Remove references to private name_scope endpoint.
PiperOrigin-RevId: 322623654 Change-Id: Id82f764b7768fdf40db43bea1e32404cc220a850
This commit is contained in:
parent
70edbdb6c7
commit
b7fb9affc8
tensorflow/python/keras
backend_test.py
feature_column
layers
legacy_tf_layers
tests
utils
@ -169,7 +169,7 @@ class BackendUtilsTest(test.TestCase):
|
||||
sess.run(y, feed_dict={x: np.random.random((2, 3))})
|
||||
|
||||
def test_learning_phase_name(self):
|
||||
with ops.name_scope('test_scope'):
|
||||
with backend.name_scope('test_scope'):
|
||||
# Test that outer name scopes do not affect the learning phase's name.
|
||||
lp = backend.symbolic_learning_phase()
|
||||
self.assertEqual(lp.name, 'keras_learning_phase:0')
|
||||
|
@ -21,7 +21,6 @@ from __future__ import print_function
|
||||
import json
|
||||
|
||||
from tensorflow.python.feature_column import feature_column_v2 as fc
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras.feature_column import base_feature_layer as kfc
|
||||
from tensorflow.python.keras.saving.saved_model import json_utils
|
||||
@ -161,7 +160,7 @@ class DenseFeatures(kfc._BaseFeaturesLayer): # pylint: disable=protected-access
|
||||
transformation_cache = fc.FeatureTransformationCache(features)
|
||||
output_tensors = []
|
||||
for column in self._feature_columns:
|
||||
with ops.name_scope(column.name):
|
||||
with backend.name_scope(column.name):
|
||||
try:
|
||||
tensor = column.get_dense_tensor(
|
||||
transformation_cache, self._state_manager, training=training)
|
||||
|
@ -89,7 +89,7 @@ class DenseFeatures(dense_features.DenseFeatures):
|
||||
|
||||
def build(self, _):
|
||||
for column in self._feature_columns:
|
||||
with ops.name_scope(column.name):
|
||||
with ops.name_scope_v2(column.name):
|
||||
column.create_state(self._state_manager)
|
||||
# We would like to call Layer.build and not _DenseFeaturesHelper.build.
|
||||
# pylint: disable=protected-access
|
||||
|
@ -143,7 +143,7 @@ class SequenceFeatures(kfc._BaseFeaturesLayer):
|
||||
sequence_lengths = []
|
||||
|
||||
for column in self._feature_columns:
|
||||
with ops.name_scope(column.name):
|
||||
with backend.name_scope(column.name):
|
||||
try:
|
||||
dense_tensor, sequence_length = column.get_sequence_dense_tensor(
|
||||
transformation_cache, self._state_manager, training=training)
|
||||
@ -164,7 +164,7 @@ class SequenceFeatures(kfc._BaseFeaturesLayer):
|
||||
|
||||
def _assert_all_equal_and_return(tensors, name=None):
|
||||
"""Asserts that all tensors are equal and returns the first one."""
|
||||
with ops.name_scope(name, 'assert_all_equal', values=tensors):
|
||||
with backend.name_scope(name or 'assert_all_equal'):
|
||||
if len(tensors) == 1:
|
||||
return tensors[0]
|
||||
assert_equal_ops = []
|
||||
|
@ -33,6 +33,7 @@ from tensorflow.python.framework import ops
|
||||
from tensorflow.python.framework import tensor_shape
|
||||
from tensorflow.python.framework import tensor_util
|
||||
from tensorflow.python.keras import activations
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras import initializers
|
||||
from tensorflow.python.keras.engine import base_layer_utils
|
||||
from tensorflow.python.keras.engine import input_spec
|
||||
@ -334,7 +335,7 @@ class RNNCell(base_layer.Layer):
|
||||
if (last_batch_size == batch_size and last_dtype == dtype and
|
||||
last_state_size == state_size):
|
||||
return last_output
|
||||
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
|
||||
with backend.name_scope(type(self).__name__ + "ZeroState"):
|
||||
output = _zero_state_tensors(state_size, batch_size, dtype)
|
||||
if is_eager:
|
||||
self._last_zero_state = (state_size, batch_size, dtype, output)
|
||||
@ -1269,7 +1270,7 @@ class MultiRNNCell(RNNCell):
|
||||
return self._cells[-1].output_size
|
||||
|
||||
def zero_state(self, batch_size, dtype):
|
||||
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
|
||||
with backend.name_scope(type(self).__name__ + "ZeroState"):
|
||||
if self._state_is_tuple:
|
||||
