PR #36468: Add block cache for low level table library

Imported from GitHub PR https://github.com/tensorflow/tensorflow/pull/36468

This is part of a patch series aiming to improve the performance of on-disk dataset.cache() (CacheDatasetV2).

Currently CacheDataset uses core/util/tensor_bundle to cache dataset elements on disks. It uses sorted string table (SST) to index dataset elements. Unlike checkpoints which do not have a great number of tensors, caching a large dataset may incur a greater number of tensors as well as index blocks.

If the index block is present in an in-memory LRU block cache, fetching a dataset element only needs 1 round trip instead of 2. This is particularly useful when CacheDataset are read from remote file system at a higher latency such as HDFS and GCS.

Almost all code are imported from the LevelDB project, in particular the hash function to shard LRU cache. Currently using Hash32 in core/lib/hash fails the EvictionPolicy test.

I only make 2 modifications to the original cache:

1. Alias leveldb::Slice to tensorflow::StringPiece
2. Switch to tensorflow::mutex for all mutexes.

Ping @jsimsa to review.
Copybara import of the project:

--
4c28247f5f3f6fcd12e82757befd7d90bf413e2c by Bairen Yi <yibairen.byron@bytedance.com>:

Add block cache for low level table library

This is part of a patch series aiming to improve the
performance of on-disk dataset.cache() (CacheDatasetV2).

Currently CacheDataset uses core/util/tensor_bundle to cache
dataset elements on disks. It uses sorted string table (SST)
to index dataset elements. Unlike checkpoints which do not
have a great number of tensors, caching a large dataset may
incur a greater number of tensors as well as index blocks.

If the index block is present in an in-memory LRU block cache,
fetching a dataset element only needs 1 round trip instead of 2.
This is particularly useful when CacheDataset are read from
remote file system at a higher latency such as HDFS and GCS.

Almost all code are imported from the LevelDB project,
in particular the hash function to shard LRU cache. Currently
using Hash32 in core/lib/hash fails the EvictionPolicy test.

I only make 2 modifications to the original cache:

1. Alias leveldb::Slice to tensorflow::StringPiece, which
   transitively aliases
2. Switch to tensorflow::mutex for all mutexes.

Signed-off-by: Bairen Yi <yibairen.byron@bytedance.com>

--
b69b43382ea7692ffd60ad50b118ac0646ceecc8 by Bairen Yi <yibairen.byron@bytedance.com>:

tensor_bundle: Enable cache for metadata table

The index cache is by default disabled unless one set
the TF_TABLE_INDEX_CACHE_SIZE_IN_MB environment variable.

Signed-off-by: Bairen Yi <yibairen.byron@bytedance.com>
PiperOrigin-RevId: 297125962
Change-Id: Ibfec97b19f337d40f5726f656ee9c6487ce552d0
This commit is contained in:
A. Unique TensorFlower 2020-02-25 08:48:40 -08:00 committed by TensorFlower Gardener
parent cf608db45c
commit bb5d0144b9
8 changed files with 903 additions and 15 deletions

View File

@ -208,6 +208,21 @@ cc_library(
alwayslink = True,
)
cc_library(
name = "cache",
srcs = [
"cache.cc",
],
hdrs = [
"cache.h",
],
deps = [
"//tensorflow/core/platform:coding",
"//tensorflow/core/platform:mutex",
"//tensorflow/core/platform:stringpiece",
],
)
cc_library(
name = "table",
srcs = [
@ -220,6 +235,7 @@ cc_library(
],
deps = [
":block",
":cache",
":iterator",
":table_options",
"//tensorflow/core/lib/core:coding",
@ -290,6 +306,8 @@ filegroup(
"block_builder.h",
"buffered_inputstream.cc",
"buffered_inputstream.h",
"cache.cc",
"cache.h",
"compression.cc",
"compression.h",
"format.cc",
@ -352,6 +370,7 @@ filegroup(
name = "legacy_lib_io_all_tests",
srcs = [
"buffered_inputstream_test.cc",
"cache_test.cc",
"inputbuffer_test.cc",
"inputstream_interface_test.cc",
"path_test.cc",
@ -369,6 +388,7 @@ filegroup(
name = "legacy_lib_io_headers",
srcs = [
"buffered_inputstream.h",
"cache.h",
"compression.h",
"inputstream_interface.h",
"path.h",

