Fully Connected operator in XNNPACK delegate

PiperOrigin-RevId: 308195277
Change-Id: I3085db883d834ce75b513ece69b985c738c1df98
This commit is contained in:
Marat Dukhan 2020-04-23 22:14:41 -07:00 committed by TensorFlower Gardener
parent e02b78e9df
commit b713165f1e
6 changed files with 872 additions and 6 deletions

View File

@ -75,6 +75,22 @@ cc_library(
],
)
cc_library(
name = "fully_connected_tester",
testonly = 1,
srcs = ["fully_connected_tester.cc"],
hdrs = ["fully_connected_tester.h"],
deps = [
"//tensorflow/lite:framework",
"//tensorflow/lite:schema_fbs_version",
"//tensorflow/lite/c:common",
"//tensorflow/lite/kernels:builtin_ops",
"//tensorflow/lite/schema:schema_fbs",
"@com_google_googletest//:gtest",
"@flatbuffers",
],
)
cc_library(
name = "pool_2d_tester",
testonly = 1,
@ -199,6 +215,21 @@ cc_test(
],
)
cc_test(
name = "fully_connected_test",
srcs = ["fully_connected_test.cc"],
linkopts = select({
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
"//conditions:default": [],
}),
deps = [
":fully_connected_tester",
":test_main",
":xnnpack_delegate_test_mode",
"@com_google_googletest//:gtest",
],
)
cc_test(
name = "hard_swish_test",
srcs = ["hard_swish_test.cc"],

