Fully Connected operator in XNNPACK delegate
PiperOrigin-RevId: 308195277 Change-Id: I3085db883d834ce75b513ece69b985c738c1df98
This commit is contained in:
parent
e02b78e9df
commit
b713165f1e
@ -75,6 +75,22 @@ cc_library(
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "fully_connected_tester",
|
||||
testonly = 1,
|
||||
srcs = ["fully_connected_tester.cc"],
|
||||
hdrs = ["fully_connected_tester.h"],
|
||||
deps = [
|
||||
"//tensorflow/lite:framework",
|
||||
"//tensorflow/lite:schema_fbs_version",
|
||||
"//tensorflow/lite/c:common",
|
||||
"//tensorflow/lite/kernels:builtin_ops",
|
||||
"//tensorflow/lite/schema:schema_fbs",
|
||||
"@com_google_googletest//:gtest",
|
||||
"@flatbuffers",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "pool_2d_tester",
|
||||
testonly = 1,
|
||||
@ -199,6 +215,21 @@ cc_test(
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "fully_connected_test",
|
||||
srcs = ["fully_connected_test.cc"],
|
||||
linkopts = select({
|
||||
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||
"//conditions:default": [],
|
||||
}),
|
||||
deps = [
|
||||
":fully_connected_tester",
|
||||
":test_main",
|
||||
":xnnpack_delegate_test_mode",
|
||||
"@com_google_googletest//:gtest",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "hard_swish_test",
|
||||
srcs = ["hard_swish_test.cc"],
|
||||
|
326
tensorflow/lite/delegates/xnnpack/fully_connected_test.cc
Normal file
326
tensorflow/lite/delegates/xnnpack/fully_connected_test.cc
Normal file
@ -0,0 +1,326 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <random>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "tensorflow/lite/delegates/xnnpack/fully_connected_tester.h"
|
||||
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
TEST(FullyConnected, 1D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto channels_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
|
||||
const auto input_channels = channels_rng();
|
||||
const auto output_channels = channels_rng();
|
||||
|
||||
FullyConnectedTester()
|
||||
.InputShape({input_channels})
|
||||
.InputChannels(input_channels)
|
||||
.OutputChannels(output_channels)
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(FullyConnected, 1DKeepDims) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto channels_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
|
||||
const auto input_channels = channels_rng();
|
||||
const auto output_channels = channels_rng();
|
||||
|
||||
FullyConnectedTester()
|
||||
.InputShape({input_channels})
|
||||
.InputChannels(input_channels)
|
||||
.OutputChannels(output_channels)
|
||||
.KeepDims(true)
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(FullyConnected, 2D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
auto channels_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
|
||||
const auto batch = batch_rng();
|
||||
const auto input_channels = channels_rng();
|
||||
const auto output_channels = channels_rng();
|
||||
|
||||
FullyConnectedTester()
|
||||
.InputShape({batch, input_channels})
|
||||
.InputChannels(input_channels)
|
||||
.OutputChannels(output_channels)
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(FullyConnected, 2DKeepDims) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
auto channels_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
|
||||
const auto batch = batch_rng();
|
||||
const auto input_channels = channels_rng();
|
||||
const auto output_channels = channels_rng();
|
||||
|
||||
FullyConnectedTester()
|
||||
.InputShape({batch, input_channels})
|
||||
.InputChannels(input_channels)
|
||||
.OutputChannels(output_channels)
|
||||
.KeepDims(true)
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(FullyConnected, 3D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
auto channels_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto input_channels = channels_rng();
|
||||
const auto output_channels = channels_rng();
|
||||
|
||||
FullyConnectedTester()
|
||||
.InputShape({batch, width, input_channels})
|
||||
.InputChannels(input_channels)
|
||||
.OutputChannels(output_channels)
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(FullyConnected, 3DReshape) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
auto channels_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto input_channels = channels_rng();
