diff --git a/tensorflow/compiler/xla/BUILD b/tensorflow/compiler/xla/BUILD index 8a0e2db2b53..45623c27188 100644 --- a/tensorflow/compiler/xla/BUILD +++ b/tensorflow/compiler/xla/BUILD @@ -717,6 +717,7 @@ cc_library( ":types", ":xla_data_proto", "//tensorflow/core:lib", + "@com_google_absl//absl/algorithm:container", "@com_google_absl//absl/strings", "@com_google_absl//absl/types:span", ], diff --git a/tensorflow/compiler/xla/client/lib/sorting_test.cc b/tensorflow/compiler/xla/client/lib/sorting_test.cc index 27ff36c7491..0fbd138aca1 100644 --- a/tensorflow/compiler/xla/client/lib/sorting_test.cc +++ b/tensorflow/compiler/xla/client/lib/sorting_test.cc @@ -77,7 +77,7 @@ XLA_TEST_F(SortingTest, TopKFullSort) { auto x = ConstantR1(&builder, inputs); xla::GetTupleElement(xla::TopK(x, kSize), 0); - std::sort(inputs.begin(), inputs.end(), std::greater()); + absl::c_sort(inputs, std::greater()); ComputeAndCompareR1(&builder, inputs, {}); } diff --git a/tensorflow/compiler/xla/layout_util.cc b/tensorflow/compiler/xla/layout_util.cc index 42649d66922..2fe9b56c6bd 100644 --- a/tensorflow/compiler/xla/layout_util.cc +++ b/tensorflow/compiler/xla/layout_util.cc @@ -290,8 +290,8 @@ Layout CreateDefaultLayoutForRank(int64 rank) { /* static */ bool LayoutUtil::HasLayout(const Shape& shape) { if (shape.IsTuple()) { // Tuple shape: all subshapes must have a layout. - return std::all_of(shape.tuple_shapes().begin(), shape.tuple_shapes().end(), - [](const Shape& s) { return HasLayout(s); }); + return absl::c_all_of(shape.tuple_shapes(), + [](const Shape& s) { return HasLayout(s); }); } else if (!shape.IsArray()) { // Opaque, token types etc. ignore layout. return true; @@ -424,7 +424,7 @@ Status LayoutUtil::CopyLayoutBetweenShapes(const Shape& src, Shape* dst) { positions_in_layout.push_back( PositionInContainer(layout.minor_to_major(), dim)); } - std::sort(positions_in_layout.begin(), positions_in_layout.end()); + absl::c_sort(positions_in_layout); for (size_t i = 1; i < positions_in_layout.size(); ++i) { if (1 != positions_in_layout[i] - positions_in_layout[i - 1]) { return false; diff --git a/tensorflow/compiler/xla/metric_table_report.cc b/tensorflow/compiler/xla/metric_table_report.cc index 4eab4fa4290..ad1699a1ae6 100644 --- a/tensorflow/compiler/xla/metric_table_report.cc +++ b/tensorflow/compiler/xla/metric_table_report.cc @@ -55,7 +55,7 @@ string MetricTableReport::MakeReport(double expected_metric_sum) { const auto metric_greater = [](const Entry& a, const Entry& b) { return a.metric > b.metric; }; - std::sort(entries_.begin(), entries_.end(), metric_greater); + absl::c_sort(entries_, metric_greater); // Create the report AppendLine(); @@ -117,7 +117,7 @@ std::vector MetricTableReport::MakeCategories( auto metric_sum_greater = [](const Category& a, const Category& b) { return a.metric_sum > b.metric_sum; }; - std::sort(categories.begin(), categories.end(), metric_sum_greater); + absl::c_sort(categories, metric_sum_greater); return categories; } diff --git a/tensorflow/compiler/xla/service/BUILD b/tensorflow/compiler/xla/service/BUILD index 85a21a8518a..3c18c450e6e 100644 --- a/tensorflow/compiler/xla/service/BUILD +++ b/tensorflow/compiler/xla/service/BUILD @@ -3414,6 +3414,7 @@ cc_library( ":hlo_profile_printer_data", ":human_readable_profile_builder", "//tensorflow/compiler/xla:types", + "@com_google_absl//absl/algorithm:container", "@com_google_absl//absl/strings", ], ) diff --git a/tensorflow/compiler/xla/service/algebraic_simplifier.cc b/tensorflow/compiler/xla/service/algebraic_simplifier.cc index 3d269dc04f6..003cb7e791c 100644 --- a/tensorflow/compiler/xla/service/algebraic_simplifier.cc +++ b/tensorflow/compiler/xla/service/algebraic_simplifier.cc @@ -2216,8 +2216,7 @@ Status AlgebraicSimplifierVisitor::HandleReverse(HloInstruction* reverse) { auto dim_is_one = [&](int64 i) -> bool { return reverse->shape().dimensions(i) == 1; }; - if (std::all_of(reverse->dimensions().begin(), reverse->dimensions().end(), - dim_is_one)) { + if (absl::c_all_of(reverse->dimensions(), dim_is_one)) { return ReplaceInstruction(reverse, reverse->mutable_operand(0)); } return Status::OK(); @@ -2492,9 +2491,9 @@ Status AlgebraicSimplifierVisitor::HandleReduce(HloInstruction* reduce) { // Create a new reduce with the combined reduction dimensions of both // reduces. std::vector arg_dims = arg->dimensions(); - std::sort(arg_dims.begin(), arg_dims.end()); + absl::c_sort(arg_dims); std::vector reduce_dims = reduce->dimensions(); - std::sort(reduce_dims.begin(), reduce_dims.end()); + absl::c_sort(reduce_dims); // Transform reduce_dims to the same rank as the operand of the operand. for (int64 arg_dim : arg_dims) { for (int64& dim : reduce_dims) { diff --git a/tensorflow/compiler/xla/service/buffer_assignment.cc b/tensorflow/compiler/xla/service/buffer_assignment.cc index c997d594c4e..c3285f516bb 100644 --- a/tensorflow/compiler/xla/service/buffer_assignment.cc +++ b/tensorflow/compiler/xla/service/buffer_assignment.cc @@ -86,10 +86,9 @@ std::vector ColorInterferenceGraph( // first, but it would be good to investigate other ordering heuristics too. std::vector nodes(node_count); std::iota(nodes.begin(), nodes.end(), 0); - std::sort(nodes.begin(), nodes.end(), - [&interference_map](const int64 i, const int64 j) { - return interference_map[i].size() > interference_map[j].size(); - }); + absl::c_sort(nodes, [&interference_map](const int64 i, const int64 j) { + return interference_map[i].size() > interference_map[j].size(); + }); const int64 kColorUnassigned = -1; std::vector assigned_colors(node_count, kColorUnassigned); @@ -272,11 +271,12 @@ BufferAllocationProto BufferAllocation::ToProto() const { proto_assigned->set_offset(buffer_offset_size.second.offset); proto_assigned->set_size(buffer_offset_size.second.size); } - std::sort(proto.mutable_assigned()->begin(), proto.mutable_assigned()->end(), - [](const BufferAllocationProto::Assigned& assign1, - const BufferAllocationProto::Assigned& assign2) { - return