View File

@ -0,0 +1,450 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/core/lib/io/cache.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "tensorflow/core/platform/coding.h"
#include "tensorflow/core/platform/mutex.h"
namespace tensorflow {
namespace table {
Cache::~Cache() {}
namespace {
// LRU cache implementation
//
// Cache entries have an "in_cache" boolean indicating whether the cache has a
// reference on the entry. The only ways that this can become false without the
// entry being passed to its "deleter" are via Erase(), via Insert() when
// an element with a duplicate key is inserted, or on destruction of the cache.
//
// The cache keeps two linked lists of items in the cache. All items in the
// cache are in one list or the other, and never both. Items still referenced
// by clients but erased from the cache are in neither list. The lists are:
// - in-use: contains the items currently referenced by clients, in no
// particular order. (This list is used for invariant checking. If we
// removed the check, elements that would otherwise be on this list could be
// left as disconnected singleton lists.)
// - LRU: contains the items not currently referenced by clients, in LRU order
// Elements are moved between these lists by the Ref() and Unref() methods,
// when they detect an element in the cache acquiring or losing its only
// external reference.
// An entry is a variable length heap-allocated structure. Entries
// are kept in a circular doubly linked list ordered by access time.
struct LRUHandle {
void* value;
void (*deleter)(const Slice&, void* value);
LRUHandle* next_hash;
LRUHandle* next;
LRUHandle* prev;
size_t charge; // TODO(opt): Only allow uint32_t?
size_t key_length;
bool in_cache; // Whether entry is in the cache.
uint32_t refs; // References, including cache reference, if present.
uint32_t hash; // Hash of key(); used for fast sharding and comparisons
char key_data[1]; // Beginning of key
Slice key() const {
// next_ is only equal to this if the LRU handle is the list head of an
// empty list. List heads never have meaningful keys.
assert(next != this);
return Slice(key_data, key_length);
}
};
// We provide our own simple hash table since it removes a whole bunch
// of porting hacks and is also faster than some of the built-in hash
// table implementations in some of the compiler/runtime combinations
// we have tested. E.g., readrandom speeds up by ~5% over the g++
// 4.4.3's builtin hashtable.
class HandleTable {
public:
HandleTable() : length_(0), elems_(0), list_(nullptr) { Resize(); }
~HandleTable() { delete[] list_; }
LRUHandle* Lookup(const Slice& key, uint32_t hash) {
return *FindPointer(key, hash);
}
LRUHandle* Insert(LRUHandle* h) {
LRUHandle** ptr = FindPointer(h->key(), h->hash);
LRUHandle* old = *ptr;
h->next_hash = (old == nullptr ? nullptr : old->next_hash);
*ptr = h;
if (old == nullptr) {
++elems_;
if (elems_ > length_) {
// Since each cache entry is fairly large, we aim for a small
// average linked list length (<= 1).
Resize();
}
}
return old;
}
LRUHandle* Remove(const Slice& key, uint32_t hash) {
LRUHandle** ptr = FindPointer(key, hash);
LRUHandle* result = *ptr;
if (result != nullptr) {
*ptr = result->next_hash;
--elems_;
}
return result;
}
private:
// The table consists of an array of buckets where each bucket is
// a linked list of cache entries that hash into the bucket.
uint32_t length_;
uint32_t elems_;
LRUHandle** list_;
// Return a pointer to slot that points to a cache entry that
// matches key/hash. If there is no such cache entry, return a
// pointer to the trailing slot in the corresponding linked list.
LRUHandle** FindPointer(const Slice& key, uint32_t hash) {
LRUHandle** ptr = &list_[hash & (length_ - 1)];
while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) {
ptr = &(*ptr)->next_hash;
}
return ptr;
}