|
||||
const auto output_channels = channels_rng();
|
||||
|
||||
FullyConnectedTester()
|
||||
.InputShape({batch, width, input_channels})
|
||||
.InputChannels(width * input_channels)
|
||||
.OutputChannels(output_channels)
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(FullyConnected, 3DKeepDims) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
auto channels_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto input_channels = channels_rng();
|
||||
const auto output_channels = channels_rng();
|
||||
|
||||
FullyConnectedTester()
|
||||
.InputShape({batch, width, input_channels})
|
||||
.InputChannels(input_channels)
|
||||
.OutputChannels(output_channels)
|
||||
.KeepDims(true)
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(FullyConnected, 4D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
auto channels_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto input_channels = channels_rng();
|
||||
const auto output_channels = channels_rng();
|
||||
|
||||
FullyConnectedTester()
|
||||
.InputShape({batch, height, width, input_channels})
|
||||
.InputChannels(input_channels)
|
||||
.OutputChannels(output_channels)
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(FullyConnected, 4DKeepDims) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
auto channels_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto input_channels = channels_rng();
|
||||
const auto output_channels = channels_rng();
|
||||
|
||||
FullyConnectedTester()
|
||||
.InputShape({batch, height, width, input_channels})
|
||||
.InputChannels(input_channels)
|
||||
.OutputChannels(output_channels)
|
||||
.KeepDims(true)
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(FullyConnected, ReluActivation) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
auto channels_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
|
||||
const auto batch = batch_rng();
|
||||
const auto input_channels = channels_rng();
|
||||
const auto output_channels = channels_rng();
|
||||
|
||||
FullyConnectedTester()
|
||||
.InputShape({batch, input_channels})
|
||||
.InputChannels(input_channels)
|
||||
.OutputChannels(output_channels)
|
||||
.ReluActivation()
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(FullyConnected, Relu6Activation) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
auto channels_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
|
||||
const auto batch = batch_rng();
|
||||
const auto input_channels = channels_rng();
|
||||
const auto output_channels = channels_rng();
|
||||
|
||||
FullyConnectedTester()
|
||||
.InputShape({batch, input_channels})
|
||||
.InputChannels(input_channels)
|
||||
.OutputChannels(output_channels)
|
||||
.Relu6Activation()
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(FullyConnected, ReluMinus1To1Activation) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
auto channels_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
|
||||
const auto batch = batch_rng();
|
||||
const auto input_channels = channels_rng();
|
||||
const auto output_channels = channels_rng();
|
||||
|
||||
FullyConnectedTester()
|
||||
.InputShape({batch, input_channels})
|
||||
.InputChannels(input_channels)
|
||||
.OutputChannels(output_channels)
|
||||
.ReluMinus1To1Activation()
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(FullyConnected, MultiThreading) {
|
||||
TfLiteXNNPackDelegateOptions delegate_options =
|
||||
TfLiteXNNPackDelegateOptionsDefault();
|
||||
delegate_options.num_threads = 2;
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
auto channels_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
|
||||
const auto batch = batch_rng();
|
||||
const auto input_channels = channels_rng();
|
||||
const auto output_channels = channels_rng();
|
||||
|
||||
FullyConnectedTester()
|
||||
.InputShape({batch, input_channels})
|
||||
.InputChannels(input_channels)
|
||||
.OutputChannels(output_channels)
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
219
tensorflow/lite/delegates/xnnpack/fully_connected_tester.cc
Normal file
219
tensorflow/lite/delegates/xnnpack/fully_connected_tester.cc
Normal file
@ -0,0 +1,219 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/delegates/xnnpack/fully_connected_tester.h"
