Added 16-bit version of ADD/SUB operators. Broadcasting is included.
This commit is contained in:
parent
a0c6417678
commit
b94cb4732a
tensorflow/lite/kernels
@ -93,12 +93,24 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
output_size = TfLiteIntArrayCopy(input1->dims);
|
||||
}
|
||||
|
||||
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
||||
// 8bit -> 8bit general quantized path, with general rescalings
|
||||
// as well as, 16bit -> 16bit with general rescalings
|
||||
bool general_16bit = input1->type == kTfLiteInt16 &&
|
||||
input2->type == kTfLiteInt16 &&
|
||||
output->type == kTfLiteInt16;
|
||||
|
||||
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 ||
|
||||
general_16bit) {
|
||||
// 8bit -> 8bit general quantized path, with general rescalings
|
||||
// as well as, 16bit -> 16bit with general rescalings
|
||||
data->input1_offset = -input1->params.zero_point;
|
||||
data->input2_offset = -input2->params.zero_point;
|
||||
data->output_offset = output->params.zero_point;
|
||||
data->left_shift = 20;
|
||||
|
||||
// The shift is set to 15 for 16-bit and 20 in case of 8-bit, accordingly.
|
||||
// In case of 16-bit we have 65535 << 15 which is less than 1 << 31,
|
||||
// therefore the addition will still fit in a 32 bit accumulator.
|
||||
data->left_shift = general_16bit ? 15 : 20;
|
||||
const double twice_max_input_scale =
|
||||
2 * std::max(input1->params.scale, input2->params.scale);
|
||||
const double real_input1_multiplier =
|
||||
@ -221,7 +233,12 @@ TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
const TfLiteTensor* input1,
|
||||
const TfLiteTensor* input2,
|
||||
TfLiteTensor* output) {
|
||||
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
||||
bool general_16bit = input1->type == kTfLiteInt16 &&
|
||||
input2->type == kTfLiteInt16 &&
|
||||
output->type == kTfLiteInt16;
|
||||
|
||||
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 ||
|
||||
general_16bit) {
|
||||
tflite::ArithmeticParams op_params;
|
||||
op_params.left_shift = data->left_shift;
|
||||
op_params.input1_offset = data->input1_offset;
|
||||
@ -256,6 +273,12 @@ TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
TF_LITE_ADD(optimized_integer_ops, Add, int8_t);
|
||||
}
|
||||
}
|
||||
} else if (output->type == kTfLiteInt16) {
|
||||
if (need_broadcast) {
|
||||
TF_LITE_ADD(reference_ops, BroadcastAdd4DSlow, int16_t);
|
||||
} else {
|
||||
TF_LITE_ADD(reference_ops, Add, int16_t);
|
||||
}
|
||||
} else {
|
||||
if (kernel_type == kReference) {
|
||||
if (need_broadcast) {
|
||||
@ -286,7 +309,7 @@ TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
// The quantized version of Add doesn't support activations, so we
|
||||
// always use BroadcastAdd.
|
||||
if (kernel_type == kReference) {
|
||||
TF_LITE_ADD(reference_ops, Add);
|
||||
TF_LITE_ADD(reference_ops, AddLSTM);
|
||||
} else {
|
||||
TF_LITE_ADD(optimized_ops, Add);
|
||||
}
|
||||
|
@ -306,15 +306,18 @@ TEST(QuantizedAddOpModel, QuantizedTestsNoActivationInt16) {
|
||||
const float kMin = -1.f;
|
||||
const float kMax = 32767.f / 32768.f;
|
||||
float kQuantizedTolerance = GetToleranceInt16(kMin, kMax);