void Resize() {
uint32_t new_length = 4;
while (new_length < elems_) {
new_length *= 2;
}
LRUHandle** new_list = new LRUHandle*[new_length];
memset(new_list, 0, sizeof(new_list[0]) * new_length);
uint32_t count = 0;
for (uint32_t i = 0; i < length_; i++) {
LRUHandle* h = list_[i];
while (h != nullptr) {
LRUHandle* next = h->next_hash;
uint32_t hash = h->hash;
LRUHandle** ptr = &new_list[hash & (new_length - 1)];
h->next_hash = *ptr;
*ptr = h;
h = next;
count++;
}
}
assert(elems_ == count);
delete[] list_;
list_ = new_list;
length_ = new_length;
}
};
// A single shard of sharded cache.
class LRUCache {
public:
LRUCache();
~LRUCache();
// Separate from constructor so caller can easily make an array of LRUCache
void SetCapacity(size_t capacity) { capacity_ = capacity; }
// Like Cache methods, but with an extra "hash" parameter.
Cache::Handle* Insert(const Slice& key, uint32_t hash, void* value,
size_t charge,
void (*deleter)(const Slice& key, void* value));
Cache::Handle* Lookup(const Slice& key, uint32_t hash);
void Release(Cache::Handle* handle);
void Erase(const Slice& key, uint32_t hash);
void Prune();
size_t TotalCharge() const {
mutex_lock l(mutex_);
return usage_;
}
private:
void LRU_Remove(LRUHandle* e);
void LRU_Append(LRUHandle* list, LRUHandle* e);
void Ref(LRUHandle* e);
void Unref(LRUHandle* e);
bool FinishErase(LRUHandle* e) EXCLUSIVE_LOCKS_REQUIRED(mutex_);
// Initialized before use.
size_t capacity_;
// mutex_ protects the following state.
mutable mutex mutex_;
size_t usage_ GUARDED_BY(mutex_);
// Dummy head of LRU list.
// lru.prev is newest entry, lru.next is oldest entry.
// Entries have refs==1 and in_cache==true.
LRUHandle lru_ GUARDED_BY(mutex_);
// Dummy head of in-use list.
// Entries are in use by clients, and have refs >= 2 and in_cache==true.
LRUHandle in_use_ GUARDED_BY(mutex_);
HandleTable table_ GUARDED_BY(mutex_);
};
LRUCache::LRUCache() : capacity_(0), usage_(0) {
// Make empty circular linked lists.
lru_.next = &lru_;
lru_.prev = &lru_;
in_use_.next = &in_use_;
in_use_.prev = &in_use_;
}
LRUCache::~LRUCache() {
assert(in_use_.next == &in_use_); // Error if caller has an unreleased handle
for (LRUHandle* e = lru_.next; e != &lru_;) {
LRUHandle* next = e->next;
assert(e->in_cache);
e->in_cache = false;
assert(e->refs == 1); // Invariant of lru_ list.
Unref(e);
e = next;
}
}
void LRUCache::Ref(LRUHandle* e) {
if (e->refs == 1 && e->in_cache) { // If on lru_ list, move to in_use_ list.
LRU_Remove(e);
LRU_Append(&in_use_, e);
}
e->refs++;
}
void LRUCache::Unref(LRUHandle* e) {
assert(e->refs > 0);
e->refs--;
if (e->refs == 0) { // Deallocate.
assert(!e->in_cache);
(*e->deleter)(e->key(), e->value);
free(e);
} else if (e->in_cache && e->refs == 1) {
// No longer in use; move to lru_ list.
LRU_Remove(e);
LRU_Append(&lru_, e);
}
}
void LRUCache::LRU_Remove(LRUHandle* e) {
e->next->prev = e->prev;
e->prev->next = e->next;
}
void LRUCache::LRU_Append(LRUHandle* list, LRUHandle* e) {
// Make "e" newest entry by inserting just before *list
e->next = list;
e->prev = list->prev;
e->prev->next = e;
e->next->prev = e;
}
Cache::Handle* LRUCache::Lookup(const Slice& key, uint32_t hash) {
mutex_lock l(mutex_);
LRUHandle* e = table_.Lookup(key, hash);
if (e != nullptr) {
Ref(e);
}
return reinterpret_cast<Cache::Handle*>(e);
}
void LRUCache::Release(Cache::Handle* handle) {
mutex_lock l(mutex_);
Unref(reinterpret_cast<LRUHandle*>(handle));
}
Cache::Handle* LRUCache::Insert(const Slice& key, uint32_t hash, void* value,
size_t charge,
void (*deleter)(const Slice& key,
void* value)) {
mutex_lock l(mutex_);
LRUHandle* e =
reinterpret_cast<LRUHandle*>(malloc(sizeof(LRUHandle) - 1 + key.size()));
e->value = value;
e->deleter = deleter;
e->charge = charge;
e->key_length = key.size();
e->hash = hash;
e->in_cache = false;
e->refs = 1; // for the returned handle.
