Use arithmetic instead of tf.where to set NaN for tf.clip_by_global_norm failure.
Arithmetic operations are much faster than tf.where. Also add unit tests for tf.clip_by_global_norm. PiperOrigin-RevId: 306217896 Change-Id: Ib07da0581550a03fb329480b85ac55349b88ea98
This commit is contained in:
parent
b7c1d24656
commit
b6d4bc7fb6
@ -326,11 +326,9 @@ def clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None):
|
||||
scale_for_finite = clip_norm * math_ops.minimum(
|
||||
1.0 / use_norm,
|
||||
constant_op.constant(1.0, dtype=use_norm.dtype) / clip_norm)
|
||||
scale = array_ops.where(
|
||||
math_ops.is_finite(use_norm),
|
||||
scale_for_finite,
|
||||
# Return NaN if use_norm is not finite.
|
||||
constant_op.constant(float("nan"), dtype=use_norm.dtype))
|
||||
# If use_norm is any finite number, this is a no-op. For inf/-inf/NaN,
|
||||
# this will make scale NaN.
|
||||
scale = scale_for_finite + (use_norm - use_norm)
|
||||
|
||||
values = [
|
||||
ops.convert_to_tensor(
|
||||
|
@ -18,6 +18,8 @@ from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
|
||||
from tensorflow.python.framework import constant_op
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.framework import test_util
|
||||
@ -32,30 +34,38 @@ class ClipOpsTest(test.TestCase):
|
||||
super(ClipOpsTest, self).__init__(method_name)
|
||||
|
||||
def _testClipTensorByNorm(self, inputs, max_norm, expected):
|
||||
with self.cached_session() as sess:
|
||||
input_op = constant_op.constant(inputs)
|
||||
clipped = clip_ops.clip_by_norm(input_op, max_norm)
|
||||
check_op = numerics.add_check_numerics_ops()
|
||||
result, _ = self.evaluate([clipped, check_op])
|
||||
input_op = constant_op.constant(inputs)
|
||||
clipped = clip_ops.clip_by_norm(input_op, max_norm)
|
||||
check_op = numerics.add_check_numerics_ops()
|
||||
result, _ = self.evaluate([clipped, check_op])
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
def _testClipTensorByGlobalNorm(self, inputs, max_norm, expected):
|
||||
clipped = clip_ops.clip_by_global_norm(inputs, max_norm)
|
||||
result, _ = self.evaluate(clipped)
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
def _testNonFiniteClippingByGlobalNorm(self, inputs, max_norm):
|
||||
clipped = clip_ops.clip_by_global_norm(inputs, max_norm)
|
||||
result, _ = self.evaluate(clipped)
|
||||
self.assertTrue(np.all(np.isnan(result)))
|
||||
|
||||
def _testClipIndexedSlicesByNorm(self, values, indices, shape, max_norm,
|
||||
axes):
|
||||
with self.cached_session() as sess:
|
||||
values = constant_op.constant(values)
|
||||
indices = constant_op.constant(indices)
|
||||
shape = constant_op.constant(shape)
|
||||
# IndexedSlices mode
|
||||
indexed_slices = ops.IndexedSlices(values, indices, shape)
|
||||
clipped = clip_ops.clip_by_norm(indexed_slices, max_norm, axes)
|
||||
# clipped should be IndexedSlices
|
||||
self.assertIsInstance(clipped, ops.IndexedSlices)
|
||||
clipped = ops.convert_to_tensor(clipped)
|
||||
values = constant_op.constant(values)
|
||||
indices = constant_op.constant(indices)
|
||||
shape = constant_op.constant(shape)
|
||||
# IndexedSlices mode
|
||||
indexed_slices = ops.IndexedSlices(values, indices, shape)
|
||||
clipped = clip_ops.clip_by_norm(indexed_slices, max_norm, axes)
|
||||
# clipped should be IndexedSlices
|
||||
self.assertIsInstance(clipped, ops.IndexedSlices)
|
||||
clipped = ops.convert_to_tensor(clipped)
|
||||
|
||||
# Tensor mode
|
||||
dense_tensor = ops.convert_to_tensor(indexed_slices)
|
||||
dense_clipped = clip_ops.clip_by_norm(dense_tensor, max_norm, axes)
|
||||
result, expected = self.evaluate([clipped, dense_clipped])
|
||||
# Tensor mode
|
||||
dense_tensor = ops.convert_to_tensor(indexed_slices)
|
||||
dense_clipped = clip_ops.clip_by_norm(dense_tensor, max_norm, axes)
|
||||
result, expected = self.evaluate([clipped, dense_clipped])
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
@ -63,10 +73,34 @@ class ClipOpsTest(test.TestCase):
|
||||
# Simple example
|
||||
self._testClipTensorByNorm([[-3.0, 0.0, 0.0], [4.0, 0.0, 0.0]], 4.0,
|
||||
[[-2.4, 0.0, 0.0], [3.2, 0.0, 0.0]])
|
||||
# No clipping.
|
||||
self._testClipTensorByNorm([[1.0, 0.0, 0.0], [1.0, 0.0, 0.0]], 4.0,
|
||||
[[1.0, 0.0, 0.0], [1.0, 0.0, 0.0]])
|
||||
# Zero norm
|
||||
self._testClipTensorByNorm([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], 4.0,
|
||||
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testClipTensorByGlobalNorm(self):
|
||||
# Simple example
|
||||
self._testClipTensorByGlobalNorm([[-3.0, 0.0, 0.0], [4.0, 0.0, 0.0]], 4.0,
|
||||
[[-2.4, 0.0, 0.0], [3.2, 0.0, 0.0]])
|
||||
# No clipping.
|
||||
self._testClipTensorByGlobalNorm([[1.0, 0.0, 0.0], [1.0, 0.0, 0.0]], 4.0,
|
||||
[[1.0, 0.0, 0.0], [1.0, 0.0, 0.0]])
|
||||
# Zero norm.
|
||||
self._testClipTensorByGlobalNorm([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], 4.0,
|
||||
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testGlobalClipWithNonfinite(self):
|
||||
self._testNonFiniteClippingByGlobalNorm(
|
||||
[[-3.0, 0.0, 0.0], [float("inf"), 0.0, 0.0]], 4.0)
|
||||
self._testNonFiniteClippingByGlobalNorm(
|
||||
[[-3.0, 0.0, 0.0], [float("-inf"), 0.0, 0.0]], 4.0)
|
||||
self._testNonFiniteClippingByGlobalNorm(
|
||||
[[-3.0, 0.0, 0.0], [float("nan"), 0.0, 0.0]], 4.0)
|
||||
|
||||
def testClipIndexedSlicesByNorm(self):
|
||||
values = [[[-3.0, 0.0, 0.0], [4.0, 0.0, 0.0]],
|
||||
[[0.0, 2.0, 0.0], [0.0, 0.0, -1.0]]]
|
||||
|
Loading…
Reference in New Issue
Block a user