Merge pull request #44498 from jpodivin:logredef
PiperOrigin-RevId: 342186442 Change-Id: I898125b5e03203d1a9cf455ad8c20abf1fc6c537
This commit is contained in:
commit
b79e133965
tensorflow/python
@ -18,7 +18,6 @@ from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import logging
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
@ -72,10 +71,20 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
dataset = dataset.batch(10)
|
||||
|
||||
# Call fit with validation data
|
||||
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=0,
|
||||
validation_data=dataset, validation_steps=2)
|
||||
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=0,
|
||||
validation_data=dataset, validation_steps=2)
|
||||
model.fit(
|
||||
dataset,
|
||||
epochs=1,
|
||||
steps_per_epoch=2,
|
||||
verbose=0,
|
||||
validation_data=dataset,
|
||||
validation_steps=2)
|
||||
model.fit(
|
||||
dataset,
|
||||
epochs=1,
|
||||
steps_per_epoch=2,
|
||||
verbose=0,
|
||||
validation_data=dataset,
|
||||
validation_steps=2)
|
||||
|
||||
@keras_parameterized.run_with_all_model_types
|
||||
@keras_parameterized.run_all_keras_modes
|
||||
@ -101,14 +110,23 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
model.predict(dataset, steps=2)
|
||||
|
||||
# Test with validation data
|
||||
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=0,
|
||||
validation_data=dataset, validation_steps=2)
|
||||
model.fit(
|
||||
dataset,
|
||||
epochs=1,
|
||||
steps_per_epoch=2,
|
||||
verbose=0,
|
||||
validation_data=dataset,
|
||||
validation_steps=2)
|
||||
|
||||
# Test with validation split
|
||||
with self.assertRaises(ValueError):
|
||||
model.fit(dataset,
|
||||
epochs=1, steps_per_epoch=2, verbose=0,
|
||||
validation_split=0.5, validation_steps=2)
|
||||
model.fit(
|
||||
dataset,
|
||||
epochs=1,
|
||||
steps_per_epoch=2,
|
||||
verbose=0,
|
||||
validation_split=0.5,
|
||||
validation_steps=2)
|
||||
|
||||
# Test with sample weight.
|
||||
sample_weight = np.random.random((10,))
|
||||
@ -124,8 +142,7 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, '(you should not specify a target)|'
|
||||
'(`y` argument is not supported when using dataset as input.)'):
|
||||
model.fit(dataset, dataset,
|
||||
epochs=1, steps_per_epoch=2, verbose=0)
|
||||
model.fit(dataset, dataset, epochs=1, steps_per_epoch=2, verbose=0)
|
||||
|
||||
# With an infinite dataset, `steps_per_epoch`/`steps` argument is required.
|
||||
with self.assertRaises(ValueError):
|
||||
@ -157,8 +174,8 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
output_e_np = np.random.random((10, 4)).astype(dtype=np.float32)
|
||||
|
||||
# Test with tuples
|
||||
dataset_tuple = dataset_ops.Dataset.from_tensor_slices((
|
||||
(input_a_np, input_b_np), (output_d_np, output_e_np)))
|
||||
dataset_tuple = dataset_ops.Dataset.from_tensor_slices(
|
||||
((input_a_np, input_b_np), (output_d_np, output_e_np)))
|
||||
dataset_tuple = dataset_tuple.repeat(100)
|
||||
dataset_tuple = dataset_tuple.batch(10)
|
||||
|
||||
@ -172,16 +189,15 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
else:
|
||||
output_dict = {'dense': output_d_np, 'dropout': output_e_np}
|
||||
|
||||
dataset_dict = dataset_ops.Dataset.from_tensor_slices((
|
||||
input_dict, output_dict))
|
||||
dataset_dict = dataset_ops.Dataset.from_tensor_slices(
|
||||
(input_dict, output_dict))
|
||||
dataset_dict = dataset_dict.repeat(100)
|
||||
dataset_dict = dataset_dict.batch(10)
|
||||
|
||||
model.fit(dataset_dict, epochs=1, steps_per_epoch=2, verbose=1)
|
||||
model.evaluate(dataset_dict, steps=2, verbose=1)
|
||||
|
||||
predict_dataset_dict = dataset_ops.Dataset.from_tensor_slices(
|
||||
input_dict)
|
||||
predict_dataset_dict = dataset_ops.Dataset.from_tensor_slices(input_dict)
|
||||
predict_dataset_dict = predict_dataset_dict.repeat(100)
|
||||
predict_dataset_dict = predict_dataset_dict.batch(10)
|
||||
model.predict(predict_dataset_dict, steps=1)
|
||||
@ -202,8 +218,8 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
inputs = np.zeros((10, 3), np.float32)
|
||||