View File

@ -0,0 +1,326 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <cstdint>
#include <functional>
#include <memory>
#include <random>
#include <gtest/gtest.h>
#include "tensorflow/lite/delegates/xnnpack/fully_connected_tester.h"
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
namespace tflite {
namespace xnnpack {
TEST(FullyConnected, 1D) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto channels_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
const auto input_channels = channels_rng();
const auto output_channels = channels_rng();
FullyConnectedTester()
.InputShape({input_channels})
.InputChannels(input_channels)
.OutputChannels(output_channels)
.Test(xnnpack_delegate.get());
}
TEST(FullyConnected, 1DKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto channels_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
const auto input_channels = channels_rng();
const auto output_channels = channels_rng();
FullyConnectedTester()
.InputShape({input_channels})
.InputChannels(input_channels)
.OutputChannels(output_channels)
.KeepDims(true)
.Test(xnnpack_delegate.get());
}
TEST(FullyConnected, 2D) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto batch_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
auto channels_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
const auto batch = batch_rng();
const auto input_channels = channels_rng();
const auto output_channels = channels_rng();
FullyConnectedTester()
.InputShape({batch, input_channels})
.InputChannels(input_channels)
.OutputChannels(output_channels)
.Test(xnnpack_delegate.get());
}
TEST(FullyConnected, 2DKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto batch_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
auto channels_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
const auto batch = batch_rng();
const auto input_channels = channels_rng();
const auto output_channels = channels_rng();
FullyConnectedTester()
.InputShape({batch, input_channels})
.InputChannels(input_channels)
.OutputChannels(output_channels)
.KeepDims(true)
.Test(xnnpack_delegate.get());
}
TEST(FullyConnected, 3D) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
auto channels_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
const auto batch = shape_rng();
const auto width = shape_rng();
const auto input_channels = channels_rng();
const auto output_channels = channels_rng();
FullyConnectedTester()
.InputShape({batch, width, input_channels})
.InputChannels(input_channels)
.OutputChannels(output_channels)
.Test(xnnpack_delegate.get());
}
TEST(FullyConnected, 3DReshape) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
auto channels_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
const auto batch = shape_rng();
const auto width = shape_rng();
const auto input_channels = channels_rng();
const auto output_channels = channels_rng();
FullyConnectedTester()
.InputShape({batch, width, input_channels})
.InputChannels(width * input_channels)
.OutputChannels(output_channels)
.Test(xnnpack_delegate.get());
}
TEST(FullyConnected, 3DKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
auto channels_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
const auto batch = shape_rng();
const auto width = shape_rng();
const auto input_channels = channels_rng();
const auto output_channels = channels_rng();
FullyConnectedTester()
.InputShape({batch, width, input_channels})
.InputChannels(input_channels)
.OutputChannels(output_channels)
.KeepDims(true)
.Test(xnnpack_delegate.get());
}
TEST(FullyConnected, 4D) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
auto channels_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto input_channels = channels_rng();
const auto output_channels = channels_rng();
FullyConnectedTester()
.InputShape({batch, height, width, input_channels})
.InputChannels(input_channels)
.OutputChannels(output_channels)
.Test(xnnpack_delegate.get());
}
TEST(FullyConnected, 4DKeepDims) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto shape_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
auto channels_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
const auto batch = shape_rng();
const auto height = shape_rng();
const auto width = shape_rng();
const auto input_channels = channels_rng();
const auto output_channels = channels_rng();
FullyConnectedTester()
.InputShape({batch, height, width, input_channels})
.InputChannels(input_channels)
.OutputChannels(output_channels)
.KeepDims(true)
.Test(xnnpack_delegate.get());
}
TEST(FullyConnected, ReluActivation) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto batch_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
auto channels_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
const auto batch = batch_rng();
const auto input_channels = channels_rng();
const auto output_channels = channels_rng();
FullyConnectedTester()
.InputShape({batch, input_channels})
.InputChannels(input_channels)
.OutputChannels(output_channels)
.ReluActivation()
.Test(xnnpack_delegate.get());
}
TEST(FullyConnected, Relu6Activation) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto batch_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
auto channels_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
const auto batch = batch_rng();
const auto input_channels = channels_rng();
const auto output_channels = channels_rng();
FullyConnectedTester()
.InputShape({batch, input_channels})
.InputChannels(input_channels)
.OutputChannels(output_channels)
.Relu6Activation()
.Test(xnnpack_delegate.get());
}
TEST(FullyConnected, ReluMinus1To1Activation) {
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto batch_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
auto channels_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
const auto batch = batch_rng();
const auto input_channels = channels_rng();
const auto output_channels = channels_rng();
FullyConnectedTester()
.InputShape({batch, input_channels})
.InputChannels(input_channels)
.OutputChannels(output_channels)
.ReluMinus1To1Activation()
.Test(xnnpack_delegate.get());
}
TEST(FullyConnected, MultiThreading) {
TfLiteXNNPackDelegateOptions delegate_options =
TfLiteXNNPackDelegateOptionsDefault();
delegate_options.num_threads = 2;
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
TfLiteXNNPackDelegateDelete);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto batch_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
auto channels_rng =
std::bind(std::uniform_int_distribution<int32_t>(2, 9), std::ref(rng));
const auto batch = batch_rng();
const auto input_channels = channels_rng();
const auto output_channels = channels_rng();
FullyConnectedTester()
.InputShape({batch, input_channels})
.InputChannels(input_channels)
.OutputChannels(output_channels)
.Test(xnnpack_delegate.get());
}
} // namespace xnnpack
} // namespace tflite