|
||||
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <numeric>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
#include "tensorflow/lite/interpreter.h"
|
||||
#include "tensorflow/lite/kernels/register.h"
|
||||
#include "tensorflow/lite/model.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
#include "tensorflow/lite/version.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
std::vector<int32_t> FullyConnectedTester::OutputShape() const {
|
||||
EXPECT_NE(input_shape_.size(), 0);
|
||||
if (KeepDims()) {
|
||||
std::vector<int32_t> output_shape(input_shape_.cbegin(),
|
||||
input_shape_.cend() - 1);
|
||||
output_shape.push_back(OutputChannels());
|
||||
return output_shape;
|
||||
} else {
|
||||
EXPECT_EQ(InputSize() % InputChannels(), 0);
|
||||
return std::vector<int32_t>(
|
||||
{InputSize() / InputChannels(), OutputChannels()});
|
||||
}
|
||||
}
|
||||
|
||||
void FullyConnectedTester::Test(TfLiteDelegate* delegate) const {
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto input_rng =
|
||||
std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
|
||||
|
||||
std::vector<char> buffer = CreateTfLiteModel();
|
||||
const Model* model = GetModel(buffer.data());
|
||||
|
||||
std::unique_ptr<Interpreter> delegate_interpreter;
|
||||
ASSERT_EQ(
|
||||
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
|
||||
&delegate_interpreter),
|
||||
kTfLiteOk);
|
||||
std::unique_ptr<Interpreter> default_interpreter;
|
||||
ASSERT_EQ(
|
||||
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
|
||||
&default_interpreter),
|
||||
kTfLiteOk);
|
||||
|
||||
ASSERT_TRUE(delegate_interpreter);
|
||||
ASSERT_TRUE(default_interpreter);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->inputs().size(), 1);
|
||||
ASSERT_EQ(default_interpreter->inputs().size(), 1);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->outputs().size(), 1);
|
||||
ASSERT_EQ(default_interpreter->outputs().size(), 1);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->AllocateTensors(), kTfLiteOk);
|
||||
ASSERT_EQ(default_interpreter->AllocateTensors(), kTfLiteOk);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->ModifyGraphWithDelegate(delegate), kTfLiteOk);
|
||||
|
||||
float* default_input_data = default_interpreter->typed_tensor<float>(
|
||||
default_interpreter->inputs()[0]);
|
||||
std::generate(default_input_data, default_input_data + InputSize(),
|
||||
std::ref(input_rng));
|
||||
|
||||
float* delegate_input_data = delegate_interpreter->typed_tensor<float>(
|
||||
delegate_interpreter->inputs()[0]);
|
||||
std::copy(default_input_data, default_input_data + InputSize(),
|
||||
delegate_input_data);
|
||||
|
||||
ASSERT_EQ(default_interpreter->Invoke(), kTfLiteOk);
|
||||
ASSERT_EQ(delegate_interpreter->Invoke(), kTfLiteOk);
|
||||
|
||||
float* default_output_data = default_interpreter->typed_tensor<float>(
|
||||
default_interpreter->outputs()[0]);
|
||||
float* delegate_output_data = delegate_interpreter->typed_tensor<float>(
|
||||
delegate_interpreter->outputs()[0]);
|
||||
|
||||
for (size_t i = 0; i < ComputeSize(OutputShape()); i++) {
|
||||
ASSERT_NEAR(default_output_data[i], delegate_output_data[i],
|
||||
std::numeric_limits<float>::epsilon() *
|
||||
std::max(std::abs(default_output_data[i]) * 10.0f, 1.0f));
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<char> FullyConnectedTester::CreateTfLiteModel() const {
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
|
||||
auto range_rng = std::bind(
|
||||
std::uniform_real_distribution<float>(-25.0f, 25.0f), std::ref(rng));
|
||||
|
||||
flatbuffers::FlatBufferBuilder builder;
|
||||
flatbuffers::Offset<OperatorCode> operator_code =
|
||||
CreateOperatorCode(builder, BuiltinOperator_FULLY_CONNECTED);
|
||||
|
||||
std::vector<float> filter_data(InputChannels() * OutputChannels());
|
||||
std::vector<float> bias_data(OutputChannels());
|
||||
|
||||
for (int32_t oc = 0; oc < OutputChannels(); oc++) {
|
||||
// Use the same range of all-positive or all-negative values to generate
|
||||
// all filter & bias weights within the same channel, but different ranges
|
||||
// for different output channels. This ensures that no catastrophic
|
||||
// cancellation occur, but test covers both positive and negative inputs.