targets = np.zeros((10, 4), np.float32)
|
||||
sample_weights = np.ones((10), np.float32)
|
||||
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets,
|
||||
sample_weights))
|
||||
dataset = dataset_ops.Dataset.from_tensor_slices(
|
||||
(inputs, targets, sample_weights))
|
||||
dataset = dataset.repeat(100)
|
||||
dataset = dataset.batch(10)
|
||||
|
||||
@ -216,7 +232,8 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
def test_dataset_with_sample_weights_correctness(self):
|
||||
x = keras.layers.Input(shape=(1,), name='input')
|
||||
y = keras.layers.Dense(
|
||||
1, kernel_initializer='ones', bias_initializer='zeros', name='dense')(x)
|
||||
1, kernel_initializer='ones', bias_initializer='zeros', name='dense')(
|
||||
x)
|
||||
model = keras.Model(x, y)
|
||||
optimizer = 'rmsprop'
|
||||
loss = 'mse'
|
||||
@ -224,8 +241,8 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
inputs = np.array([[0], [1], [2], [3]], np.float32)
|
||||
targets = np.array([[2], [4], [6], [8]], np.float32)
|
||||
sample_weights = np.array([0.25, 0.5, 0.75, 1], np.float32)
|
||||
ds = dataset_ops.Dataset.from_tensor_slices((inputs, targets,
|
||||
sample_weights)).batch(2)
|
||||
ds = dataset_ops.Dataset.from_tensor_slices(
|
||||
(inputs, targets, sample_weights)).batch(2)
|
||||
result = model.evaluate(ds, verbose=1)
|
||||
# The per sample loss is multipled by the corresponding sample weight. The
|
||||
# average of these weighted losses is the return value of the `evaluate`
|
||||
@ -255,6 +272,7 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
|
||||
@keras_parameterized.run_all_keras_modes
|
||||
def test_dataset_fit_correctness(self):
|
||||
|
||||
class SumLayer(keras.layers.Layer):
|
||||
|
||||
def build(self, _):
|
||||
@ -265,9 +283,7 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
|
||||
model = keras.Sequential([SumLayer(input_shape=(2,))])
|
||||
model.compile(
|
||||
'rmsprop',
|
||||
loss='mae',
|
||||
run_eagerly=testing_utils.should_run_eagerly())
|
||||
'rmsprop', loss='mae', run_eagerly=testing_utils.should_run_eagerly())
|
||||
|
||||
inputs = np.zeros((40, 2), dtype=np.float32)
|
||||
inputs[10:20, :] = 2
|
||||
@ -280,9 +296,13 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
(inputs, targets)).batch(10)
|
||||
val_dataset = dataset_ops.Dataset.from_tensor_slices(
|
||||
(inputs, targets)).batch(10)
|
||||
history = model.fit(train_dataset,
|
||||
epochs=2, steps_per_epoch=2, verbose=1,
|
||||
validation_data=val_dataset, validation_steps=2)
|
||||
history = model.fit(
|
||||
train_dataset,
|
||||
epochs=2,
|
||||
steps_per_epoch=2,
|
||||
verbose=1,
|
||||
validation_data=val_dataset,
|
||||
validation_steps=2)
|
||||
self.assertAllClose(history.history['loss'],
|
||||
[inputs[:20].sum() / 20, inputs[20:].sum() / 20])
|
||||
# The validation dataset will be reset at the end of each validation run.
|
||||
@ -294,8 +314,8 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
(inputs, targets)).batch(10)
|
||||
val_dataset = dataset_ops.Dataset.from_tensor_slices(
|
||||
(inputs, targets)).batch(10)
|
||||
history = model.fit(train_dataset,
|
||||
epochs=2, verbose=1, validation_data=val_dataset)
|
||||
history = model.fit(
|
||||
train_dataset, epochs=2, verbose=1, validation_data=val_dataset)
|
||||
self.assertAllClose(
|
||||
history.history['loss'],
|
||||
[inputs.sum() / 40, inputs.sum() / 40])
|
||||
@ -336,9 +356,7 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
def test_finite_dataset_known_cardinality_no_steps_arg(self):
|
||||
model = testing_utils.get_small_mlp(1, 4, input_dim=3)
|
||||
model.compile(
|
||||
'rmsprop',
|
||||
'mse',
|
||||
run_eagerly=testing_utils.should_run_eagerly())
|
||||
'rmsprop', 'mse', run_eagerly=testing_utils.should_run_eagerly())
|
||||
|
||||
inputs = np.zeros((100, 3), dtype=np.float32)
|
||||
targets = np.random.randint(0, 4, size=100, dtype=np.int32)
|
||||
@ -359,16 +377,15 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
def test_finite_dataset_unknown_cardinality_no_steps_arg(self):
|
||||
model = testing_utils.get_small_mlp(1, 4, input_dim=3)