View File

@ -0,0 +1,219 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/delegates/xnnpack/fully_connected_tester.h"
#include <array>
#include <cstdint>
#include <functional>
#include <numeric>
#include <random>
#include <vector>
#include <gtest/gtest.h>
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/register.h"
#include "tensorflow/lite/model.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
namespace tflite {
namespace xnnpack {
std::vector<int32_t> FullyConnectedTester::OutputShape() const {
EXPECT_NE(input_shape_.size(), 0);
if (KeepDims()) {
std::vector<int32_t> output_shape(input_shape_.cbegin(),
input_shape_.cend() - 1);
output_shape.push_back(OutputChannels());
return output_shape;
} else {
EXPECT_EQ(InputSize() % InputChannels(), 0);
return std::vector<int32_t>(
{InputSize() / InputChannels(), OutputChannels()});
}
}
void FullyConnectedTester::Test(TfLiteDelegate* delegate) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto input_rng =
std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
std::vector<char> buffer = CreateTfLiteModel();
const Model* model = GetModel(buffer.data());
std::unique_ptr<Interpreter> delegate_interpreter;
ASSERT_EQ(
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
&delegate_interpreter),
kTfLiteOk);
std::unique_ptr<Interpreter> default_interpreter;
ASSERT_EQ(
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
&default_interpreter),
kTfLiteOk);
ASSERT_TRUE(delegate_interpreter);
ASSERT_TRUE(default_interpreter);
ASSERT_EQ(delegate_interpreter->inputs().size(), 1);
ASSERT_EQ(default_interpreter->inputs().size(), 1);
ASSERT_EQ(delegate_interpreter->outputs().size(), 1);
ASSERT_EQ(default_interpreter->outputs().size(), 1);
ASSERT_EQ(delegate_interpreter->AllocateTensors(), kTfLiteOk);
ASSERT_EQ(default_interpreter->AllocateTensors(), kTfLiteOk);
ASSERT_EQ(delegate_interpreter->ModifyGraphWithDelegate(delegate), kTfLiteOk);
float* default_input_data = default_interpreter->typed_tensor<float>(
default_interpreter->inputs()[0]);
std::generate(default_input_data, default_input_data + InputSize(),
std::ref(input_rng));
float* delegate_input_data = delegate_interpreter->typed_tensor<float>(
delegate_interpreter->inputs()[0]);
std::copy(default_input_data, default_input_data + InputSize(),
delegate_input_data);
ASSERT_EQ(default_interpreter->Invoke(), kTfLiteOk);
ASSERT_EQ(delegate_interpreter->Invoke(), kTfLiteOk);
float* default_output_data = default_interpreter->typed_tensor<float>(
default_interpreter->outputs()[0]);
float* delegate_output_data = delegate_interpreter->typed_tensor<float>(
delegate_interpreter->outputs()[0]);
for (size_t i = 0; i < ComputeSize(OutputShape()); i++) {
ASSERT_NEAR(default_output_data[i], delegate_output_data[i],
std::numeric_limits<float>::epsilon() *
std::max(std::abs(default_output_data[i]) * 10.0f, 1.0f));
}
}
std::vector<char> FullyConnectedTester::CreateTfLiteModel() const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto range_rng = std::bind(
std::uniform_real_distribution<float>(-25.0f, 25.0f), std::ref(rng));
flatbuffers::FlatBufferBuilder builder;
flatbuffers::Offset<OperatorCode> operator_code =
CreateOperatorCode(builder, BuiltinOperator_FULLY_CONNECTED);
std::vector<float> filter_data(InputChannels() * OutputChannels());
std::vector<float> bias_data(OutputChannels());