return tuple(cell.zero_state(batch_size, dtype) for cell in self._cells)
|
||||
else:
|
||||
|
@ -113,7 +113,7 @@ class DropoutWrapperBase(object):
|
||||
raise TypeError("dropout_state_filter_visitor must be callable")
|
||||
self._dropout_state_filter = (
|
||||
dropout_state_filter_visitor or _default_dropout_state_filter_visitor)
|
||||
with ops.name_scope("DropoutWrapperInit"):
|
||||
with ops.name_scope_v2("DropoutWrapperInit"):
|
||||
|
||||
def tensor_and_const_value(v):
|
||||
tensor_value = ops.convert_to_tensor(v)
|
||||
@ -199,7 +199,7 @@ class DropoutWrapperBase(object):
|
||||
self.built = True
|
||||
|
||||
def zero_state(self, batch_size, dtype):
|
||||
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
|
||||
with ops.name_scope_v2(type(self).__name__ + "ZeroState"):
|
||||
return self.cell.zero_state(batch_size, dtype)
|
||||
|
||||
def _variational_recurrent_dropout_value(
|
||||
@ -346,7 +346,7 @@ class ResidualWrapperBase(object):
|
||||
return self.cell.output_size
|
||||
|
||||
def zero_state(self, batch_size, dtype):
|
||||
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
|
||||
with ops.name_scope_v2(type(self).__name__ + "ZeroState"):
|
||||
return self.cell.zero_state(batch_size, dtype)
|
||||
|
||||
def _call_wrapped_cell(self, inputs, state, cell_call_fn, **kwargs):
|
||||
@ -433,7 +433,7 @@ class DeviceWrapperBase(object):
|
||||
return self.cell.output_size
|
||||
|
||||
def zero_state(self, batch_size, dtype):
|
||||
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
|
||||
with ops.name_scope_v2(type(self).__name__ + "ZeroState"):
|
||||
with ops.device(self._device):
|
||||
return self.cell.zero_state(batch_size, dtype)
|
||||
|
||||
|
@ -21,7 +21,7 @@ from __future__ import print_function
|
||||
from tensorflow.python.distribute import distribution_strategy_context as ds
|
||||
from tensorflow.python.distribute import reduce_util
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras.layers import normalization
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import math_ops
|
||||
@ -158,7 +158,7 @@ class SyncBatchNormalization(normalization.BatchNormalizationBase):
|
||||
|
||||
def _calculate_mean_and_var(self, x, axes, keep_dims):
|
||||
|
||||
with ops.name_scope('moments', values=[x, axes]):
|
||||
with backend.name_scope('moments'):
|
||||
# The dynamic range of fp16 is too limited to support the collection of
|
||||
# sufficient statistics. As a workaround we simply perform the operations
|
||||
# on 32-bit floats before converting the mean and variance back to fp16
|
||||
|
@ -585,7 +585,7 @@ def get_translation_matrix(translations, name=None):
|
||||
A tensor of shape (num_images, 8) projective transforms which can be given
|
||||
to `transform`.
|
||||
"""
|
||||
with ops.name_scope(name, 'translation_matrix'):
|
||||
with K.name_scope(name or 'translation_matrix'):
|
||||
num_translations = array_ops.shape(translations)[0]
|
||||
# The translation matrix looks like:
|
||||
# [[1 0 -dx]
|
||||
@ -665,7 +665,7 @@ def transform(images,
|
||||
TypeError: If `image` is an invalid type.
|
||||
ValueError: If output shape is not 1-D int32 Tensor.
|
||||
"""
|
||||
with ops.name_scope(name, 'transform'):
|
||||
with K.name_scope(name or 'transform'):
|
||||
if output_shape is None:
|
||||
output_shape = array_ops.shape(images)[1:3]
|
||||
if not context.executing_eagerly():
|
||||
@ -708,7 +708,7 @@ def get_rotation_matrix(angles, image_height, image_width, name=None):
|
||||
`(x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k)`,
|
||||
where `k = c0 x + c1 y + 1`.
|
||||
"""
|
||||
with ops.name_scope(name, 'rotation_matrix'):
|
||||
with K.name_scope(name or 'rotation_matrix'):
|
||||
x_offset = ((image_width - 1) - (math_ops.cos(angles) *
|
||||
(image_width - 1) - math_ops.sin(angles) *
|
||||
(image_height - 1))) / 2.0
|
||||
@ -1015,7 +1015,7 @@ def get_zoom_matrix(zooms, image_height, image_width, name=None):
|
||||
`(x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k)`,
|
||||
where `k = c0 x + c1 y + 1`.