memcpy(e->key_data, key.data(), key.size());
if (capacity_ > 0) {
e->refs++; // for the cache's reference.
e->in_cache = true;
LRU_Append(&in_use_, e);
usage_ += charge;
FinishErase(table_.Insert(e));
} else { // don't cache. (capacity_==0 is supported and turns off caching.)
// next is read by key() in an assert, so it must be initialized
e->next = nullptr;
}
while (usage_ > capacity_ && lru_.next != &lru_) {
LRUHandle* old = lru_.next;
assert(old->refs == 1);
bool erased = FinishErase(table_.Remove(old->key(), old->hash));
if (!erased) { // to avoid unused variable when compiled NDEBUG
assert(erased);
}
}
return reinterpret_cast<Cache::Handle*>(e);
}
// If e != nullptr, finish removing *e from the cache; it has already been
// removed from the hash table. Return whether e != nullptr.
bool LRUCache::FinishErase(LRUHandle* e) {
if (e != nullptr) {
assert(e->in_cache);
LRU_Remove(e);
e->in_cache = false;
usage_ -= e->charge;
Unref(e);
}
return e != nullptr;
}
void LRUCache::Erase(const Slice& key, uint32_t hash) {
mutex_lock l(mutex_);
FinishErase(table_.Remove(key, hash));
}
void LRUCache::Prune() {
mutex_lock l(mutex_);
while (lru_.next != &lru_) {
LRUHandle* e = lru_.next;
assert(e->refs == 1);
bool erased = FinishErase(table_.Remove(e->key(), e->hash));
if (!erased) { // to avoid unused variable when compiled NDEBUG
assert(erased);
}
}
}
static const int kNumShardBits = 4;
static const int kNumShards = 1 << kNumShardBits;
class ShardedLRUCache : public Cache {
private:
LRUCache shard_[kNumShards];
mutex id_mutex_;
uint64_t last_id_;
static inline uint32_t HashSlice(const Slice& s) {
return Hash(s.data(), s.size(), 0);
}
static uint32_t Shard(uint32_t hash) { return hash >> (32 - kNumShardBits); }
public:
explicit ShardedLRUCache(size_t capacity) : last_id_(0) {
const size_t per_shard = (capacity + (kNumShards - 1)) / kNumShards;
for (int s = 0; s < kNumShards; s++) {
shard_[s].SetCapacity(per_shard);
}
}
~ShardedLRUCache() override {}
Handle* Insert(const Slice& key, void* value, size_t charge,
void (*deleter)(const Slice& key, void* value)) override {
const uint32_t hash = HashSlice(key);
return shard_[Shard(hash)].Insert(key, hash, value, charge, deleter);
}
Handle* Lookup(const Slice& key) override {
const uint32_t hash = HashSlice(key);
return shard_[Shard(hash)].Lookup(key, hash);
}
void Release(Handle* handle) override {
LRUHandle* h = reinterpret_cast<LRUHandle*>(handle);
shard_[Shard(h->hash)].Release(handle);
}
void Erase(const Slice& key) override {
const uint32_t hash = HashSlice(key);
shard_[Shard(hash)].Erase(key, hash);
}
void* Value(Handle* handle) override {
return reinterpret_cast<LRUHandle*>(handle)->value;
}
uint64_t NewId() override {
mutex_lock l(id_mutex_);
return ++(last_id_);
}
void Prune() override {
for (int s = 0; s < kNumShards; s++) {
shard_[s].Prune();
}
}
size_t TotalCharge() const override {
size_t total = 0;
for (int s = 0; s < kNumShards; s++) {
total += shard_[s].TotalCharge();
}
return total;
}
private:
// TODO(byronyi): Figure out why Hash32 fails EvictionPolicy test.
static uint32_t Hash(const char* data, size_t n, uint32_t seed) {
// Similar to murmur hash
const uint32_t m = 0xc6a4a793;
const uint32_t r = 24;
const char* limit = data + n;
uint32_t h = seed ^ (n * m);
// Pick up four bytes at a time
while (data + 4 <= limit) {
uint32_t w = core::DecodeFixed32(data);
data += 4;
h += w;
h *= m;
h ^= (h >> 16);
}
// Pick up remaining bytes
switch (limit - data) {
case 3:
h += static_cast<uint8_t>(data[2]) << 16;
ABSL_FALLTHROUGH_INTENDED;
case 2:
h += static_cast<uint8_t>(data[1]) << 8;
ABSL_FALLTHROUGH_INTENDED;
case 1:
h += static_cast<uint8_t>(data[0]);
h *= m;
h ^= (h >> r);
break;
}
return h;
}
};
} // end anonymous namespace
Cache* NewLRUCache(size_t capacity) { return new ShardedLRUCache(capacity); }
} // namespace table
} // namespace tensorflow