for (int32_t oc = 0; oc < OutputChannels(); oc++) {
// Use the same range of all-positive or all-negative values to generate
// all filter & bias weights within the same channel, but different ranges
// for different output channels. This ensures that no catastrophic
// cancellation occur, but test covers both positive and negative inputs.
const float range = range_rng();
auto value_rng =
std::bind(std::uniform_real_distribution<float>(std::min(range, 0.0f),
std::max(range, 0.0f)),
std::ref(rng));
bias_data[oc] = value_rng();
for (int32_t ic = 0; ic < InputChannels(); ic++) {
filter_data[oc * InputChannels() + ic] = value_rng();
}
}
std::array<flatbuffers::Offset<Buffer>, 3> buffers{{
CreateBuffer(builder, builder.CreateVector({})),
CreateBuffer(builder,
builder.CreateVector(
reinterpret_cast<const uint8_t*>(filter_data.data()),
sizeof(float) * filter_data.size())),
CreateBuffer(builder,
builder.CreateVector(
reinterpret_cast<const uint8_t*>(bias_data.data()),
sizeof(float) * bias_data.size())),
}};
const std::array<int32_t, 2> filter_shape(
{OutputChannels(), InputChannels()});
const std::array<int32_t, 1> bias_shape({OutputChannels()});
const std::vector<int32_t> output_shape = OutputShape();
const std::array<flatbuffers::Offset<Tensor>, 4> tensors{{
CreateTensor(builder,
builder.CreateVector<int32_t>(InputShape().data(),
InputShape().size()),
TensorType_FLOAT32),
CreateTensor(builder,
builder.CreateVector<int32_t>(filter_shape.data(),
filter_shape.size()),
TensorType_FLOAT32, /*buffer=*/1),
CreateTensor(
builder,
builder.CreateVector<int32_t>(bias_shape.data(), bias_shape.size()),
TensorType_FLOAT32, /*buffer=*/2),
CreateTensor(builder,
builder.CreateVector<int32_t>(output_shape.data(),
output_shape.size()),
TensorType_FLOAT32),
}};
flatbuffers::Offset<FullyConnectedOptions> fully_connected_options =
CreateFullyConnectedOptions(builder, Activation(),
FullyConnectedOptionsWeightsFormat_DEFAULT,
KeepDims());
const std::array<int32_t, 3> op_inputs{{0, 1, 2}};
const std::array<int32_t, 1> op_outputs{{3}};
flatbuffers::Offset<Operator> op = CreateOperator(
builder, /*opcode_index=*/0,
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()),
BuiltinOptions_FullyConnectedOptions, fully_connected_options.Union());
const std::array<int32_t, 1> subgraph_inputs{{0}};
const std::array<int32_t, 1> subgraph_outputs{{3}};
flatbuffers::Offset<SubGraph> subgraph = CreateSubGraph(
builder, builder.CreateVector(tensors.data(), tensors.size()),
builder.CreateVector<int32_t>(subgraph_inputs.data(),
subgraph_inputs.size()),
builder.CreateVector<int32_t>(subgraph_outputs.data(),
subgraph_outputs.size()),
builder.CreateVector(&op, 1));
flatbuffers::Offset<flatbuffers::String> description =
builder.CreateString("Fully Connected model");
flatbuffers::Offset<Model> model_buffer = CreateModel(
builder, TFLITE_SCHEMA_VERSION, builder.CreateVector(&operator_code, 1),
builder.CreateVector(&subgraph, 1), description,
builder.CreateVector(buffers.data(), buffers.size()));
builder.Finish(model_buffer);
return std::vector<char>(builder.GetBufferPointer(),
builder.GetBufferPointer() + builder.GetSize());
}
int32_t FullyConnectedTester::ComputeSize(const std::vector<int32_t>& shape) {
return std::accumulate(shape.cbegin(), shape.cend(), 1,
std::multiplies<int32_t>());
}
} // namespace xnnpack
} // namespace tflite