|
||||
const float range = range_rng();
|
||||
auto value_rng =
|
||||
std::bind(std::uniform_real_distribution<float>(std::min(range, 0.0f),
|
||||
std::max(range, 0.0f)),
|
||||
std::ref(rng));
|
||||
|
||||
bias_data[oc] = value_rng();
|
||||
for (int32_t ic = 0; ic < InputChannels(); ic++) {
|
||||
filter_data[oc * InputChannels() + ic] = value_rng();
|
||||
}
|
||||
}
|
||||
|
||||
std::array<flatbuffers::Offset<Buffer>, 3> buffers{{
|
||||
CreateBuffer(builder, builder.CreateVector({})),
|
||||
CreateBuffer(builder,
|
||||
builder.CreateVector(
|
||||
reinterpret_cast<const uint8_t*>(filter_data.data()),
|
||||
sizeof(float) * filter_data.size())),
|
||||
CreateBuffer(builder,
|
||||
builder.CreateVector(
|
||||
reinterpret_cast<const uint8_t*>(bias_data.data()),
|
||||
sizeof(float) * bias_data.size())),
|
||||
}};
|
||||
|
||||
const std::array<int32_t, 2> filter_shape(
|
||||
{OutputChannels(), InputChannels()});
|
||||
const std::array<int32_t, 1> bias_shape({OutputChannels()});
|
||||
|
||||
const std::vector<int32_t> output_shape = OutputShape();
|
||||
const std::array<flatbuffers::Offset<Tensor>, 4> tensors{{
|
||||
CreateTensor(builder,
|
||||
builder.CreateVector<int32_t>(InputShape().data(),
|
||||
InputShape().size()),
|
||||
TensorType_FLOAT32),
|
||||
CreateTensor(builder,
|
||||
builder.CreateVector<int32_t>(filter_shape.data(),
|
||||
filter_shape.size()),
|
||||
TensorType_FLOAT32, /*buffer=*/1),
|
||||
CreateTensor(
|
||||
builder,
|
||||
builder.CreateVector<int32_t>(bias_shape.data(), bias_shape.size()),
|
||||
TensorType_FLOAT32, /*buffer=*/2),
|
||||
CreateTensor(builder,
|
||||
builder.CreateVector<int32_t>(output_shape.data(),
|
||||
output_shape.size()),
|
||||
TensorType_FLOAT32),
|
||||
}};
|
||||
|
||||
flatbuffers::Offset<FullyConnectedOptions> fully_connected_options =
|
||||
CreateFullyConnectedOptions(builder, Activation(),
|
||||
FullyConnectedOptionsWeightsFormat_DEFAULT,
|
||||
KeepDims());
|
||||
|
||||
const std::array<int32_t, 3> op_inputs{{0, 1, 2}};
|
||||
const std::array<int32_t, 1> op_outputs{{3}};
|
||||
flatbuffers::Offset<Operator> op = CreateOperator(
|
||||
builder, /*opcode_index=*/0,
|
||||
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
|
||||
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()),
|
||||
BuiltinOptions_FullyConnectedOptions, fully_connected_options.Union());
|
||||
|
||||
const std::array<int32_t, 1> subgraph_inputs{{0}};
|
||||
const std::array<int32_t, 1> subgraph_outputs{{3}};
|
||||
flatbuffers::Offset<SubGraph> subgraph = CreateSubGraph(
|
||||
builder, builder.CreateVector(tensors.data(), tensors.size()),
|
||||
builder.CreateVector<int32_t>(subgraph_inputs.data(),
|
||||
subgraph_inputs.size()),
|
||||
builder.CreateVector<int32_t>(subgraph_outputs.data(),
|
||||
subgraph_outputs.size()),
|
||||
builder.CreateVector(&op, 1));
|
||||
|
||||
flatbuffers::Offset<flatbuffers::String> description =
|
||||
builder.CreateString("Fully Connected model");
|
||||
|
||||
flatbuffers::Offset<Model> model_buffer = CreateModel(
|
||||
builder, TFLITE_SCHEMA_VERSION, builder.CreateVector(&operator_code, 1),
|
||||
builder.CreateVector(&subgraph, 1), description,
|
||||
builder.CreateVector(buffers.data(), buffers.size()));
|
||||
|
||||
builder.Finish(model_buffer);
|
||||
|
||||
return std::vector<char>(builder.GetBufferPointer(),
|
||||
builder.GetBufferPointer() + builder.GetSize());
|
||||
}
|
||||
|
||||
int32_t FullyConnectedTester::ComputeSize(const std::vector<int32_t>& shape) {
|
||||
return std::accumulate(shape.cbegin(), shape.cend(), 1,
|
||||
std::multiplies<int32_t>());
|
||||
}
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
114
tensorflow/lite/delegates/xnnpack/fully_connected_tester.h
Normal file
114
tensorflow/lite/delegates/xnnpack/fully_connected_tester.h
Normal file
@ -0,0 +1,114 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_DELEGATES_XNNPACK_FULLY_CONNECTED_TESTER_H_
|
||||
#define TENSORFLOW_LITE_DELEGATES_XNNPACK_FULLY_CONNECTED_TESTER_H_
|
||||