View File

@ -0,0 +1,125 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_CORE_LIB_IO_CACHE_H_
#define TENSORFLOW_CORE_LIB_IO_CACHE_H_
#include "tensorflow/core/platform/stringpiece.h"
// A Cache is an interface that maps keys to values. It has internal
// synchronization and may be safely accessed concurrently from
// multiple threads. It may automatically evict entries to make room
// for new entries. Values have a specified charge against the cache
// capacity. For example, a cache where the values are variable
// length strings, may use the length of the string as the charge for
// the string.
//
// A builtin cache implementation with a least-recently-used eviction
// policy is provided. Clients may use their own implementations if
// they want something more sophisticated (like scan-resistance, a
// custom eviction policy, variable cache sizing, etc.)
namespace tensorflow {
using Slice = StringPiece;
namespace table {
class Cache;
// Create a new cache with a fixed size capacity. This implementation
// of Cache uses a least-recently-used eviction policy.
Cache* NewLRUCache(size_t capacity);
class Cache {
public:
Cache() = default;
Cache(const Cache&) = delete;
Cache& operator=(const Cache&) = delete;
// Destroys all existing entries by calling the "deleter"
// function that was passed to the constructor.
virtual ~Cache();
// Opaque handle to an entry stored in the cache.
struct Handle {};
// Insert a mapping from key->value into the cache and assign it
// the specified charge against the total cache capacity.
//
// Returns a handle that corresponds to the mapping. The caller
// must call this->Release(handle) when the returned mapping is no
// longer needed.
//
// When the inserted entry is no longer needed, the key and
// value will be passed to "deleter".
virtual Handle* Insert(const Slice& key, void* value, size_t charge,
void (*deleter)(const Slice& key, void* value)) = 0;
// If the cache has no mapping for "key", returns nullptr.
//
// Else return a handle that corresponds to the mapping. The caller
// must call this->Release(handle) when the returned mapping is no
// longer needed.
virtual Handle* Lookup(const Slice& key) = 0;
// Release a mapping returned by a previous Lookup().
// REQUIRES: handle must not have been released yet.
// REQUIRES: handle must have been returned by a method on *this.
virtual void Release(Handle* handle) = 0;
// Return the value encapsulated in a handle returned by a
// successful Lookup().
// REQUIRES: handle must not have been released yet.
// REQUIRES: handle must have been returned by a method on *this.
virtual void* Value(Handle* handle) = 0;
// If the cache contains entry for key, erase it. Note that the
// underlying entry will be kept around until all existing handles
// to it have been released.
virtual void Erase(const Slice& key) = 0;
// Return a new numeric id. May be used by multiple clients who are
// sharing the same cache to partition the key space. Typically the
// client will allocate a new id at startup and prepend the id to
// its cache keys.
virtual uint64_t NewId() = 0;
// Remove all cache entries that are not actively in use. Memory-constrained
// applications may wish to call this method to reduce memory usage.
// Default implementation of Prune() does nothing. Subclasses are strongly
// encouraged to override the default implementation. A future release of
// leveldb may change Prune() to a pure abstract method.
virtual void Prune() {}
// Return an estimate of the combined charges of all elements stored in the
// cache.
virtual size_t TotalCharge() const = 0;
private:
void LRU_Remove(Handle* e);
void LRU_Append(Handle* e);
void Unref(Handle* e);
struct Rep;
Rep* rep_;
};
} // namespace table
} // namespace tensorflow
#endif // TENSORFLOW_CORE_LIB_IO_CACHE_H_