|
||||
std::vector<std::vector<float>> inputs1 = {
|
||||
{0.1, 0.2, 0.3, 0.4}, {-0.8, 0.2, 0.4, 0.7}, {-0.8, 0.2, 0.7, 0.3}};
|
||||
std::vector<std::vector<float>> inputs2 = {
|
||||
{0.6, 0.4, 0.3, 0.1}, {0.6, 0.4, 0.5, -0.8}, {0.6, 0.4, -0.8, 0.5}};
|
||||
std::vector<std::vector<float>> results = {
|
||||
{0.7, 0.6, 0.6, 0.5}, {-0.2, 0.6, 0.9, -0.1}, {-0.2, 0.6, -0.1, 0.8}};
|
||||
std::vector<std::vector<float>> inputs1 = {{0.1, 0.2, 0.3, 0.4, 0.9, 0.7},
|
||||
{-0.8, 0.2, 0.4, 0.7, 0.1, 0.0},
|
||||
{-0.8, 0.2, 0.7, 0.3, 0.9, 0.1}};
|
||||
std::vector<std::vector<float>> inputs2 = {{0.6, 0.4, 0.3, 0.1, -0.1, 0.3},
|
||||
{0.6, 0.4, 0.5, -0.8, 0.0, -1.0},
|
||||
{0.6, 0.4, -0.8, 0.5, -0.9, 0.1}};
|
||||
std::vector<std::vector<float>> results = {{0.7, 0.6, 0.6, 0.5, 0.8, 1.0},
|
||||
{-0.2, 0.6, 0.9, -0.1, 0.1, -1.0},
|
||||
{-0.2, 0.6, -0.1, 0.8, 0.0, 0.2}};
|
||||
for (size_t i = 0; i < inputs1.size(); ++i) {
|
||||
QuantizedAddOpModel m({TensorType_INT16, {1, 2, 2, 1}, kMin, kMax},
|
||||
{TensorType_INT16, {1, 2, 2, 1}, kMin, kMax},
|
||||
QuantizedAddOpModel m({TensorType_INT16, {1, 2, 3, 1}, kMin, kMax},
|
||||
{TensorType_INT16, {1, 2, 3, 1}, kMin, kMax},
|
||||
{TensorType_INT16, {}, kMin, kMax},
|
||||
ActivationFunctionType_NONE);
|
||||
m.QuantizeAndPopulate<int16_t>(m.input1(), inputs1[i]);
|
||||
@ -435,6 +438,10 @@ TEST(QuantizedAddOpModel, QuantizedWithScalarBroadcastInt8) {
|
||||
QuantizedWithScalarBroadcast<TensorType_INT8, int8_t>();
|
||||
}
|
||||
|
||||
TEST(QuantizedAddOpModel, QuantizedWithScalarBroadcastInt16) {
|
||||
QuantizedWithScalarBroadcast<TensorType_INT16, int16_t>();
|
||||
}
|
||||
|
||||
template <enum TensorType tensor_type, typename integer_dtype>
|
||||
void QuantizedWithMixedBroadcast() {
|
||||
float kQuantizedTolerance = GetTolerance(-3.f, 3.f);
|
||||
@ -497,6 +504,10 @@ TEST(QuantizedAddOpModel, QuantizedWithMixedBroadcastInt8) {
|
||||
QuantizedWithMixedBroadcast<TensorType_INT8, int8_t>();
|
||||
}
|
||||
|
||||
TEST(QuantizedAddOpModel, QuantizedWithMixedBroadcastInt16) {
|
||||
QuantizedWithMixedBroadcast<TensorType_INT16, int16_t>();
|
||||
}
|
||||
|
||||
template <enum TensorType tensor_type, typename integer_dtype>
|
||||
void QuantizedWithGenericBroadcast() {
|
||||
float kQuantizedTolerance = GetTolerance(-1.0, 1.0);
|
||||
@ -523,5 +534,9 @@ TEST(QuantizedAddOpModel, QuantizedWithGenericdBroadcastInt8) {
|
||||
QuantizedWithGenericBroadcast<TensorType_INT8, int8_t>();
|
||||
}
|
||||
|
||||
TEST(QuantizedAddOpModel, QuantizedWithGenericdBroadcastInt16) {
|
||||
QuantizedWithGenericBroadcast<TensorType_INT16, int16_t>();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace tflite
|
||||
|
@ -51,13 +51,18 @@ inline void Add(const ArithmeticParams& params,
|
||||
|
||||
// Element-wise add that can often be used for inner loop of broadcast add as
|
||||
// well as the non-broadcast add.
|
||||
|
||||
// This function is used for 8-bit as well as for 16-bit, but the accumulator
|
||||
// is 32-bit for both cases. The overflow does not happen due to the
|
||||
// choice of the shift (20 or 15, accordingly - see add.cc for more comments).