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
class FullyConnectedTester {
|
||||
public:
|
||||
FullyConnectedTester() = default;
|
||||
FullyConnectedTester(const FullyConnectedTester&) = delete;
|
||||
FullyConnectedTester& operator=(const FullyConnectedTester&) = delete;
|
||||
|
||||
inline FullyConnectedTester& InputShape(
|
||||
std::initializer_list<int32_t> shape) {
|
||||
for (auto it = shape.begin(); it != shape.end(); ++it) {
|
||||
EXPECT_GT(*it, 0);
|
||||
}
|
||||
input_shape_ = std::vector<int32_t>(shape.begin(), shape.end());
|
||||
input_size_ = ComputeSize(input_shape_);
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline const std::vector<int32_t>& InputShape() const { return input_shape_; }
|
||||
|
||||
inline int32_t InputSize() const { return input_size_; }
|
||||
|
||||
inline FullyConnectedTester& InputChannels(int32_t input_channels) {
|
||||
EXPECT_GT(input_channels, 0);
|
||||
input_channels_ = input_channels;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t InputChannels() const { return input_channels_; }
|
||||
|
||||
inline FullyConnectedTester& OutputChannels(int32_t output_channels) {
|
||||
EXPECT_GT(output_channels, 0);
|
||||
output_channels_ = output_channels;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t OutputChannels() const { return output_channels_; }
|
||||
|
||||
std::vector<int32_t> OutputShape() const;
|
||||
|
||||
inline FullyConnectedTester& KeepDims(bool keep_dims) {
|
||||
keep_dims_ = keep_dims;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline bool KeepDims() const { return keep_dims_; }
|
||||
|
||||
inline FullyConnectedTester& ReluActivation() {
|
||||
activation_ = ::tflite::ActivationFunctionType_RELU;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline FullyConnectedTester& Relu6Activation() {
|
||||
activation_ = ::tflite::ActivationFunctionType_RELU6;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline FullyConnectedTester& ReluMinus1To1Activation() {
|
||||
activation_ = ::tflite::ActivationFunctionType_RELU_N1_TO_1;
|
||||
return *this;
|
||||
}
|
||||
|
||||
void Test(TfLiteDelegate* delegate) const;
|
||||
|
||||
private:
|
||||
std::vector<char> CreateTfLiteModel() const;
|
||||
|
||||
inline ::tflite::ActivationFunctionType Activation() const {
|
||||
return activation_;
|
||||
}
|
||||
|
||||
static int32_t ComputeSize(const std::vector<int32_t>& shape);
|
||||
|
||||
std::vector<int32_t> input_shape_;
|
||||
int32_t input_size_ = 1;
|
||||
int32_t input_channels_ = 1;
|
||||
int32_t output_channels_ = 1;
|
||||
bool keep_dims_ = false;
|
||||
::tflite::ActivationFunctionType activation_ =
|
||||
::tflite::ActivationFunctionType_NONE;
|
||||
};
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_DELEGATES_XNNPACK_FULLY_CONNECTED_TESTER_H_
|
@ -397,6 +397,21 @@ class Subgraph {
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
static TfLiteStatus CheckFullyConnectedParams(
|
||||
TfLiteContext* context, const TfLiteFullyConnectedParams* params,
|
||||
int node_index) {
|
||||
if (params->weights_format != kTfLiteFullyConnectedWeightsFormatDefault) {
|
||||
if (context != nullptr) {
|
||||
TF_LITE_KERNEL_LOG(context,
|
||||
"unsupported non-default weights format in node #%d",
|
||||
node_index);
|
||||
}
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
static TfLiteStatus CheckPoolingParams(TfLiteContext* context,
|
||||
const TfLitePoolParams* params,
|
||||
int node_index) {
|
||||
@ -493,8 +508,11 @@ class Subgraph {
|
||||
}
|
||||
for (int i = 0; i < tensor.dims->size; i++) {
|
||||
if (tensor.dims->data[i] <= 0) {
|
||||
TF_LITE_KERNEL_LOG(context, "invalid dimension #%d (%d) in tensor #%d",
|
||||
i, tensor.dims->data[i], tensor_index);
|
||||
if (context != nullptr) {
|
||||
TF_LITE_KERNEL_LOG(context,
|
||||
"invalid dimension #%d (%d) in tensor #%d", i,
|
||||
tensor.dims->data[i], tensor_index);
|
||||
}
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
@ -604,6 +622,14 @@ class Subgraph {
|
||||
node, context->tensors, dwconv_params,
|
||||