|
||||
"""
|
||||
with ops.name_scope(name, 'zoom_matrix'):
|
||||
with K.name_scope(name or 'zoom_matrix'):
|
||||
num_zooms = array_ops.shape(zooms)[0]
|
||||
# The zoom matrix looks like:
|
||||
# [[zx 0 0]
|
||||
|
@ -440,7 +440,7 @@ class Layer(base_layer.Layer):
|
||||
with vs.variable_scope(
|
||||
self._scope, reuse=reuse, auxiliary_name_scope=False) as scope:
|
||||
self._current_scope = scope
|
||||
with ops.name_scope(self._name_scope(), skip_on_eager=False):
|
||||
with backend.name_scope(self._name_scope()):
|
||||
use_resource = (use_resource or
|
||||
self._use_resource_variables or
|
||||
scope.use_resource)
|
||||
|
@ -28,6 +28,7 @@ from tensorflow.python.eager import def_function
|
||||
from tensorflow.python.framework import constant_op
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.keras import backend
|
||||
from tensorflow.python.keras import combinations
|
||||
from tensorflow.python.keras.engine import base_layer as keras_base_layer
|
||||
from tensorflow.python.keras.engine import input_spec
|
||||
@ -68,12 +69,12 @@ class BaseLayerTest(test.TestCase, parameterized.TestCase):
|
||||
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
||||
def testKerasStyleAddWeight(self):
|
||||
keras_layer = keras_base_layer.Layer(name='keras_layer')
|
||||
with ops.name_scope('foo', skip_on_eager=False):
|
||||
with backend.name_scope('foo'):
|
||||
keras_variable = keras_layer.add_variable(
|
||||
'my_var', [2, 2], initializer=init_ops.zeros_initializer())
|
||||
self.assertEqual(keras_variable.name, 'foo/my_var:0')
|
||||
|
||||
with ops.name_scope('baz', skip_on_eager=False):
|
||||
with backend.name_scope('baz'):
|
||||
old_style_layer = base_layers.Layer(name='my_layer')
|
||||
# Test basic variable creation.
|
||||
variable = old_style_layer.add_variable(
|
||||
@ -83,7 +84,7 @@ class BaseLayerTest(test.TestCase, parameterized.TestCase):
|
||||
with base_layers.keras_style_scope():
|
||||
layer = base_layers.Layer(name='my_layer')
|
||||
# Test basic variable creation.
|
||||
with ops.name_scope('bar', skip_on_eager=False):
|
||||
with backend.name_scope('bar'):
|
||||
variable = layer.add_variable(
|
||||
'my_var', [2, 2], initializer=init_ops.zeros_initializer())
|
||||
self.assertEqual(variable.name, 'bar/my_var:0')
|
||||
@ -241,7 +242,7 @@ class BaseLayerTest(test.TestCase, parameterized.TestCase):
|
||||
my_layer2.apply(inputs)
|
||||
self.assertEqual(my_layer2._scope.name, 'my_layer_2')
|
||||
# Name scope shouldn't affect names.
|
||||
with ops.name_scope('some_name_scope'):
|
||||
with backend.name_scope('some_name_scope'):
|
||||
default_layer2 = PrivateLayer()
|
||||
default_layer2.apply(inputs)
|
||||
self.assertEqual(default_layer2._scope.name, 'private_layer_2')
|
||||
|
@ -465,7 +465,7 @@ class CheckpointingTests(keras_parameterized.TestCase):
|
||||
root, name=name, shape=[1, 2], dtype=dtypes.float64)
|
||||
(named_variable,), _, _ = trackable_utils._serialize_object_graph(
|
||||
root, saveables_cache=None)
|
||||
with ops.name_scope("root/" + named_variable.name):
|
||||
with ops.name_scope_v2("root/" + named_variable.name):
|
||||
pass # Make sure we can use this as an op name if we prefix it.
|
||||
return named_variable.name
|
||||
|
||||
|
@ -61,8 +61,7 @@ def remove_squeezable_dimensions(
|
||||
Returns:
|
||||
Tuple of `labels` and `predictions`, possibly with last dim squeezed.
|
||||
"""
|
||||
with ops.name_scope(name, 'remove_squeezable_dimensions',
|
||||
[labels, predictions]):
|
||||
with K.name_scope(name or 'remove_squeezable_dimensions'):
|
||||
predictions = ops.convert_to_tensor_v2_with_dispatch(predictions)
|
||||
labels = ops.convert_to_tensor_v2_with_dispatch(labels)
|
||||
predictions_shape = predictions.get_shape()
|
||||
|
Loading…
Reference in New Issue
Block a user