|
||||
template <typename T>
|
||||
inline void AddElementwise(int size, const ArithmeticParams& params,
|
||||
const uint8* input1_data, const uint8* input2_data,
|
||||
uint8* output_data) {
|
||||
TFLITE_DCHECK_GT(params.input1_offset, -256);
|
||||
TFLITE_DCHECK_GT(params.input2_offset, -256);
|
||||
TFLITE_DCHECK_LT(params.input1_offset, 256);
|
||||
TFLITE_DCHECK_LT(params.input2_offset, 256);
|
||||
const T* input1_data, const T* input2_data,
|
||||
T* output_data) {
|
||||
TFLITE_DCHECK_GT(params.input1_offset, -std::numeric_limits<T>::max());
|
||||
TFLITE_DCHECK_GT(params.input2_offset, -std::numeric_limits<T>::max());
|
||||
TFLITE_DCHECK_LT(params.input1_offset, std::numeric_limits<T>::max());
|
||||
TFLITE_DCHECK_LT(params.input2_offset, std::numeric_limits<T>::max());
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
const int32 input1_val = params.input1_offset + input1_data[i];
|
||||
@ -78,7 +83,7 @@ inline void AddElementwise(int size, const ArithmeticParams& params,
|
||||
const int32 clamped_output =
|
||||
std::min(params.quantized_activation_max,
|
||||
std::max(params.quantized_activation_min, raw_output));
|
||||
output_data[i] = static_cast<uint8>(clamped_output);
|
||||
output_data[i] = static_cast<T>(clamped_output);
|
||||
}
|
||||
}
|
||||
|
||||
@ -138,6 +143,24 @@ inline void Add(const ArithmeticParams& params,
|
||||
const RuntimeShape& output_shape, int16* output_data) {
|
||||
TFLITE_DCHECK_LE(params.quantized_activation_min,
|
||||
params.quantized_activation_max);
|
||||
const int flat_size =
|
||||
MatchingElementsSize(input1_shape, input2_shape, output_shape);
|
||||
|
||||
int max_value = std::numeric_limits<int16>::max();
|
||||
|
||||
TFLITE_DCHECK_GT(params.input1_offset, -max_value);
|
||||
TFLITE_DCHECK_GT(params.input2_offset, -max_value);
|
||||
TFLITE_DCHECK_LT(params.input1_offset, max_value);
|
||||
TFLITE_DCHECK_LT(params.input2_offset, max_value);
|
||||
AddElementwise(flat_size, params, input1_data, input2_data, output_data);
|
||||
}
|
||||
|
||||
inline void AddLSTM(const ArithmeticParams& params,
|
||||
const RuntimeShape& input1_shape, const int16* input1_data,
|
||||
const RuntimeShape& input2_shape, const int16* input2_data,
|
||||
const RuntimeShape& output_shape, int16* output_data) {
|
||||
TFLITE_DCHECK_LE(params.quantized_activation_min,
|
||||
params.quantized_activation_max);
|
||||
|
||||
const int input1_shift = params.input1_shift;
|
||||
const int flat_size =
|
||||
@ -257,13 +280,14 @@ inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
|
||||
}
|
||||
}
|
||||
|
||||
inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
|
||||
const RuntimeShape& input1_shape,
|
||||
const uint8* input1_data,
|
||||
const RuntimeShape& input2_shape,
|
||||
const uint8* input2_data,
|
||||
const RuntimeShape& output_shape,
|
||||
uint8* output_data) {
|
||||
// This function is used for 8-bit as well as for 16-bit, but the accumulator
|
||||
// is 32-bit for both cases. The overflow does not happen due to the
|
||||
// choice of the shift (20 or 15, accordingly - see add.cc for more comments).