assign1.logical_buffer_id() < assign2.logical_buffer_id(); - }); + absl::c_sort(*proto.mutable_assigned(), + [](const BufferAllocationProto::Assigned& assign1, + const BufferAllocationProto::Assigned& assign2) { + return assign1.logical_buffer_id() < + assign2.logical_buffer_id(); + }); return proto; } @@ -308,10 +308,10 @@ string BufferAllocation::ToString() const { for (const auto& buffer_offset_size : assigned_buffers_) { sorted_buffers.push_back(buffer_offset_size.first); } - std::sort(sorted_buffers.begin(), sorted_buffers.end(), - [](const LogicalBuffer* a, const LogicalBuffer* b) { - return a->id() < b->id(); - }); + absl::c_sort(sorted_buffers, + [](const LogicalBuffer* a, const LogicalBuffer* b) { + return a->id() < b->id(); + }); for (const LogicalBuffer* buffer : sorted_buffers) { const OffsetSize& offset_size = FindOrDie(assigned_buffers_, buffer); StrAppend(&output, absl::StrFormat( @@ -479,10 +479,9 @@ bool BufferAssignment::HaveDisjointSlices(const HloInstruction* hlo_a, // didn't return the empty set) for both HLOs, and the two resulting sets of // slices are disjoint. return !slices_a.empty() && !slices_b.empty() && - std::none_of(slices_a.begin(), slices_a.end(), - [&](const BufferAllocation::Slice& slice) { - return slices_b.count(slice) > 0; - }); + absl::c_none_of(slices_a, [&](const BufferAllocation::Slice& slice) { + return slices_b.contains(slice); + }); } StatusOr @@ -952,28 +951,28 @@ Status BufferAssigner::AssignBuffersForComputation( // operands (assuming operands are the same/larger size) enabling the // important reuse case where an elementwise instruction reuses one of its // operand's buffer. This improves locality. - std::sort(sorted_buffers.begin(), sorted_buffers.end(), - [has_sequential_order, &liveness, &post_order_position, assignment]( - const LogicalBuffer* a, const LogicalBuffer* b) { - // Primary sort is by decreasing buffer size. - const int64 a_size = assignment->buffer_size_(*a); - const int64 b_size = assignment->buffer_size_(*b); - if (a_size != b_size) { - return a_size > b_size; // use ">" for decreasing size. - } - // Otherwise live out buffers come before others, if the - // instructions are sequentially ordered. - if (has_sequential_order) { - const bool a_live_out = liveness.MaybeLiveOut(*a); - const bool b_live_out = liveness.MaybeLiveOut(*b); - if (a_live_out != b_live_out) { - return a_live_out; - } - } - // Final tiebreaker is in instruction post order. - return post_order_position.at(a->instruction()) < - post_order_position.at(b->instruction()); - }); + absl::c_sort(sorted_buffers, + [has_sequential_order, &liveness, &post_order_position, + assignment](const LogicalBuffer* a, const LogicalBuffer* b) { + // Primary sort is by decreasing buffer size. + const int64 a_size = assignment->buffer_size_(*a); + const int64 b_size = assignment->buffer_size_(*b); + if (a_size != b_size) { + return a_size > b_size; // use ">" for decreasing size. + } + // Otherwise live out buffers come before others, if the + // instructions are sequentially ordered. + if (has_sequential_order) { + const bool a_live_out = liveness.MaybeLiveOut(*a); + const bool b_live_out = liveness.MaybeLiveOut(*b); + if (a_live_out != b_live_out) { + return a_live_out; + } + } + // Final tiebreaker is in instruction post order. + return post_order_position.at(a->instruction()) < + post_order_position.at(b->instruction()); + }); // BufferAllocations are necessarily created in decreasing size order. Keep // indices of previously created BufferAllocations in allocation_indices. @@ -1305,10 +1304,10 @@ std::vector ComputePeakMemoryLogicalBuffers( live_buffers.end()); // Stabily sort the live buffers. - std::sort(live_buffers_vector.begin(), live_buffers_vector.end(), - [](const LogicalBuffer* a, const LogicalBuffer* b) { - return a->id() < b->id(); - }); + absl::c_sort(live_buffers_vector, + [](const LogicalBuffer* a, const LogicalBuffer* b) { + return a->id() < b->id(); + }); return live_buffers_vector; } diff --git a/tensorflow/compiler/xla/service/call_graph_test.cc b/tensorflow/compiler/xla/service/call_graph_test.cc index 79241342005..5de724f8924 100644 --- a/tensorflow/compiler/xla/service/call_graph_test.cc +++ b/tensorflow/compiler/xla/service/call_graph_test.cc @@ -384,7 +384,7 @@ TEST_F(CallGraphTest, ComplexGraph) { // Verify visitation order of some computations in the graph. auto index_of = [&visited](const HloComputation* comp) { - auto it = std::find(visited.begin(), visited.end(), comp); + auto it = absl::c_find(visited, comp); EXPECT_NE(it, visited.end()); return std::distance(visited.begin(), it); }; diff --git a/tensorflow/compiler/xla/service/computation_layout.cc b/tensorflow/compiler/xla/service/computation_layout.cc index efc893818d0..92d1ca4ba5d 100644 --- a/tensorflow/compiler/xla/service/computation_layout.cc +++ b/tensorflow/compiler/xla/service/computation_layout.cc @@ -42,8 +42,8 @@ void ComputationLayout::SetToDefaultLayout() { } bool ComputationLayout::LayoutIsSet() const { - return std::all_of(parameter_layouts_.begin(), parameter_layouts_.end(), - [](const ShapeLayout& s) { return s.LayoutIsSet(); }) && + return absl::c_all_of(parameter_layouts_, + [](const ShapeLayout& s) { return s.LayoutIsSet(); }) && result_layout_.LayoutIsSet(); } diff --git a/tensorflow/compiler/xla/service/copy_insertion.cc b/tensorflow/compiler/xla/service/copy_insertion.cc index e0165d557de..2b837901f0c 100644 --- a/tensorflow/compiler/xla/service/copy_insertion.cc +++ b/tensorflow/compiler/xla/service/copy_insertion.cc @@ -539,10 +539,9 @@ class CopyRemover { } std::vector values = buffer.values(); - std::sort(values.begin(), values.end(), - [this](const HloValue* a, const HloValue* b) { - return ordering_.IsDefinedBefore(*a, *b); - }); + absl::c_sort(values, [this](const HloValue* a, const HloValue* b) { + return ordering_.IsDefinedBefore(*a, *b); + }); // Create a list containing all of the values in the buffer. AddValueList(values, &value_to_node); @@ -842,12 +841,11 @@ class CopyRemover { copy_value_node->next->prev = operand_node; // Patch up uses. Remove use of copy from operand_node uses. - auto it = - std::find_if(operand_node->uses.begin(), operand_node->uses.end(), - [copy_value_node](const HloUse* use) { - return use->instruction == - copy_value_node->value->defining_instruction(); - }); + auto it = absl::c_find_if( + operand_node->uses, [copy_value_node](const HloUse* use) { + return use->instruction == + copy_value_node->value->defining_instruction(); + }); CHECK(it != operand_node->uses.end()); operand_node->uses.erase(it); diff --git a/tensorflow/compiler/xla/service/cpu/disassembler.cc b/tensorflow/compiler/xla/service/cpu/disassembler.cc index 3ae64142cd7..c3c6847b7b7 100644 --- a/tensorflow/compiler/xla/service/cpu/disassembler.cc +++ b/tensorflow/compiler/xla/service/cpu/disassembler.cc @@ -77,17 +77,16 @@ StatusOr Disassembler::DisassembleObjectFile( } // Sort the symbols in increasing address order. - std::sort( - symbols.begin(), symbols.end(), - [](const llvm::object::SymbolRef& a, const llvm::object::SymbolRef& b) { - // getAddress returns a Expected object. Assert there is no error - // before extracting the address. - llvm::Expected a_address_or_error = a.getAddress(); - CHECK(a_address_or_error); - llvm::Expected b_address_or_error = b.getAddress(); - CHECK(b_address_or_error); - return a_address_or_error.get() < b_address_or_error.get(); - }); + absl::c_sort(symbols, [](const llvm::object::SymbolRef& a, + const llvm::object::SymbolRef& b) { + // getAddress returns a Expected object. Assert there is no error + // before extracting the address. + llvm::Expected a_address_or_error = a.getAddress(); + CHECK(a_address_or_error); + llvm::Expected b_address_or_error = b.getAddress(); + CHECK(b_address_or_error); + return a_address_or_error.get() < b_address_or_error.get(); + }); // Construct ArrayRef pointing to section contents. llvm::StringRef section_content_string; diff --git a/tensorflow/compiler/xla/service/cpu/ir_emitter.cc b/tensorflow/compiler/xla/service/cpu/ir_emitter.cc index e4760aedf14..b352848824b 100644 --- a/tensorflow/compiler/xla/service/cpu/ir_emitter.cc +++ b/tensorflow/compiler/xla/service/cpu/ir_emitter.cc @@ -1709,10 +1709,8 @@ StatusOr IrEmitter::EmitVectorizedReduce( vectorization_factor_in_bytes / ShapeUtil::ByteSizeOfPrimitiveType(reduce->shape().element_type()); - bool is_reduction_over_minor_dimension = - std::find(dimensions.begin(), dimensions.end(), - LayoutUtil::Minor(arg->shape().layout(), 0)) != - dimensions.end(); + bool is_reduction_over_minor_dimension = absl::c_linear_search( + dimensions, LayoutUtil::Minor(arg->shape().layout(), 0)); unsigned element_alignment = tensorflow::MathUtil::GCD( ShapeUtil::ByteSizeOfPrimitiveType(reduce->shape().element_type()), @@ -2401,8 +2399,7 @@ StatusOr IrEmitter::EmitFastConcatenate( int64 concat_dim = concatenate->dimensions(0); const Layout& output_layout = output_shape.layout(); auto output_min2maj = LayoutUtil::MinorToMajor(output_layout); - auto concat_dim_layout_itr = - std::find(output_min2maj.begin(), output_min2maj.end(), concat_dim); + auto concat_dim_layout_itr = absl::c_find(output_min2maj, concat_dim); std::vector inner_dims(output_min2maj.begin(), concat_dim_layout_itr); std::vector outer_dims(std::next(concat_dim_layout_itr), @@ -2956,8 +2953,7 @@ Status IrEmitter::ElementTypesSameAndSupported( TF_RET_CHECK(!operands.empty()); PrimitiveType primitive_type = operands[0]->shape().element_type(); - if (std::find(supported_types.begin(), supported_types.end(), - primitive_type) == supported_types.end()) { + if (!absl::c_linear_search(supported_types, primitive_type)) { return Unimplemented("unsupported operand type %s in op %s", PrimitiveType_Name(primitive_type), HloOpcodeString(instruction.opcode())); diff --git a/tensorflow/compiler/xla/service/gpu/ir_emission_utils.cc b/tensorflow/compiler/xla/service/gpu/ir_emission_utils.cc index 5d25a032a99..caccb188997 100644 --- a/tensorflow/compiler/xla/service/gpu/ir_emission_utils.cc +++ b/tensorflow/compiler/xla/service/gpu/ir_emission_utils.cc @@ -154,20 +154,17 @@ bool IsReductionToVector(const HloInstruction& reduce) { const HloInstruction* input = reduce.operand(0); std::vector dims_to_keep; for (int64 dim = 0; dim < input->shape().dimensions().size(); ++dim) { - if (!std::count(reduce.dimensions().begin(), reduce.dimensions().end(), - dim)) { + if (!absl::c_linear_search(reduce.dimensions(), dim)) { dims_to_keep.push_back(dim); } } return LayoutUtil::AreDimensionsConsecutive(input->shape().layout(), dims_to_keep) && - ShapeUtil::Equal(reduce.shape(), ShapeUtil::FilterDimensions( - [&dims_to_keep](int64 dim) { - return std::count( - dims_to_keep.begin(), - dims_to_keep.end(), dim); - }, - input->shape())); + ShapeUtil::Equal( + reduce.shape(), + ShapeUtil::FilterDimensions( + [&](int64 dim) { return absl::c_count(dims_to_keep, dim); }, + input->shape())); } // This emits a device-side call to diff --git a/tensorflow/compiler/xla/service/gpu/ir_emitter_unnested.cc b/tensorflow/compiler/xla/service/gpu/ir_emitter_unnested.cc index 063d493d90a..923b3d59458 100644 --- a/tensorflow/compiler/xla/service/gpu/ir_emitter_unnested.cc +++ b/tensorflow/compiler/xla/service/gpu/ir_emitter_unnested.cc @@ -1506,10 +1506,10 @@ std::unique_ptr IrEmitterUnnested::BuildKernelThunk( return !allocation->is_constant(); }); - std::sort(non_constant_buffers.begin(), non_constant_buffers.end(), - [](const BufferAllocation* a, const BufferAllocation* b) { - return a->index() < b->index(); - }); + absl::c_sort(non_constant_buffers, + [](const BufferAllocation* a, const BufferAllocation* b) { + return a->index() < b->index(); + }); llvm::Function* kernel = BuildKernelPrototype(*inst, non_constant_buffers); diff --git a/tensorflow/compiler/xla/service/heap_simulator.cc b/tensorflow/compiler/xla/service/heap_simulator.cc index 70ae7078ae7..4fca981c6a5 100644 --- a/tensorflow/compiler/xla/service/heap_simulator.cc +++ b/tensorflow/compiler/xla/service/heap_simulator.cc @@ -225,10 +225,10 @@ Status HeapSimulator::RunComputation( } } // Sort to get a deterministic iteration order. - std::sort(operand_buffers_to_free.begin(), operand_buffers_to_free.end(), - [](const BufferValue* x, const BufferValue* y) { - return x->id() < y->id(); - }); + absl::c_sort(operand_buffers_to_free, + [](const BufferValue* x, const BufferValue* y) { + return x->id() < y->id(); + }); // Allocate buffers defined by this instruction. This is the latest point // that we can allocate; right before the buffer is first used. This must @@ -335,10 +335,9 @@ Status HeapSimulator::RunComputation( to_free.push_back(buffer); } - std::sort(to_free.begin(), to_free.end(), - [](const BufferValue* x, const BufferValue* y) { - return x->id() < y->id(); - }); + absl::c_sort(to_free, [](const BufferValue* x, const BufferValue* y) { + return x->id() < y->id(); + }); for (const BufferValue* buffer : to_free) { VLOG(3) << "Freeing pending: " << buffer->ToString(); Free(buffer, root); @@ -596,7 +595,7 @@ void DecreasingSizeRunsHeap::CallAndDrainRun() { } // Call ops in the run sorted by decreasing size, breaking ties by buffer id. - std::sort(run_.begin(), run_.end(), [](const Op& a, const Op& b) { + absl::c_sort(run_, [](const Op& a, const Op& b) { if (a.size != b.size) { return a.size > b.size; } @@ -866,23 +865,23 @@ HeapSimulator::Result GlobalDecreasingSizeBestFitHeap::Finish() { for (auto& entry : buffer_intervals_) { sorted_buffer_intervals.push_back(entry.second); } - std::sort(sorted_buffer_intervals.begin(), sorted_buffer_intervals.end(), - [](const BufferInterval& x, const BufferInterval& y) { - if (x.size != y.size) { - return x.size > y.size; - } - if (x.end - x.start != y.end - y.start) { - return x.end - x.start > y.end - y.start; - } - return x.buffer->id() < y.buffer->id(); - }); + absl::c_sort(sorted_buffer_intervals, + [](const BufferInterval& x, const BufferInterval& y) { + if (x.size != y.size) { + return x.size > y.size; + } + if (x.end - x.start != y.end - y.start) { + return x.end - x.start > y.end - y.start; + } + return x.buffer->id() < y.buffer->id(); + }); BufferIntervalTree interval_tree(sorted_buffer_intervals.size()); for (auto& buffer_interval : sorted_buffer_intervals) { auto chunks_overlapping_in_time = interval_tree.ChunksOverlappingInTime( buffer_interval.start, buffer_interval.end); - std::sort( - chunks_overlapping_in_time.begin(), chunks_overlapping_in_time.end(), + absl::c_sort( + chunks_overlapping_in_time, [](const Chunk& x, const Chunk& y) { return x.offset < y.offset; }); // Find the minimum free chunk that can hold this buffer. diff --git a/tensorflow/compiler/xla/service/hlo_alias_analysis.cc b/tensorflow/compiler/xla/service/hlo_alias_analysis.cc index 68094d8907f..4c46ea595e2 100644 --- a/tensorflow/compiler/xla/service/hlo_alias_analysis.cc +++ b/tensorflow/compiler/xla/service/hlo_alias_analysis.cc @@ -117,7 +117,7 @@ class BufferValueMap { for (const auto& pair : buffers_) { buffer_numbers.push_back(pair.first); } - std::sort(buffer_numbers.begin(), buffer_numbers.end()); + absl::c_sort(buffer_numbers); return buffer_numbers; } @@ -319,7 +319,7 @@ class BufferValueMap { ComputeWhileAliasedBuffers(value, &aliased_buffers); ComputeConditionalAliasedBuffers(value, &aliased_buffers); // Uniquify aliased buffers. - std::sort(aliased_buffers.begin(), aliased_buffers.end()); + absl::c_sort(aliased_buffers); aliased_buffers.erase( std::unique(aliased_buffers.begin(), aliased_buffers.end()), aliased_buffers.end()); @@ -367,7 +367,7 @@ std::vector HloAliasAnalysis::ComputeBuffersAt( } // Sort and uniquify vector before returning. - std::sort(buffers.begin(), buffers.end(), HloBuffer::IdLessThan); + absl::c_sort(buffers, HloBuffer::IdLessThan); buffers.erase(std::unique(buffers.begin(), buffers.end()), buffers.end()); return buffers; @@ -430,8 +430,7 @@ Status HloAliasAnalysis::Verify() const { for (const auto& pair : value_to_buffer_) { const HloValue* value = pair.first; const HloBuffer& buffer = *pair.second; - TF_RET_CHECK(std::find(buffer.values().begin(), buffer.values().end(), - value) != buffer.values().end()); + TF_RET_CHECK(absl::c_linear_search(buffer.values(), value)); } for (HloBuffer::Id id = 0; id < buffers_.size(); ++id) { @@ -515,7 +514,7 @@ StatusOr> HloAliasAnalysis::Run( auto& value_set = buffer_map.GetValuesInBuffer(buffer_number); std::vector sorted_values(value_set.begin(), value_set.end()); - std::sort(sorted_values.begin(), sorted_values.end(), HloValue::IdLessThan); + absl::c_sort(sorted_values, HloValue::IdLessThan); alias_analysis->buffers_.emplace_back(next_id++, sorted_values); for (const HloValue* value : sorted_values) { alias_analysis->value_to_buffer_[value] = @@ -547,16 +546,15 @@ bool HloAliasAnalysis::HasLiveRangeInterference( // tie-break using value ID. The tie-break is necessary because we need a // strict weak order for std::sort. std::vector values = buffer.values(); - std::sort(values.begin(), values.end(), - [&ordering](const HloValue* a, const HloValue* b) { - if (ordering.IsDefinedBefore(*a, *b)) { - return true; - } else if (ordering.IsDefinedBefore(*b, *a)) { - return false; - } else { - return a->id() < b->id(); - } - }); + absl::c_sort(values, [&ordering](const HloValue* a, const HloValue* b) { + if (ordering.IsDefinedBefore(*a, *b)) { + return true; + } else if (ordering.IsDefinedBefore(*b, *a)) { + return false; + } else { + return a->id() < b->id(); + } + }); // Walk through the ordered vector of values. First verify that the values // are totally ordered with respect to 'ordering', then check that no diff --git a/tensorflow/compiler/xla/service/hlo_buffer.cc b/tensorflow/compiler/xla/service/hlo_buffer.cc index 9c3aa0e64d1..32e48651b30 100644 --- a/tensorflow/compiler/xla/service/hlo_buffer.cc +++ b/tensorflow/compiler/xla/service/hlo_buffer.cc @@ -49,7 +49,7 @@ std::vector HloBuffer::ComputePositions() const { value->positions().end()); } // Remove duplicates and sort