View File

@ -0,0 +1,238 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/core/lib/io/cache.h"
#include <string>
#include <vector>
#include "tensorflow/core/lib/core/coding.h"
#include "tensorflow/core/platform/test.h"
namespace tensorflow {
namespace table {
// Conversions between numeric keys/values and the types expected by Cache.
static std::string EncodeKey(int k) {
std::string result;
core::PutFixed32(&result, k);
return result;
}
static int DecodeKey(const Slice& k) {
assert(k.size() == 4);
return core::DecodeFixed32(k.data());
}
static void* EncodeValue(uintptr_t v) { return reinterpret_cast<void*>(v); }
static int DecodeValue(void* v) { return reinterpret_cast<uintptr_t>(v); }
class CacheTest : public ::testing::Test {
public:
static void Deleter(const Slice& key, void* v) {
current_->deleted_keys_.push_back(DecodeKey(key));
current_->deleted_values_.push_back(DecodeValue(v));
}
static const int kCacheSize = 1000;
std::vector<int> deleted_keys_;
std::vector<int> deleted_values_;
Cache* cache_;
CacheTest() : cache_(NewLRUCache(kCacheSize)) { current_ = this; }
~CacheTest() { delete cache_; }
int Lookup(int key) {
Cache::Handle* handle = cache_->Lookup(EncodeKey(key));
const int r = (handle == nullptr) ? -1 : DecodeValue(cache_->Value(handle));
if (handle != nullptr) {
cache_->Release(handle);
}
return r;
}
void Insert(int key, int value, int charge = 1) {
cache_->Release(cache_->Insert(EncodeKey(key), EncodeValue(value), charge,
&CacheTest::Deleter));
}
Cache::Handle* InsertAndReturnHandle(int key, int value, int charge = 1) {
return cache_->Insert(EncodeKey(key), EncodeValue(value), charge,
&CacheTest::Deleter);
}
void Erase(int key) { cache_->Erase(EncodeKey(key)); }
static CacheTest* current_;
};
CacheTest* CacheTest::current_;
TEST_F(CacheTest, HitAndMiss) {
ASSERT_EQ(-1, Lookup(100));
Insert(100, 101);
ASSERT_EQ(101, Lookup(100));
ASSERT_EQ(-1, Lookup(200));
ASSERT_EQ(-1, Lookup(300));
Insert(200, 201);
ASSERT_EQ(101, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(-1, Lookup(300));
Insert(100, 102);
ASSERT_EQ(102, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(-1, Lookup(300));
ASSERT_EQ(1, deleted_keys_.size());
ASSERT_EQ(100, deleted_keys_[0]);
ASSERT_EQ(101, deleted_values_[0]);
}
TEST_F(CacheTest, Erase) {
Erase(200);
ASSERT_EQ(0, deleted_keys_.size());
Insert(100, 101);
Insert(200, 201);
Erase(100);
ASSERT_EQ(-1, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(1, deleted_keys_.size());
ASSERT_EQ(100, deleted_keys_[0]);
ASSERT_EQ(101, deleted_values_[0]);
Erase(100);
ASSERT_EQ(-1, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(1, deleted_keys_.size());
}
TEST_F(CacheTest, EntriesArePinned) {
Insert(100, 101);
Cache::Handle* h1 = cache_->Lookup(EncodeKey(100));
ASSERT_EQ(101, DecodeValue(cache_->Value(h1)));
Insert(100, 102);
Cache::Handle* h2 = cache_->Lookup(EncodeKey(100));
ASSERT_EQ(102, DecodeValue(cache_->Value(h2)));
ASSERT_EQ(0, deleted_keys_.size());
cache_->Release(h1);
ASSERT_EQ(1, deleted_keys_.size());
ASSERT_EQ(100, deleted_keys_[0]);
ASSERT_EQ(101, deleted_values_[0]);
Erase(100);
ASSERT_EQ(-1, Lookup(100));
ASSERT_EQ(1, deleted_keys_.size());
cache_->Release(h2);
ASSERT_EQ(2, deleted_keys_.size());
ASSERT_EQ(100, deleted_keys_[1]);
ASSERT_EQ(102, deleted_values_[1]);
}
TEST_F(CacheTest, EvictionPolicy) {
Insert(100, 101);
Insert(200, 201);
Insert(300, 301);
Cache::Handle* h = cache_->Lookup(EncodeKey(300));
// Frequently used entry must be kept around,
// as must things that are still in use.
for (int i = 0; i < kCacheSize + 100; i++) {
Insert(1000 + i, 2000 + i);
ASSERT_EQ(2000 + i, Lookup(1000 + i));
ASSERT_EQ(101, Lookup(100));
}
ASSERT_EQ(101, Lookup(100));
ASSERT_EQ(-1, Lookup(200));
ASSERT_EQ(301, Lookup(300));
cache_->Release(h);
}
TEST_F(CacheTest, UseExceedsCacheSize) {
// Overfill the cache, keeping handles on all inserted entries.
std::vector<Cache::Handle*> h;
for (int i = 0; i < kCacheSize + 100; i++) {
h.push_back(InsertAndReturnHandle(1000 + i, 2000 + i));
}
// Check that all the entries can be found in the cache.
for (int i = 0; i < h.size(); i++) {
ASSERT_EQ(2000 + i, Lookup(1000 + i));
}
for (int i = 0; i < h.size(); i++) {
cache_->Release(h[i]);
}
}
TEST_F(CacheTest, HeavyEntries) {
// Add a bunch of light and heavy entries and then count the combined
// size of items still in the cache, which must be approximately the
// same as the total capacity.
const int kLight = 1;
const int kHeavy = 10;
int added = 0;
int index = 0;
while (added < 2 * kCacheSize) {
const int weight = (index & 1) ? kLight : kHeavy;
Insert(index, 1000 + index, weight);
added += weight;
index++;
}
int cached_weight = 0;
for (int i = 0; i < index; i++) {
const int weight = (i & 1 ? kLight : kHeavy);
int r = Lookup(i);
if (r >= 0) {
cached_weight += weight;
ASSERT_EQ(1000 + i, r);
}
}
ASSERT_LE(cached_weight, kCacheSize + kCacheSize / 10);
}
TEST_F(CacheTest, NewId) {
uint64_t a = cache_->NewId();
uint64_t b = cache_->NewId();
ASSERT_NE(a, b);
}
TEST_F(CacheTest, Prune) {
Insert(1, 100);
Insert(2, 200);
Cache::Handle* handle = cache_->Lookup(EncodeKey(1));
ASSERT_TRUE(handle);
cache_->Prune();
cache_->Release(handle);
ASSERT_EQ(100, Lookup(1));
ASSERT_EQ(-1, Lookup(2));
}
TEST_F(CacheTest, ZeroSizeCache) {
delete cache_;
cache_ = NewLRUCache(0);
Insert(1, 100);
ASSERT_EQ(-1, Lookup(1));
}
} // namespace table
} // namespace tensorflow