View File

@ -0,0 +1,114 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_DELEGATES_XNNPACK_FULLY_CONNECTED_TESTER_H_
#define TENSORFLOW_LITE_DELEGATES_XNNPACK_FULLY_CONNECTED_TESTER_H_
#include <cstdint>
#include <functional>
#include <random>
#include <vector>
#include <gtest/gtest.h>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace xnnpack {
class FullyConnectedTester {
public:
FullyConnectedTester() = default;
FullyConnectedTester(const FullyConnectedTester&) = delete;
FullyConnectedTester& operator=(const FullyConnectedTester&) = delete;
inline FullyConnectedTester& InputShape(
std::initializer_list<int32_t> shape) {
for (auto it = shape.begin(); it != shape.end(); ++it) {
EXPECT_GT(*it, 0);
}
input_shape_ = std::vector<int32_t>(shape.begin(), shape.end());
input_size_ = ComputeSize(input_shape_);
return *this;
}
inline const std::vector<int32_t>& InputShape() const { return input_shape_; }
inline int32_t InputSize() const { return input_size_; }
inline FullyConnectedTester& InputChannels(int32_t input_channels) {
EXPECT_GT(input_channels, 0);
input_channels_ = input_channels;
return *this;
}
inline int32_t InputChannels() const { return input_channels_; }
inline FullyConnectedTester& OutputChannels(int32_t output_channels) {
EXPECT_GT(output_channels, 0);
output_channels_ = output_channels;
return *this;
}
inline int32_t OutputChannels() const { return output_channels_; }
std::vector<int32_t> OutputShape() const;
inline FullyConnectedTester& KeepDims(bool keep_dims) {
keep_dims_ = keep_dims;
return *this;
}
inline bool KeepDims() const { return keep_dims_; }
inline FullyConnectedTester& ReluActivation() {
activation_ = ::tflite::ActivationFunctionType_RELU;
return *this;
}
inline FullyConnectedTester& Relu6Activation() {
activation_ = ::tflite::ActivationFunctionType_RELU6;
return *this;
}
inline FullyConnectedTester& ReluMinus1To1Activation() {
activation_ = ::tflite::ActivationFunctionType_RELU_N1_TO_1;
return *this;
}
void Test(TfLiteDelegate* delegate) const;
private:
std::vector<char> CreateTfLiteModel() const;
inline ::tflite::ActivationFunctionType Activation() const {
return activation_;
}
static int32_t ComputeSize(const std::vector<int32_t>& shape);
std::vector<int32_t> input_shape_;
int32_t input_size_ = 1;
int32_t input_channels_ = 1;
int32_t output_channels_ = 1;
bool keep_dims_ = false;
::tflite::ActivationFunctionType activation_ =
::tflite::ActivationFunctionType_NONE;
};
} // namespace xnnpack
} // namespace tflite
#endif // TENSORFLOW_LITE_DELEGATES_XNNPACK_FULLY_CONNECTED_TESTER_H_