|
||||
template <typename T>
|
||||
inline void BroadcastAdd4DSlow(
|
||||
const ArithmeticParams& params, const RuntimeShape& input1_shape,
|
||||
const T* input1_data, const RuntimeShape& input2_shape,
|
||||
const T* input2_data, const RuntimeShape& output_shape, T* output_data) {
|
||||
NdArrayDesc<4> desc1;
|
||||
NdArrayDesc<4> desc2;
|
||||
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
|
||||
@ -313,7 +337,7 @@ inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
|
||||
std::min(params.quantized_activation_max,
|
||||
std::max(params.quantized_activation_min, raw_output));
|
||||
output_data[Offset(extended_output_shape, b, y, x, c)] =
|
||||
static_cast<uint8>(clamped_output);
|
||||
static_cast<T>(clamped_output);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -72,13 +72,14 @@ void Free(TfLiteContext* context, void* buffer) {
|
||||
delete reinterpret_cast<OpData*>(buffer);
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare8BitSubOp(TfLiteContext* context,
|
||||
const TfLiteTensor* input_1,
|
||||
const TfLiteTensor* input_2, TfLiteTensor* output,
|
||||
TfLiteSubParams* params, OpData* op_params,
|
||||
int op_sign) {
|
||||
TF_LITE_ENSURE(context,
|
||||
output->type == kTfLiteUInt8 || output->type == kTfLiteInt8);
|
||||
TfLiteStatus PrepareGeneralSubOp(TfLiteContext* context,
|
||||
const TfLiteTensor* input_1,
|
||||
const TfLiteTensor* input_2,
|
||||
TfLiteTensor* output, TfLiteSubParams* params,
|
||||
OpData* op_params, int op_sign) {
|
||||
TF_LITE_ENSURE(context, output->type == kTfLiteUInt8 ||
|
||||
output->type == kTfLiteInt8 ||
|
||||
output->type == kTfLiteInt16);
|
||||
const auto& input1_quantization_params = input_1->params;
|
||||
const auto& input2_quantization_params = input_2->params;
|
||||
const auto& output_quantization_params = output->params;
|
||||
@ -87,6 +88,9 @@ TfLiteStatus Prepare8BitSubOp(TfLiteContext* context,
|
||||
if (output->type == kTfLiteUInt8) {
|
||||
integer_type_min = std::numeric_limits<uint8_t>::min();
|
||||
integer_type_max = std::numeric_limits<uint8_t>::max();
|
||||
} else if (output->type == kTfLiteInt16) {
|
||||
integer_type_min = std::numeric_limits<int16_t>::min();
|
||||
integer_type_max = std::numeric_limits<int16_t>::max();
|
||||
} else {
|
||||
// output->type == kTfLiteInt8
|
||||
integer_type_min = std::numeric_limits<int8_t>::min();
|
||||
@ -109,7 +113,11 @@ TfLiteStatus Prepare8BitSubOp(TfLiteContext* context,
|
||||
op_params->input1_offset = -input1_quantization_params.zero_point;
|
||||
op_params->input2_offset = -input2_quantization_params.zero_point;
|
||||
op_params->output_offset = output_quantization_params.zero_point;
|
||||
op_params->left_shift = 20;
|
||||
|
||||
// The shift is set to 15 in case of 16-bit and 20 in case of 8-bit,
|
||||
// accordingly. In case of 16-bit we have 65535 << 15 which is less than 1 <<
|
||||
// 31, therefore the addition will still fit in a 32 bit accumulator.
|
||||
op_params->left_shift = output->type == kTfLiteInt16 ? 15 : 20;
|
||||
const double twice_max_input_scale =
|
||||
2 * std::max(input1_quantization_params.scale,
|
||||
input2_quantization_params.scale);
|
||||
@ -135,13 +143,14 @@ TfLiteStatus Prepare8BitSubOp(TfLiteContext* context,
|
||||
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
|
||||
context, params->activation, output, &op_params->output_activation_min,
|
||||
&op_params->output_activation_max));
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus PrepareInt16SubOp(TfLiteContext* context,
|
||||
const TfLiteTensor* input1,
|
||||
const TfLiteTensor* input2, TfLiteTensor* output,
|
||||
TfLiteSubParams* params, OpData* data) {
|
||||
TfLiteStatus PrepareLSTMSubOp(TfLiteContext* context,
|
||||
const TfLiteTensor* input1,
|
||||
const TfLiteTensor* input2, TfLiteTensor* output,
|
||||
TfLiteSubParams* params, OpData* data) {
|
||||