View File

@ -18,6 +18,7 @@ limitations under the License.
#include "tensorflow/core/lib/core/coding.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/io/block.h"
#include "tensorflow/core/lib/io/cache.h"
#include "tensorflow/core/lib/io/format.h"
#include "tensorflow/core/lib/io/table_options.h"
#include "tensorflow/core/lib/io/two_level_iterator.h"
@ -32,7 +33,7 @@ struct Table::Rep {
Options options;
Status status;
RandomAccessFile* file;
// XXX uint64 cache_id;
uint64 cache_id;
BlockHandle metaindex_handle; // Handle to metaindex_block: saved from footer
Block* index_block;
@ -60,21 +61,18 @@ Status Table::Open(const Options& options, RandomAccessFile* file, uint64 size,
Block* index_block = nullptr;
if (s.ok()) {
s = ReadBlock(file, footer.index_handle(), &contents);
if (s.ok()) {
index_block = new Block(contents);
}
}
if (s.ok()) {
// We've successfully read the footer and the index block: we're
// ready to serve requests.
index_block = new Block(contents);
Rep* rep = new Table::Rep;
rep->options = options;
rep->file = file;
rep->metaindex_handle = footer.metaindex_handle();
rep->index_block = index_block;
// XXX rep->cache_id = (options.block_cache ?
// options.block_cache->NewId() : 0);
rep->cache_id = (options.block_cache ? options.block_cache->NewId() : 0);
*table = new Table(rep);
} else {
if (index_block) delete index_block;
@ -89,13 +87,24 @@ static void DeleteBlock(void* arg, void* ignored) {
delete reinterpret_cast<Block*>(arg);
}
static void DeleteCachedBlock(const absl::string_view&, void* value) {
Block* block = reinterpret_cast<Block*>(value);
delete block;
}
static void ReleaseBlock(void* arg, void* h) {
Cache* cache = reinterpret_cast<Cache*>(arg);
Cache::Handle* handle = reinterpret_cast<Cache::Handle*>(h);
cache->Release(handle);
}
// Convert an index iterator value (i.e., an encoded BlockHandle)
// into an iterator over the contents of the corresponding block.
Iterator* Table::BlockReader(void* arg, const StringPiece& index_value) {
Table* table = reinterpret_cast<Table*>(arg);
// Cache* block_cache = table->rep_->options.block_cache;
Cache* block_cache = table->rep_->options.block_cache;
Block* block = nullptr;
// Cache::Handle* cache_handle = NULL;
Cache::Handle* cache_handle = NULL;
BlockHandle handle;
StringPiece input = index_value;
@ -105,16 +114,38 @@ Iterator* Table::BlockReader(void* arg, const StringPiece& index_value) {
if (s.ok()) {
BlockContents contents;
s = ReadBlock(table->rep_->file, handle, &contents);
if (s.ok()) {
block = new Block(contents);
if (block_cache != nullptr) {
char cache_key_buffer[16];
core::EncodeFixed64(cache_key_buffer, table->rep_->cache_id);
core::EncodeFixed64(cache_key_buffer + 8, handle.offset());
absl::string_view key(cache_key_buffer, sizeof(cache_key_buffer));
cache_handle = block_cache->Lookup(key);
if (cache_handle != nullptr) {
block = reinterpret_cast<Block*>(block_cache->Value(cache_handle));
} else {
s = ReadBlock(table->rep_->file, handle, &contents);
if (s.ok()) {
block = new Block(contents);
cache_handle = block_cache->Insert(key, block, block->size(),
&DeleteCachedBlock);
}
}
} else {
s = ReadBlock(table->rep_->file, handle, &contents);
if (s.ok()) {
block = new Block(contents);
}
}
}
Iterator* iter;
if (block != nullptr) {
iter = block->NewIterator();
iter->RegisterCleanup(&DeleteBlock, block, nullptr);
if (cache_handle == nullptr) {
iter->RegisterCleanup(&DeleteBlock, block, nullptr);
} else {
iter->RegisterCleanup(&ReleaseBlock, block_cache, cache_handle);
}
} else {
iter = NewErrorIterator(s);
}