View File

@ -397,6 +397,21 @@ class Subgraph {
return kTfLiteOk;
}
static TfLiteStatus CheckFullyConnectedParams(
TfLiteContext* context, const TfLiteFullyConnectedParams* params,
int node_index) {
if (params->weights_format != kTfLiteFullyConnectedWeightsFormatDefault) {
if (context != nullptr) {
TF_LITE_KERNEL_LOG(context,
"unsupported non-default weights format in node #%d",
node_index);
}
return kTfLiteError;
}
return kTfLiteOk;
}
static TfLiteStatus CheckPoolingParams(TfLiteContext* context,
const TfLitePoolParams* params,
int node_index) {
@ -493,8 +508,11 @@ class Subgraph {
}
for (int i = 0; i < tensor.dims->size; i++) {
if (tensor.dims->data[i] <= 0) {
TF_LITE_KERNEL_LOG(context, "invalid dimension #%d (%d) in tensor #%d",
i, tensor.dims->data[i], tensor_index);
if (context != nullptr) {
TF_LITE_KERNEL_LOG(context,
"invalid dimension #%d (%d) in tensor #%d", i,
tensor.dims->data[i], tensor_index);
}
return kTfLiteError;
}
}
@ -604,6 +622,14 @@ class Subgraph {
node, context->tensors, dwconv_params,
xnnpack_tensors);
}
case kTfLiteBuiltinFullyConnected: {
const TfLiteFullyConnectedParams* fc_params =
static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data);
return VisitFullyConnectedNode(subgraph, logging_context, node_index,
node, context->tensors, fc_params,
xnnpack_tensors);
}
case kTfLiteBuiltinHardSwish:
return VisitHardSwishNode(subgraph, logging_context, node_index, node,
context->tensors, xnnpack_tensors);
@ -934,6 +960,156 @@ class Subgraph {
return kTfLiteOk;
}
static TfLiteStatus VisitFullyConnectedNode(
xnn_subgraph_t subgraph, TfLiteContext* logging_context, int node_index,
TfLiteNode* node, const TfLiteTensor* tensors,
const TfLiteFullyConnectedParams* fc_params,
const std::vector<uint32_t>& xnnpack_tensors) {
TF_LITE_ENSURE_STATUS(
CheckFullyConnectedParams(logging_context, fc_params, node_index));
TF_LITE_ENSURE_STATUS(
CheckNumInputsAndOutputs(logging_context, node, 3, 1, node_index));
const TfLiteTensor& input_tensor = tensors[node->inputs->data[0]];
TF_LITE_ENSURE_STATUS(CheckTensorFloatType(
logging_context, input_tensor, node->inputs->data[0], node_index));
TF_LITE_ENSURE_STATUS(CheckTensorNonDynamicAllocation(
logging_context, input_tensor, node->inputs->data[0], node_index));
const TfLiteTensor& filter_tensor = tensors[node->inputs->data[1]];
TF_LITE_ENSURE_STATUS(CheckTensorFloatType(
logging_context, filter_tensor, node->inputs->data[1], node_index));
TF_LITE_ENSURE_STATUS(CheckTensorShape(logging_context, filter_tensor, 2,
node->inputs->data[1]));
TF_LITE_ENSURE_STATUS(CheckTensorStaticAllocation(
logging_context, filter_tensor, node->inputs->data[1], node_index));
const TfLiteTensor& bias_tensor = tensors[node->inputs->data[2]];
TF_LITE_ENSURE_STATUS(CheckTensorFloatType(
logging_context, filter_tensor, node->inputs->data[2], node_index));
TF_LITE_ENSURE_STATUS(CheckTensorShape(logging_context, bias_tensor, 1,
node->inputs->data[2]));
TF_LITE_ENSURE_STATUS(CheckTensorStaticAllocation(
logging_context, bias_tensor, node->inputs->data[2], node_index));
const TfLiteTensor& output_tensor = tensors[node->outputs->data[0]];
TF_LITE_ENSURE_STATUS(CheckTensorFloatType(
logging_context, output_tensor, node->outputs->data[0], node_index));
TF_LITE_ENSURE_STATUS(CheckTensorNonDynamicAllocation(
logging_context, output_tensor, node->outputs->data[0], node_index));
const int32_t output_channels = filter_tensor.dims->data[0];
const int32_t input_channels = filter_tensor.dims->data[1];
if (input_tensor.dims->size == 0) {
if (logging_context != nullptr) {
TF_LITE_KERNEL_LOG(
logging_context,
"unexpected number of shape dimensions %d in tensor #%d",
input_tensor.dims->size, node->inputs->data[0]);
}
return kTfLiteError;
}
int32_t num_input_elements = 1;
for (int i = 0; i < input_tensor.dims->size; i++) {
if (input_tensor.dims->data[i] <= 0) {