xnnpack_tensors);
|
||||
}
|
||||
case kTfLiteBuiltinFullyConnected: {
|
||||
const TfLiteFullyConnectedParams* fc_params =
|
||||
static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data);
|
||||
|
||||
return VisitFullyConnectedNode(subgraph, logging_context, node_index,
|
||||
node, context->tensors, fc_params,
|
||||
xnnpack_tensors);
|
||||
}
|
||||
case kTfLiteBuiltinHardSwish:
|
||||
return VisitHardSwishNode(subgraph, logging_context, node_index, node,
|
||||
context->tensors, xnnpack_tensors);
|
||||
@ -934,6 +960,156 @@ class Subgraph {
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
static TfLiteStatus VisitFullyConnectedNode(
|
||||
xnn_subgraph_t subgraph, TfLiteContext* logging_context, int node_index,
|
||||
TfLiteNode* node, const TfLiteTensor* tensors,
|
||||
const TfLiteFullyConnectedParams* fc_params,
|
||||
const std::vector<uint32_t>& xnnpack_tensors) {
|
||||
TF_LITE_ENSURE_STATUS(
|
||||
CheckFullyConnectedParams(logging_context, fc_params, node_index));
|
||||
|
||||
TF_LITE_ENSURE_STATUS(
|
||||
CheckNumInputsAndOutputs(logging_context, node, 3, 1, node_index));
|
||||
|
||||
const TfLiteTensor& input_tensor = tensors[node->inputs->data[0]];
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorFloatType(
|
||||
logging_context, input_tensor, node->inputs->data[0], node_index));
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorNonDynamicAllocation(
|
||||
logging_context, input_tensor, node->inputs->data[0], node_index));
|
||||
|
||||
const TfLiteTensor& filter_tensor = tensors[node->inputs->data[1]];
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorFloatType(
|
||||
logging_context, filter_tensor, node->inputs->data[1], node_index));
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorShape(logging_context, filter_tensor, 2,
|
||||
node->inputs->data[1]));
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorStaticAllocation(
|
||||
logging_context, filter_tensor, node->inputs->data[1], node_index));
|
||||
|
||||
const TfLiteTensor& bias_tensor = tensors[node->inputs->data[2]];
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorFloatType(
|
||||
logging_context, filter_tensor, node->inputs->data[2], node_index));
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorShape(logging_context, bias_tensor, 1,
|
||||
node->inputs->data[2]));
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorStaticAllocation(
|
||||
logging_context, bias_tensor, node->inputs->data[2], node_index));
|
||||
|
||||
const TfLiteTensor& output_tensor = tensors[node->outputs->data[0]];
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorFloatType(
|
||||
logging_context, output_tensor, node->outputs->data[0], node_index));
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorNonDynamicAllocation(
|
||||
logging_context, output_tensor, node->outputs->data[0], node_index));
|
||||
|
||||
const int32_t output_channels = filter_tensor.dims->data[0];
|
||||
const int32_t input_channels = filter_tensor.dims->data[1];
|
||||
|
||||
if (input_tensor.dims->size == 0) {
|
||||
if (logging_context != nullptr) {
|
||||
TF_LITE_KERNEL_LOG(
|
||||
logging_context,
|
||||
"unexpected number of shape dimensions %d in tensor #%d",
|
||||
input_tensor.dims->size, node->inputs->data[0]);
|
||||
}
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
int32_t num_input_elements = 1;
|
||||
for (int i = 0; i < input_tensor.dims->size; i++) {
|
||||
if (input_tensor.dims->data[i] <= 0) {
|
||||
if (logging_context != nullptr) {
|
||||
TF_LITE_KERNEL_LOG(logging_context,
|
||||
"invalid dimension #%d (%d) in tensor #%d", i,
|
||||
input_tensor.dims->data[i], node->inputs->data[0]);
|
||||
}
|
||||
return kTfLiteError;
|
||||
}
|
||||
num_input_elements *= input_tensor.dims->data[i];
|
||||
}
|
||||
|
||||
if (fc_params->keep_num_dims) {
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorShape(logging_context, output_tensor,
|
||||
input_tensor.dims->size,
|
||||
node->outputs->data[0]));
|
||||
|
||||
for (int i = 0; i < input_tensor.dims->size - 1; i++) {