View File

@ -21,6 +21,8 @@ limitations under the License.
namespace tensorflow {
namespace table {
class Cache;
// DB contents are stored in a set of blocks, each of which holds a
// sequence of key,value pairs. Each block may be compressed before
// being stored in a file. The following enum describes which
@ -60,6 +62,12 @@ struct Options {
// incompressible, the kSnappyCompression implementation will
// efficiently detect that and will switch to uncompressed mode.
CompressionType compression = kSnappyCompression;
// Control over blocks (user data is stored in a set of blocks, and
// a block is the unit of reading from disk).
// If non-null, use the specified cache for blocks.
Cache* block_cache = nullptr;
};
} // namespace table

View File

@ -40,6 +40,7 @@ limitations under the License.
#include "tensorflow/core/lib/io/table_builder.h"
#include "tensorflow/core/lib/random/random.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/util/env_var.h"
#include "tensorflow/core/util/saved_tensor_slice_util.h"
#include "tensorflow/core/util/tensor_bundle/byte_swap.h"
#include "tensorflow/core/util/tensor_slice_util.h"
@ -729,6 +730,7 @@ BundleReader::BundleReader(Env* env, StringPiece prefix)
prefix_(prefix),
metadata_(nullptr),
table_(nullptr),
index_cache_(nullptr),
iter_(nullptr),
need_to_swap_bytes_(false) {
const string filename = MetaFilename(prefix_);
@ -741,7 +743,17 @@ BundleReader::BundleReader(Env* env, StringPiece prefix)
status_ = env_->NewRandomAccessFile(filename, &wrapper);
if (!status_.ok()) return;
metadata_ = wrapper.release();
status_ = table::Table::Open(table::Options(), metadata_, file_size, &table_);
table::Options o;
int64 cache_size;
Status s =
ReadInt64FromEnvVar("TF_TABLE_INDEX_CACHE_SIZE_IN_MB", 0, &cache_size);
if (s.ok() && cache_size > 0) {
index_cache_ = table::NewLRUCache(cache_size << 20);
o.block_cache = index_cache_;
}
status_ = table::Table::Open(o, metadata_, file_size, &table_);
if (!status_.ok()) return;
iter_ = table_->NewIterator();
@ -772,6 +784,9 @@ BundleReader::~BundleReader() {
delete metadata_;
delete iter_;
delete table_;
if (index_cache_) {
delete index_cache_;
}
// InputBuffer does not own the underlying RandomAccessFile.
for (auto pair : data_) {
if (pair.second != nullptr && pair.second->file() != nullptr) {

View File

@ -61,8 +61,6 @@ limitations under the License.
#ifndef TENSORFLOW_CORE_UTIL_TENSOR_BUNDLE_TENSOR_BUNDLE_H_
#define TENSORFLOW_CORE_UTIL_TENSOR_BUNDLE_TENSOR_BUNDLE_H_
#include "tensorflow/core/protobuf/tensor_bundle.pb.h"
#include <map>
#include <string>
#include <unordered_map>
@ -72,12 +70,14 @@ limitations under the License.
#include "tensorflow/core/framework/tensor_slice.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/gtl/array_slice.h"
#include "tensorflow/core/lib/io/cache.h"
#include "tensorflow/core/lib/io/inputbuffer.h"
#include "tensorflow/core/lib/io/table.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/file_system.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/protobuf/tensor_bundle.pb.h"
#include "tensorflow/core/util/tensor_bundle/naming.h"
#include "tensorflow/core/util/tensor_slice_set.h"
@ -288,6 +288,7 @@ class BundleReader {
Status status_;
RandomAccessFile* metadata_; // Owned.
table::Table* table_;
table::Cache* index_cache_;
table::Iterator* iter_;
// Owned the InputBuffer objects and their underlying RandomAccessFile's.
std::unordered_map<int32, io::InputBuffer*> data_;