positions. - std::sort(positions.begin(), positions.end()); + absl::c_sort(positions); positions.erase(std::unique(positions.begin(), positions.end()), positions.end()); return positions; diff --git a/tensorflow/compiler/xla/service/hlo_computation.cc b/tensorflow/compiler/xla/service/hlo_computation.cc index 10f0cf3a348..9e157226331 100644 --- a/tensorflow/compiler/xla/service/hlo_computation.cc +++ b/tensorflow/compiler/xla/service/hlo_computation.cc @@ -531,11 +531,10 @@ HloComputation::CreateFromProto( HloInstruction* root = instruction_map.at(proto.root_id()); // Sort the instructions in the proto id's order. - std::sort(instructions.begin(), instructions.end(), - [&](const std::unique_ptr& a, - const std::unique_ptr& b) { - return to_proto_id[a.get()] < to_proto_id[b.get()]; - }); + absl::c_sort(instructions, [&](const std::unique_ptr& a, + const std::unique_ptr& b) { + return to_proto_id[a.get()] < to_proto_id[b.get()]; + }); TF_RETURN_IF_ERROR([&]() -> Status { std::vector parameters_seen(parameter_count); @@ -800,8 +799,7 @@ Status HloComputation::AcceptOrdered( absl::Span order) const { VLOG(3) << "Accepting visitor with order."; for (HloInstruction* root : CollectUnreachableRoots()) { - TF_RET_CHECK(std::find(order.begin(), order.end(), root) != order.end()) - << root->ToString(); + TF_RET_CHECK(absl::c_linear_search(order, root)) << root->ToString(); } TF_RET_CHECK(order.size() == instruction_count()); absl::flat_hash_set visited; diff --git a/tensorflow/compiler/xla/service/hlo_dataflow_analysis.cc b/tensorflow/compiler/xla/service/hlo_dataflow_analysis.cc index 0db452b85fe..3144a848054 100644 --- a/tensorflow/compiler/xla/service/hlo_dataflow_analysis.cc +++ b/tensorflow/compiler/xla/service/hlo_dataflow_analysis.cc @@ -256,7 +256,7 @@ bool HloDataflowAnalysis::Phi( input_value_ids.push_back(value->id()); } } - std::sort(input_value_ids.begin(), input_value_ids.end()); + absl::c_sort(input_value_ids); input_value_ids.erase( std::unique(input_value_ids.begin(), input_value_ids.end()), input_value_ids.end()); @@ -271,8 +271,7 @@ bool HloDataflowAnalysis::Phi( if (current_value_defined_here) { VLOG(5) << "current_value_defined_here: " << current_value->ToString(); CHECK(current_value->is_phi()); - auto it = std::find(input_value_ids.begin(), input_value_ids.end(), - current_value->id()); + auto it = absl::c_find(input_value_ids, current_value->id()); if (it != input_value_ids.end()) { input_value_ids.erase(it); } @@ -921,8 +920,7 @@ StatusOr> HloDataflowAnalysis::Run( for (auto& pair : dataflow_analysis->values_) { dataflow_analysis->values_vector_.push_back(&pair.second); } - std::sort(dataflow_analysis->values_vector_.begin(), - dataflow_analysis->values_vector_.end(), HloValue::IdLessThan); + absl::c_sort(dataflow_analysis->values_vector_, HloValue::IdLessThan); TF_DCHECK_OK(dataflow_analysis->Verify()); @@ -937,9 +935,7 @@ Status HloDataflowAnalysis::Verify() const { for (const HloValue* value : values()) { for (const HloPosition& position : value->positions()) { const HloValueSet& value_set = GetValueSet(position); - TF_RET_CHECK(std::find(value_set.values().begin(), - value_set.values().end(), - value) != value_set.values().end()) + TF_RET_CHECK(absl::c_linear_search(value_set.values(), value)) << "Value set at position " << position << " does not contain value " << value->ToShortString(); } @@ -954,9 +950,7 @@ Status HloDataflowAnalysis::Verify() const { const HloValueSet& value_set = pair.second; const HloPosition position{instruction, index}; for (const HloValue* value : value_set.values()) { - TF_RET_CHECK(std::find(value->positions().begin(), - value->positions().end(), - position) != value->positions().end()) + TF_RET_CHECK(absl::c_linear_search(value->positions(), position)) << "Value set at position " << position << " unexpectedly contains value " << value->ToShortString(); } @@ -1041,11 +1035,10 @@ bool HloDataflowAnalysis::CanShareOperandBufferWithUser( // Check if one operand of kAdd fused root is kDot or kConvolution. auto* add = user->fused_expression_root(); auto add_operand_it = - std::find_if(add->operands().begin(), add->operands().end(), - [&](HloInstruction* operand) { - return operand->opcode() == HloOpcode::kConvolution || - operand->opcode() == HloOpcode::kDot; - }); + absl::c_find_if(add->operands(), [&](HloInstruction* operand) { + return operand->opcode() == HloOpcode::kConvolution || + operand->opcode() == HloOpcode::kDot; + }); if (add_operand_it == add->operands().end()) { return false; } @@ -1100,16 +1093,15 @@ bool HloDataflowAnalysis::CanShareOperandBufferWithUser( // *) The root instruction of the called computation is element-wise on // 'operand'. const bool found_caller_use = - std::find_if(uses.begin(), uses.end(), [user](const HloUse& use) { + absl::c_find_if(uses, [user](const HloUse& use) { return use.instruction == user; }) != uses.end(); auto* callee_root = user->to_apply()->root_instruction(); const bool found_elementwise_callee_use = - std::find_if( - uses.begin(), uses.end(), [callee_root](const HloUse& use) { - return use.instruction == callee_root && - callee_root->IsElementwiseOnOperand(use.operand_number); - }) != uses.end(); + absl::c_find_if(uses, [callee_root](const HloUse& use) { + return use.instruction == callee_root && + callee_root->IsElementwiseOnOperand(use.operand_number); + }) != uses.end(); return uses.size() == 2 && found_caller_use && found_elementwise_callee_use; } diff --git a/tensorflow/compiler/xla/service/hlo_dce_test.cc b/tensorflow/compiler/xla/service/hlo_dce_test.cc index 1fa4259a3e4..b5d72b386f8 100644 --- a/tensorflow/compiler/xla/service/hlo_dce_test.cc +++ b/tensorflow/compiler/xla/service/hlo_dce_test.cc @@ -43,9 +43,7 @@ class HloDceTest : public HloTestBase { // Returns whether the given instruction exists in the given computation. bool HasInstruction(const HloComputation& computation, const HloInstruction* instruction) { - return std::find(computation.instructions().begin(), - computation.instructions().end(), - instruction) != computation.instructions().end(); + return