if (logging_context != nullptr) {
TF_LITE_KERNEL_LOG(logging_context,
"invalid dimension #%d (%d) in tensor #%d", i,
input_tensor.dims->data[i], node->inputs->data[0]);
}
return kTfLiteError;
}
num_input_elements *= input_tensor.dims->data[i];
}
if (fc_params->keep_num_dims) {
TF_LITE_ENSURE_STATUS(CheckTensorShape(logging_context, output_tensor,
input_tensor.dims->size,
node->outputs->data[0]));
for (int i = 0; i < input_tensor.dims->size - 1; i++) {
if (input_tensor.dims->data[i] != output_tensor.dims->data[i]) {
if (logging_context != nullptr) {
TF_LITE_KERNEL_LOG(
logging_context,
"mismatch in shape dimension %d (%d != %d) in input and output "
"tensors of FULLY_CONNECTED operator #%d",
i, input_tensor.dims->data[i], output_tensor.dims->data[i],
node_index);
}
return kTfLiteError;
}
}
} else {
if (num_input_elements % input_channels != 0) {
if (logging_context != nullptr) {
TF_LITE_KERNEL_LOG(
logging_context,
"number of elements in input tensor #%d in FULLY_CONNECTED "
"operator is not divisible by input channels (%d)",
node->inputs->data[0], input_channels);
return kTfLiteError;
}
}
TF_LITE_ENSURE_STATUS(CheckTensorShape(logging_context, output_tensor, 2,
node->outputs->data[0]));
if (output_tensor.dims->data[0] != num_input_elements / input_channels) {
if (logging_context != nullptr) {
TF_LITE_KERNEL_LOG(
logging_context,
"batch size %d in output tensor #%d in FULLY_CONNECTED operator "
"does not match batch size %d in reshaped input tensor #%d",
output_tensor.dims->data[0], node->outputs->data[0],
num_input_elements / input_channels, node->inputs->data[0]);
}
return kTfLiteError;
}
}
if (output_tensor.dims->data[output_tensor.dims->size - 1] !=
output_channels) {
if (logging_context != nullptr) {
TF_LITE_KERNEL_LOG(
logging_context,
"number of channels %d in output tensor #%d does not match output "
"channels %d in filter tensor #%d",
output_tensor.dims->data[output_tensor.dims->size - 1],
node->outputs->data[0], output_channels, node->inputs->data[1]);
}
return kTfLiteError;
}
float output_min = -std::numeric_limits<float>::infinity();
float output_max = +std::numeric_limits<float>::infinity();
TF_LITE_ENSURE_STATUS(ConvertActivationToOutputRange(
logging_context, node_index, fc_params->activation, &output_min,
&output_max));
if (subgraph != nullptr) {
const xnn_status status = xnn_define_fully_connected(
subgraph, output_min, output_max,
/*input_id=*/xnnpack_tensors[node->inputs->data[0]],
/*filter_id=*/xnnpack_tensors[node->inputs->data[1]],
/*bias_id=*/xnnpack_tensors[node->inputs->data[2]],
/*output_id=*/xnnpack_tensors[node->outputs->data[0]],
/*flags=*/fc_params->keep_num_dims ? 0
: XNN_FLAG_TENSORFLOW_RESHAPE_2D);
if (status != xnn_status_success) {
TF_LITE_KERNEL_LOG(logging_context,
"failed to delegate FULLY_CONNECTED node #%d",
node_index);
return kTfLiteError;
}
}
return kTfLiteOk;
}
static TfLiteStatus VisitHardSwishNode(
xnn_subgraph_t subgraph, TfLiteContext* logging_context, int node_index,
TfLiteNode* node, const TfLiteTensor* tensors,

View File

@ -164,11 +164,11 @@ def tf_repositories(path_prefix = "", tf_repo_name = ""):
tf_http_archive(
name = "XNNPACK",
sha256 = "c002c961fd73b87b68074f9fda49d0dcbd0627c783e487a445da16bcd8dfdee6",
strip_prefix = "XNNPACK-10a38087936d84ab2879a2e39fc7e204757ff3e8",
sha256 = "f6eb0f1759eca187d922a72a3a12dfe1593bd09783aa4b67bee70630985eb832",
strip_prefix = "XNNPACK-38c07ec51af0cbacb255922fb6219df80c06df59",
urls = [
"https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/XNNPACK/archive/10a38087936d84ab2879a2e39fc7e204757ff3e8.zip",
"https://github.com/google/XNNPACK/archive/10a38087936d84ab2879a2e39fc7e204757ff3e8.zip",
"https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/XNNPACK/archive/38c07ec51af0cbacb255922fb6219df80c06df59.zip",
"https://github.com/google/XNNPACK/archive/38c07ec51af0cbacb255922fb6219df80c06df59.zip",
],
)