// 16bit -> 16bit special quantized path, supporting only a rather
|
||||
// narrow case of quantization parameters: zero_points must all be 0
|
||||
// ("symmetric quantization") and scales must be power-of-two (which
|
||||
@ -208,12 +217,21 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
output_size = TfLiteIntArrayCopy(input1->dims);
|
||||
}
|
||||
|
||||
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_OK(context, Prepare8BitSubOp(context, input1, input2, output,
|
||||
params, data, -1));
|
||||
// 8bit -> 8bit general quantized path, with general rescalings
|
||||
// as well as, 16bit -> 16bit with general rescalings
|
||||
|
||||
bool general_16bit = output->type == kTfLiteInt16 &&
|
||||
input1->type == kTfLiteInt16 &&
|
||||
input2->type == kTfLiteInt16;
|
||||
|
||||
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 ||
|
||||
general_16bit) {
|
||||
TF_LITE_ENSURE_OK(context, PrepareGeneralSubOp(context, input1, input2,
|
||||
output, params, data, -1));
|
||||
} else if (output->type == kTfLiteInt16) {
|
||||
TF_LITE_ENSURE_OK(context, PrepareInt16SubOp(context, input1, input2,
|
||||
output, params, data));
|
||||
// LSTM-special case with scale parameter of POT
|
||||
TF_LITE_ENSURE_OK(context, PrepareLSTMSubOp(context, input1, input2, output,
|
||||
params, data));
|
||||
}
|
||||
|
||||
return context->ResizeTensor(context, output, output_size);
|
||||
@ -288,6 +306,11 @@ void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
const bool need_broadcast = optimized_ops::ProcessBroadcastShapes(
|
||||
GetTensorShape(input1), GetTensorShape(input2), &op_params);
|
||||
|
||||
// 16bit -> 16bit with general rescaling
|
||||
bool general_16bit = output->type == kTfLiteInt16 &&
|
||||
input1->type == kTfLiteInt16 &&
|
||||
input2->type == kTfLiteInt16;
|
||||
|
||||
#define TF_LITE_SUB(type, opname, data_type) \
|
||||
type::opname(op_params, GetTensorShape(input1), \
|
||||
GetTensorData<data_type>(input1), GetTensorShape(input2), \
|
||||
@ -301,6 +324,12 @@ void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
} else {
|
||||
TF_LITE_SUB(reference_integer_ops, Add, int8_t);
|
||||
}
|
||||
} else if (general_16bit) {
|
||||
if (need_broadcast) {
|
||||
TF_LITE_SUB(reference_ops, BroadcastAdd4DSlow, int16_t);
|
||||
} else {
|
||||
TF_LITE_SUB(reference_ops, Add, int16_t);
|
||||
}
|
||||
} else if (output->type == kTfLiteUInt8) {
|
||||
if (kernel_type == kReference) {
|
||||
if (need_broadcast) {
|
||||
|
@ -226,6 +226,10 @@ TEST(QuantizedSubOpModel, QuantizedTestsNoActivationInt8) {
|
||||
QuantizedTestsNoActivation<TensorType_INT8, int8_t>();
|
||||
}
|
||||
|
||||
TEST(QuantizedSubOpModel, QuantizedTestsNoActivationInt16Generic) {
|
||||
QuantizedTestsNoActivation<TensorType_INT16, int16_t>();
|
||||
}
|
||||
|
||||
template <TensorType tensor_type, typename integer_dtype>
|
||||
void QuantizedTestsActivationRELU_N1_TO_1() {
|
||||
float kQuantizedTolerance = GetTolerance(-1.0, 1.0);
|
||||
@ -287,6 +291,10 @@ TEST(QuantizedSubOpModel, QuantizedVariousInputShapesInt8) {
|
||||
QuantizedVariousInputShapes<TensorType_INT8, int8_t>();
|
||||
}
|
||||
|
||||
TEST(QuantizedSubOpModel, QuantizedVariousInputShapesInt16) {
|
||||
QuantizedVariousInputShapes<TensorType_INT16, int16_t>();
|
||||
}
|
||||
|
||||
template <TensorType tensor_type, typename integer_dtype>
|
||||
void QuantizedWithBroadcast() {
|
||||
float kQuantizedTolerance = GetTolerance(-3.0, 3.0);
|
||||
@ -315,6 +323,10 @@ TEST(QuantizedSubOpModel, QuantizedWithBroadcastInt8) {
|
||||
QuantizedWithBroadcast<TensorType_INT8, int8_t>();
|
||||
}
|
||||
|
||||
TEST(QuantizedSubOpModel, QuantizedWithBroadcastInt16) {
|
||||
QuantizedWithBroadcast<TensorType_INT16, int16_t>();
|
||||
}
|
||||
|
||||
TEST(QuantizedSubOpModel, QuantizedTestsNoActivationInt16) {
|
||||
const float kMin = -1.f;
|
||||
const float kMax =
|
||||
|
Loading…
Reference in New Issue
Block a user