|
||||
if (input_tensor.dims->data[i] != output_tensor.dims->data[i]) {
|
||||
if (logging_context != nullptr) {
|
||||
TF_LITE_KERNEL_LOG(
|
||||
logging_context,
|
||||
"mismatch in shape dimension %d (%d != %d) in input and output "
|
||||
"tensors of FULLY_CONNECTED operator #%d",
|
||||
i, input_tensor.dims->data[i], output_tensor.dims->data[i],
|
||||
node_index);
|
||||
}
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (num_input_elements % input_channels != 0) {
|
||||
if (logging_context != nullptr) {
|
||||
TF_LITE_KERNEL_LOG(
|
||||
logging_context,
|
||||
"number of elements in input tensor #%d in FULLY_CONNECTED "
|
||||
"operator is not divisible by input channels (%d)",
|
||||
node->inputs->data[0], input_channels);
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorShape(logging_context, output_tensor, 2,
|
||||
node->outputs->data[0]));
|
||||
|
||||
if (output_tensor.dims->data[0] != num_input_elements / input_channels) {
|
||||
if (logging_context != nullptr) {
|
||||
TF_LITE_KERNEL_LOG(
|
||||
logging_context,
|
||||
"batch size %d in output tensor #%d in FULLY_CONNECTED operator "
|
||||
"does not match batch size %d in reshaped input tensor #%d",
|
||||
output_tensor.dims->data[0], node->outputs->data[0],
|
||||
num_input_elements / input_channels, node->inputs->data[0]);
|
||||
}
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
|
||||
if (output_tensor.dims->data[output_tensor.dims->size - 1] !=
|
||||
output_channels) {
|
||||
if (logging_context != nullptr) {
|
||||
TF_LITE_KERNEL_LOG(
|
||||
logging_context,
|
||||
"number of channels %d in output tensor #%d does not match output "
|
||||
"channels %d in filter tensor #%d",
|
||||
output_tensor.dims->data[output_tensor.dims->size - 1],
|
||||
node->outputs->data[0], output_channels, node->inputs->data[1]);
|
||||
}
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
float output_min = -std::numeric_limits<float>::infinity();
|
||||
float output_max = +std::numeric_limits<float>::infinity();
|
||||
TF_LITE_ENSURE_STATUS(ConvertActivationToOutputRange(
|
||||
logging_context, node_index, fc_params->activation, &output_min,
|
||||
&output_max));
|
||||
|
||||
if (subgraph != nullptr) {
|
||||
const xnn_status status = xnn_define_fully_connected(
|
||||
subgraph, output_min, output_max,
|
||||
/*input_id=*/xnnpack_tensors[node->inputs->data[0]],
|
||||
/*filter_id=*/xnnpack_tensors[node->inputs->data[1]],
|
||||
/*bias_id=*/xnnpack_tensors[node->inputs->data[2]],
|
||||
/*output_id=*/xnnpack_tensors[node->outputs->data[0]],
|
||||
/*flags=*/fc_params->keep_num_dims ? 0
|
||||
: XNN_FLAG_TENSORFLOW_RESHAPE_2D);
|
||||
if (status != xnn_status_success) {
|
||||
TF_LITE_KERNEL_LOG(logging_context,
|
||||
"failed to delegate FULLY_CONNECTED node #%d",
|
||||
node_index);
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
static TfLiteStatus VisitHardSwishNode(
|
||||
xnn_subgraph_t subgraph, TfLiteContext* logging_context, int node_index,
|
||||
TfLiteNode* node, const TfLiteTensor* tensors,
|
||||
|
@ -164,11 +164,11 @@ def tf_repositories(path_prefix = "", tf_repo_name = ""):
|
||||
|
||||
tf_http_archive(
|
||||
name = "XNNPACK",
|
||||
sha256 = "c002c961fd73b87b68074f9fda49d0dcbd0627c783e487a445da16bcd8dfdee6",
|
||||
strip_prefix = "XNNPACK-10a38087936d84ab2879a2e39fc7e204757ff3e8",
|
||||
sha256 = "f6eb0f1759eca187d922a72a3a12dfe1593bd09783aa4b67bee70630985eb832",
|
||||
strip_prefix = "XNNPACK-38c07ec51af0cbacb255922fb6219df80c06df59",
|
||||
urls = [
|
||||
"https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/XNNPACK/archive/10a38087936d84ab2879a2e39fc7e204757ff3e8.zip",
|
||||
"https://github.com/google/XNNPACK/archive/10a38087936d84ab2879a2e39fc7e204757ff3e8.zip",
|
||||
"https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/XNNPACK/archive/38c07ec51af0cbacb255922fb6219df80c06df59.zip",
|
||||
"https://github.com/google/XNNPACK/archive/38c07ec51af0cbacb255922fb6219df80c06df59.zip",
|
||||
],
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user