|
||||
model.compile(
|
||||
'rmsprop',
|
||||
'mse',
|
||||
run_eagerly=testing_utils.should_run_eagerly())
|
||||
'rmsprop', 'mse', run_eagerly=testing_utils.should_run_eagerly())
|
||||
|
||||
inputs = np.zeros((100, 3), dtype=np.float32)
|
||||
targets = np.random.randint(0, 4, size=100, dtype=np.int32)
|
||||
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
|
||||
dataset = dataset.filter(lambda x, y: True).batch(10)
|
||||
self.assertEqual(keras.backend.get_value(cardinality.cardinality(dataset)),
|
||||
cardinality.UNKNOWN)
|
||||
self.assertEqual(
|
||||
keras.backend.get_value(cardinality.cardinality(dataset)),
|
||||
cardinality.UNKNOWN)
|
||||
|
||||
batch_counter = BatchCounterCallback()
|
||||
history = model.fit(dataset, epochs=2, verbose=1, callbacks=[batch_counter])
|
||||
@ -398,9 +415,7 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
|
||||
model = testing_utils.get_small_mlp(1, 4, input_dim=3)
|
||||
model.compile(
|
||||
'rmsprop',
|
||||
'mse',
|
||||
run_eagerly=testing_utils.should_run_eagerly())
|
||||
'rmsprop', 'mse', run_eagerly=testing_utils.should_run_eagerly())
|
||||
|
||||
inputs = np.zeros((100, 3), dtype=np.float32)
|
||||
targets = np.random.randint(0, 4, size=100, dtype=np.int32)
|
||||
@ -434,9 +449,7 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
def test_finite_dataset_unknown_cardinality_out_of_data(self):
|
||||
model = testing_utils.get_small_mlp(1, 4, input_dim=3)
|
||||
model.compile(
|
||||
'rmsprop',
|
||||
'mse',
|
||||
run_eagerly=testing_utils.should_run_eagerly())
|
||||
'rmsprop', 'mse', run_eagerly=testing_utils.should_run_eagerly())
|
||||
|
||||
inputs = np.zeros((100, 3), dtype=np.float32)
|
||||
targets = np.random.randint(0, 4, size=100, dtype=np.int32)
|
||||
@ -456,8 +469,8 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
verbose=1,
|
||||
callbacks=[batch_counter],
|
||||
steps_per_epoch=200)
|
||||
self.assertIn(
|
||||
'ran out of data; interrupting training.', str(mock_log.call_args))
|
||||
self.assertIn('ran out of data; interrupting training.',
|
||||
str(mock_log.call_args))
|
||||
self.assertIn(
|
||||
'can generate at least '
|
||||
'`steps_per_epoch * epochs` batches (in this case, 400 batches). '
|
||||
@ -490,8 +503,7 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
out = keras.layers.Dense(2)(inp)
|
||||
model = keras.Model(inp, out)
|
||||
model.compile(
|
||||
'rmsprop', loss='mse',
|
||||
run_eagerly=testing_utils.should_run_eagerly())
|
||||
'rmsprop', loss='mse', run_eagerly=testing_utils.should_run_eagerly())
|
||||
|
||||
inputs = np.zeros((100, 4), dtype=np.float32)
|
||||
targets = np.random.randint(0, 2, size=100, dtype=np.int32)
|
||||
@ -505,6 +517,7 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
for _ in range(100):
|
||||
yield (np.zeros(4, dtype=np.float32),
|
||||
np.random.randint(0, 2, size=1, dtype=np.int32))
|
||||
|
||||
eval_ds = dataset_ops.Dataset.from_generator(
|
||||
generator=gen,
|
||||
output_types=('float64', 'int32'),
|
||||
@ -516,8 +529,7 @@ class TestTrainingWithDataset(keras_parameterized.TestCase):
|
||||
steps_per_epoch=10,
|
||||
epochs=10,
|
||||
validation_data=eval_ds,
|
||||
callbacks=[batch_counter]
|
||||
)
|
||||
callbacks=[batch_counter])
|
||||
|
||||
# Expect 10 batch from training per epoch.
|
||||
self.assertEqual(batch_counter.batch_end_count, 100)
|
||||
@ -529,8 +541,8 @@ class TestMetricsWithDatasets(keras_parameterized.TestCase):
|
||||
@keras_parameterized.run_all_keras_modes
|
||||
def test_metrics_correctness_with_dataset(self):
|
||||
layers = [
|
||||
keras.layers.Dense(8, activation='relu', input_dim=4,
|
||||
kernel_initializer='ones'),
|
||||
keras.layers.Dense(
|
||||
8, activation='relu', input_dim=4, kernel_initializer='ones'),
|
||||
keras.layers.Dense(1, activation='sigmoid', kernel_initializer='ones')
|
||||
]
|
||||
|
||||
|
@ -18,7 +18,6 @@ from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import logging
|
||||
import pickle
|
||||
import types
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user