn/python/learn/README.md b/tensorflow/contrib/learn/python/learn/README.md index f474eb4e541..2016f53a8a2 100644 --- a/tensorflow/contrib/learn/python/learn/README.md +++ b/tensorflow/contrib/learn/python/learn/README.md @@ -59,8 +59,8 @@ Simple linear classification: from sklearn import datasets, metrics iris = datasets.load_iris() -classifier = learn.TensorFlowLinearClassifier(n_classes=3) -classifier.fit(iris.data, iris.target) +classifier = learn.LinearClassifier(n_classes=3) +classifier.fit(iris.data, iris.target, steps=200, batch_size=32) score = metrics.accuracy_score(iris.target, classifier.predict(iris.data)) print("Accuracy: %f" % score) ``` @@ -74,8 +74,8 @@ from sklearn import datasets, metrics, preprocessing boston = datasets.load_boston() x = preprocessing.StandardScaler().fit_transform(boston.data) -regressor = learn.TensorFlowLinearRegressor() -regressor.fit(x, boston.target) +regressor = learn.LinearRegressor() +regressor.fit(x, boston.target, steps=200, batch_size=32) score = metrics.mean_squared_error(regressor.predict(x), boston.target) print ("MSE: %f" % score) ``` @@ -88,15 +88,15 @@ Example of 3 layer network with 10, 20 and 10 hidden units respectively: from sklearn import datasets, metrics iris = datasets.load_iris() -classifier = learn.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3) -classifier.fit(iris.data, iris.target) +classifier = learn.DNNClassifier(hidden_units=[10, 20, 10], n_classes=3) +classifier.fit(iris.data, iris.target, steps=200, batch_size=32) score = metrics.accuracy_score(iris.target, classifier.predict(iris.data)) print("Accuracy: %f" % score) ``` ## Custom model -Example of how to pass a custom model to the TensorFlowEstimator: +Example of how to pass a custom model to the Estimator: ```python from sklearn import datasets, metrics @@ -108,7 +108,7 @@ def my_model(x, y): layers = learn.ops.dnn(x, [10, 20, 10], dropout=0.5) return learn.models.logistic_regression(layers, y) -classifier = learn.TensorFlowEstimator(model_fn=my_model, n_classes=3) +classifier = learn.Estimator(model_fn=my_model, n_classes=3) classifier.fit(iris.data, iris.target) score = metrics.accuracy_score(iris.target, classifier.predict(iris.data)) print("Accuracy: %f" % score) @@ -116,16 +116,16 @@ print("Accuracy: %f" % score) ## Saving / Restoring models -Each estimator has a ``save`` method which takes folder path where all model information will be saved. For restoring you can just call ``learn.TensorFlowEstimator.restore(path)`` and it will return object of your class. +Each estimator has a ``save`` method which takes folder path where all model information will be saved. For restoring you can just call ``learn.Estimator.restore(path)`` and it will return object of your class. Some example code: ```python -classifier = learn.TensorFlowLinearRegression() +classifier = learn.LinearRegressor() classifier.fit(...) classifier.save('/tmp/tf_examples/my_model_1/') -new_classifier = TensorFlowEstimator.restore('/tmp/tf_examples/my_model_2') +new_classifier = Estimator.restore('/tmp/tf_examples/my_model_2') new_classifier.predict(...) ``` @@ -134,7 +134,7 @@ new_classifier.predict(...) To get nice visualizations and summaries you can use ``logdir`` parameter on ``fit``. It will start writing summaries for ``loss`` and histograms for variables in your model. You can also add custom summaries in your custom model function by calling ``tf.summary`` and passing Tensors to report. ```python -classifier = learn.TensorFlowLinearRegression() +classifier = learn.LinearRegressor() classifier.fit(x, y, logdir='/tmp/tf_examples/my_model_1/') ```