absl::c_linear_search(computation.instructions(), instruction); } }; diff --git a/tensorflow/compiler/xla/service/hlo_domain_map.cc b/tensorflow/compiler/xla/service/hlo_domain_map.cc index c6d02f9f67b..7cdb7f6bdf2 100644 --- a/tensorflow/compiler/xla/service/hlo_domain_map.cc +++ b/tensorflow/compiler/xla/service/hlo_domain_map.cc @@ -230,10 +230,10 @@ HloDomainMap::MakeNonDomainInstructions( } } // sort instructions according to instructions_order - std::sort(instructions.begin(), instructions.end(), - [&instructions_order](HloInstruction* a, HloInstruction* b) { - return instructions_order.at(a) < instructions_order.at(b); - }); + absl::c_sort(instructions, + [&instructions_order](HloInstruction* a, HloInstruction* b) { + return instructions_order.at(a) < instructions_order.at(b); + }); return instructions; } diff --git a/tensorflow/compiler/xla/service/hlo_evaluator.cc b/tensorflow/compiler/xla/service/hlo_evaluator.cc index 9754b8906b9..3a97b56c66d 100644 --- a/tensorflow/compiler/xla/service/hlo_evaluator.cc +++ b/tensorflow/compiler/xla/service/hlo_evaluator.cc @@ -1248,8 +1248,7 @@ StatusOr EvaluateSortInternal(HloInstruction* sort, // Extract a slice from the keys and values literals that correspond to // exactly the row in dimension 'sort_dim'. std::vector limit_indices(indices.begin(), indices.end()); - std::for_each(limit_indices.begin(), limit_indices.end(), - [](int64& index) { ++index; }); + absl::c_for_each(limit_indices, [](int64& index) { ++index; }); limit_indices[sort_dim] = sort_dim_elements; TF_ASSIGN_OR_RETURN(auto keys_to_sort, keys_literal.Slice(indices, limit_indices) diff --git a/tensorflow/compiler/xla/service/hlo_evaluator_typed_visitor.h b/tensorflow/compiler/xla/service/hlo_evaluator_typed_visitor.h index cf3509d0aa8..cc5f6cc6828 100644 --- a/tensorflow/compiler/xla/service/hlo_evaluator_typed_visitor.h +++ b/tensorflow/compiler/xla/service/hlo_evaluator_typed_visitor.h @@ -1673,8 +1673,7 @@ class HloEvaluatorTypedVisitor : public DfsHloVisitorWithDefault { // Extract a slice from the literal that corresponds to exactly the // row in dimension 'sort_dim'. std::vector limit_indices(indices.begin(), indices.end()); - std::for_each(limit_indices.begin(), limit_indices.end(), - [](int64& index) { ++index; }); + absl::c_for_each(limit_indices, [](int64& index) { ++index; }); limit_indices[sort_dim] = sort_dim_elements; TF_ASSIGN_OR_RETURN(auto row_to_sort, keys_literal.Slice(indices, limit_indices) diff --git a/tensorflow/compiler/xla/service/hlo_graph_dumper.cc b/tensorflow/compiler/xla/service/hlo_graph_dumper.cc index 22bcb2030bc..4c7f5e9e7df 100644 --- a/tensorflow/compiler/xla/service/hlo_graph_dumper.cc +++ b/tensorflow/compiler/xla/service/hlo_graph_dumper.cc @@ -561,8 +561,8 @@ bool HloDotDumper::ShouldShowSubcomputation(const HloComputation* subcomp) { } // Show the subcomputation if we're showing any of its members. - return std::any_of( - subcomp->instructions().begin(), subcomp->instructions().end(), + return absl::c_any_of( + subcomp->instructions(), [&](const HloInstruction* instr) { return filter_.Show(instr); }); } @@ -735,15 +735,14 @@ bool HloDotDumper::ShouldMergeIntoUsers(const HloInstruction* instr) const { const int kMinUsersToOmit = 3; return instr->opcode() == HloOpcode::kParameter && instr->shape().IsTuple() && !instr->IsFused() && - std::count_if(instr->users().begin(), instr->users().end(), - [&](const HloInstruction* user) { - return filter_.Show(user); - }) > kMinUsersToOmit && - std::all_of(instr->users().begin(), instr->users().end(), - [&](const HloInstruction* user) { - return !filter_.Show(user) || - user->opcode() == HloOpcode::kGetTupleElement; - }); + absl::c_count_if(instr->users(), + [&](const HloInstruction* user) { + return filter_.Show(user); + }) > kMinUsersToOmit && + absl::c_all_of(instr->users(), [&](const HloInstruction* user) { + return !filter_.Show(user) || + user->opcode() == HloOpcode::kGetTupleElement; + }); } string HloDotDumper::DumpInstruction(const HloInstruction* instr) { @@ -900,12 +899,11 @@ ColorScheme HloDotDumper::GetInstructionColor(const HloInstruction* instr) { // the same color as a parameter. Unless the merged-in parameter is a // parameter to a fusion node that is bound to a constant -- these aren't // "real" parameters from the user's perspective. - if (std::any_of(instr->operands().begin(), instr->operands().end(), - [&](const HloInstruction* operand) { - return operand->opcode() == HloOpcode::kParameter && - ShouldMergeIntoUsers(operand) && - TryGetFusionParameterConstant(operand) == nullptr; - })) { + if (absl::c_any_of(instr->operands(), [&](const HloInstruction* operand) { + return operand->opcode() == HloOpcode::kParameter && + ShouldMergeIntoUsers(operand) && + TryGetFusionParameterConstant(operand) == nullptr; + })) { return parameter_color; } @@ -1355,12 +1353,11 @@ NodeFilter MakeNodeRadiusAroundFilter(const HloInstruction* root, NodeFilterResult& filter_result = kv.second; const auto& operands = instr->operands(); - if (std::any_of(operands.begin(), operands.end(), is_displayed) && - !std::all_of(operands.begin(), operands.end(), is_displayed)) { + if (absl::c_any_of(operands, is_displayed) && + !absl::c_all_of(operands, is_displayed)) { // Mark nodes with some operands omitted appropriately. filter_result = kSomeOperandsOmitted; - } else if (!operands.empty() && - std::none_of(operands.begin(), operands.end(), is_displayed)) { + } else if (!operands.empty() && absl::c_none_of(operands, is_displayed)) { // Mark nodes with *all* operands omitted appropriately. filter_result = kOmitNodeOperands; } @@ -1368,8 +1365,7 @@ NodeFilter MakeNodeRadiusAroundFilter(const HloInstruction* root, // Promote nodes with type kSomeUsersOmitted to kNormalNode if all of their // users made it into the graph. if (filter_result == kSomeUsersOmitted && - std::all_of(instr->users().begin(), instr->users().end(), - is_displayed)) { + absl::c_all_of(instr->users(), is_displayed)) { filter_result = kNormalNode; } } diff --git a/tensorflow/compiler/xla/service/hlo_instruction.cc b/tensorflow/compiler/xla/service/hlo_instruction.cc index 66bc73740fe..029d170317c 100644 --- a/tensorflow/compiler/xla/service/hlo_instruction.cc +++ b/tensorflow/compiler/xla/service/hlo_instruction.cc @@ -83,15 +83,14 @@ StatusOr> HloInstruction::CreateFromProto( return computation_map.at(proto.called_computation_ids(index)); }; - TF_RET_CHECK(std::all_of( - proto.operand_ids().begin(), proto.operand_ids().end(), - [&instruction_map](int64 id) { return instruction_map.contains(id); })) + TF_RET_CHECK( + absl::c_all_of(proto.operand_ids(), + [&](int64 id) { return instruction_map.contains(id); })) << proto.name() << " instruction contains invalid operand id(s)"; - TF_RET_CHECK(std::all_of( - proto.called_computation_ids().begin(), - proto.called_computation_ids().end(), - [&computation_map](int64 id) { return computation_map.contains(id); })) + TF_RET_CHECK( + absl::c_all_of(proto.called_computation_ids(), + [&](int64 id) { return computation_map.contains(id); })) << proto.name() << " instruction references invalid computation id(s)"; Shape shape(proto.shape()); @@ -1599,12 +1598,10 @@ HloInstruction::InstructionVector HloInstruction::unique_operands() const { Status HloInstruction::AddControlDependencyTo(HloInstruction* instruction) { TF_RET_CHECK(instruction->parent() == parent()); - if (std::find(control_successors_.begin(), control_successors_.end(), - instruction) == control_successors_.end()) { + if (!absl::c_linear_search(control_successors_, instruction)) { control_successors_.push_back(instruction); - TF_RET_CHECK(std::find(instruction->control_predecessors_.begin(), - instruction->control_predecessors_.end(), - this) == instruction->control_predecessors_.end()); + TF_RET_CHECK( + !absl::c_linear_search(instruction->control_predecessors_, this)); instruction->control_predecessors_.push_back(this); } return Status::OK(); @@ -1853,7 +1850,7 @@ void HloInstruction::RemoveUser(HloInstruction* user) { user_set_.erase(set_it); // This is linear in the number of the users, but a vector provides a stable // iteration order and much faster traversal. - auto vec_it = std::find(users_.begin(), users_.end(), user); + auto vec_it = absl::c_find(users_, user); CHECK(vec_it != users_.end()); users_.erase(vec_it); } @@ -1871,8 +1868,7 @@ Status HloInstruction::ReplaceUseWith(HloInstruction* user, RemoveUser(user); - TF_RET_CHECK( - std::count(user->operands_.begin(), user->operands_.end(), this) >= 0); + TF_RET_CHECK(absl::c_count(user->operands_, this) >= 0); std::replace(user->operands_.begin(), user->operands_.end(), this, new_producer); new_producer->AddUser(user); @@ -1907,8 +1903,7 @@ Status HloInstruction::ReplaceOperandWithDifferentShape( VLOG(3) << "Replacing operand " << operand_num << " of " << name() << " with " << new_operand->name() << ", was " << old_operand->name(); - if (std::find(operands_.begin(), operands_.end(), old_operand) == - operands_.end()) { + if (!absl::c_linear_search(operands_, old_operand)) { old_operand->RemoveUser(this); } new_operand->AddUser(this); @@ -2945,10 +2940,10 @@ StatusOr StringToFusionKind( string PaddingConfigToString(const PaddingConfig& padding) { bool has_interior_padding = - std::any_of(padding.dimensions().begin(), padding.dimensions().end(), - [](const PaddingConfig::PaddingConfigDimension& dim) { - return dim.interior_padding() != 0; - }); + absl::c_any_of(padding.dimensions(), + [](const PaddingConfig::PaddingConfigDimension& dim) { + return dim.interior_padding() != 0; + }); return StrJoin( padding.dimensions(), "x", [&](string* out, const PaddingConfig::PaddingConfigDimension& dim) { diff --git a/tensorflow/compiler/xla/service/hlo_instructions.cc b/tensorflow/compiler/xla/service/hlo_instructions.cc index 7170dd7d818..c24bf41ff8e 100644 --- a/tensorflow/compiler/xla/service/hlo_instructions.cc +++ b/tensorflow/compiler/xla/service/hlo_instructions.cc @@ -42,11 +42,9 @@ using absl::StrJoin; bool IsInstructionElementwiseOnOperand(const HloInstruction* instruction, const HloInstruction* operand) { std::vector operand_indices = instruction->OperandIndices(operand); - return std::all_of( - operand_indices.begin(), operand_indices.end(), - [instruction](int64 operand_index) { - return instruction->IsElementwiseOnOperand(operand_index); - }); + return absl::c_all_of(operand_indices, [instruction](int64 operand_index) { + return instruction->IsElementwiseOnOperand(operand_index); + }); } string PrecisionConfigToString(const PrecisionConfig& precision_config) { @@ -814,8 +812,7 @@ std::vector HloSliceInstruction::ExtraAttributesToStringImpl( std::vector bounds; bounds.reserve(slice_starts_.size()); const bool omit_stride = - std::all_of(slice_strides_.begin(), slice_strides_.end(), - [](int64 stride) { return stride == 1; }); + absl::c_all_of(slice_strides_, [](int64 stride) { return stride == 1; }); for (int i = 0; i < slice_starts_.size(); ++i) { string stride_str = omit_stride ? "" : StrCat(":", slice_strides_[i]); bounds.push_back( @@ -1051,8 +1048,7 @@ HloInstruction* HloFusionInstruction::AddFusionOperand( void HloFusionInstruction::MergeFusionInstruction( HloFusionInstruction* instruction_to_merge) { - CHECK(std::find(operands().begin(), operands().end(), instruction_to_merge) != - operands().end()); + CHECK(absl::c_linear_search(operands(), instruction_to_merge)); // Clone the instruction from which to merge fused instructions. std::unique_ptr cloned = instruction_to_merge->Clone(); HloFusionInstruction* cloned_fusion = @@ -1219,8 +1215,8 @@ HloInstruction* HloFusionInstruction::CloneAndFuseInternal( // corresponding fused parameter instruction. Renumber parameters as // necessary to make parameter numbers consistent with their index in the // fused_parameter_ vector. - bool in_operand_list = std::find(operands().begin(), operands().end(), - instruction_to_fuse) != operands().end(); + bool in_operand_list = + absl::c_linear_search(operands(), instruction_to_fuse); CHECK(add_output || in_operand_list); if (instruction_to_fuse->opcode() == HloOpcode::kTuple) { // We assume all uses of a kTuple operation are GTE ops, not another diff --git a/tensorflow/compiler/xla/service/hlo_module.cc b/tensorflow/compiler/xla/service/hlo_module.cc index ed78189feda..258f918f47a 100644 --- a/tensorflow/compiler/xla/service/hlo_module.cc +++ b/tensorflow/compiler/xla/service/hlo_module.cc @@ -107,11 +107,10 @@ HloComputation* HloModule::AddEntryComputation( } Status HloModule::RemoveEmbeddedComputation(HloComputation* to_remove) { - auto it = - std::find_if(computations_.begin(), computations_.end(), - [&to_remove](const std::unique_ptr& comp) { - return comp.get() == to_remove; - }); + auto it = absl::c_find_if( + computations_, [&to_remove](const std::unique_ptr& comp) { + return comp.get() == to_remove; + }); TF_RET_CHECK(it->get() == to_remove); computations_.erase(it); return Status::OK(); @@ -304,11 +303,10 @@ StatusOr> HloModule::CreateFromProto( auto module = absl::make_unique(proto.name(), module_config); // Sort the computations in the proto id's order. - std::sort(computations.begin(), computations.end(), - [&](const std::unique_ptr& a, - const std::unique_ptr& b) { - return to_proto_id[a.get()] < to_proto_id[b.get()]; - }); + absl::c_sort(computations, [&](const std::unique_ptr& a, + const std::unique_ptr& b) { + return to_proto_id[a.get()] < to_proto_id[b.get()]; + }); // Add sorted computations to the module. for (auto& computation : computations) { diff --git a/tensorflow/compiler/xla/service/hlo_module_dce_test.cc b/tensorflow/compiler/xla/service/hlo_module_dce_test.cc index e535b7d7494..f6e28662049 100644 --- a/tensorflow/compiler/xla/service/hlo_module_dce_test.cc +++ b/tensorflow/compiler/xla/service/hlo_module_dce_test.cc @@ -38,9 +38,7 @@ class HloModuleDceTest : public HloTestBase { // Returns whether the given instruction exists in the given computation. bool HasInstruction(const HloComputation& computation, const HloInstruction* instruction) { - return std::find(computation.instructions().begin(), - computation.instructions().end(), - instruction) != computation.instructions().end(); + return absl::c_linear_search(computation.instructions(), instruction); } // Returns whether the while instruction with name 'while_name' in diff --git a/tensorflow/compiler/xla/service/hlo_parser.cc b/tensorflow/compiler/xla/service/hlo_parser.cc index 730d39500b5..638396308c2 100644 --- a/tensorflow/compiler/xla/service/hlo_parser.cc +++ b/tensorflow/compiler/xla/service/hlo_parser.cc @@ -2746,7 +2746,7 @@ bool HloParser::ParseConvolutionDimensionNumbers( } auto is_unique = [](string str) -> bool { - std::sort(str.begin(), str.end()); + absl::c_sort(str); return std::unique(str.begin(), str.end()) == str.end(); }; diff --git a/tensorflow/compiler/xla/service/hlo_profile_printer.cc b/tensorflow/compiler/xla/service/hlo_profile_printer.cc index 5eb707a957e..9cc202aa9f5 100644 --- a/tensorflow/compiler/xla/service/hlo_profile_printer.cc +++ b/tensorflow/compiler/xla/service/hlo_profile_printer.cc @@ -15,6 +15,7 @@ limitations under the License. #include "tensorflow/compiler/xla/service/hlo_profile_printer.h" +#include "absl/algorithm/container.h" #include "absl/strings/str_cat.h" #include "tensorflow/compiler/xla/service/human_readable_profile_builder.h" @@ -34,11 +35,10 @@ string PrintHloProfile(const HloProfilePrinterData& hlo_profile_printer_data, for (const HloComputationInfo& computation_info : hlo_profile_printer_data.computation_infos()) { const auto& instruction_infos = computation_info.instruction_infos(); - bool any_instruction_profiled = - std::any_of(instruction_infos.begin(), instruction_infos.end(), - [&](const HloInstructionInfo& instruction_info) { - return counters[instruction_info.profile_index()] != 0; - }); + bool any_instruction_profiled = absl::c_any_of( + instruction_infos, [&](const HloInstructionInfo& instruction_info) { + return counters[instruction_info.profile_index()] != 0; + }); if (!any_instruction_profiled) { continue; diff --git a/tensorflow/compiler/xla/service/hlo_reachability.cc b/tensorflow/compiler/xla/service/hlo_reachability.cc index edaa4c59e26..0fced7f15bd 100644 --- a/tensorflow/compiler/xla/service/hlo_reachability.cc +++ b/tensorflow/compiler/xla/service/hlo_reachability.cc @@ -49,7 +49,7 @@ void HloReachabilityMap::SetReachabilityToUnionHelper( absl::Span inputs, const HloInstruction* instruction, BitVector* bit_vector) { // If instruction is part of inputs, don't reset the bit_vector. - if (std::find(inputs.begin(), inputs.end(), instruction) == inputs.end()) { + if (!absl::c_linear_search(inputs, instruction)) { bit_vector->SetToZero(); } bit_vector->Set(GetIndex(instruction)); diff --git a/tensorflow/compiler/xla/service/hlo_rematerialization.cc b/tensorflow/compiler/xla/service/hlo_rematerialization.cc index ac74e2432f2..9ca14ca18a1 100644 --- a/tensorflow/compiler/xla/service/hlo_rematerialization.cc +++ b/tensorflow/compiler/xla/service/hlo_rematerialization.cc @@ -235,8 +235,7 @@ class InstructionList { } // Now scan forwards until we find one of the before_instructions. - while (std::find(before_instructions.begin(), before_instructions.end(), - min_position_item) == before_instructions.end()) { + while (!absl::c_linear_search(before_instructions, min_position_item)) { min_position_item = min_position_item->next; } return InsertBefore(to_insert, min_position_item); @@ -302,7 +301,7 @@ ItemList GetUsers(const InstructionList& instruction_list, // A buffer may be used by the instruction via more than one alias. For // example, a buffer which appears in more than one element of a tuple. Item* user_item = instruction_list.GetItem(user); - if (std::find(users.begin(), users.end(), user_item) == users.end()) { + if (!absl::c_linear_search(users, user_item)) { users.push_back(user_item); } } @@ -456,8 +455,7 @@ class MemoryUsageTracker { return false; } const BufferIdList& in_progress_uses = in_progress_item_->buffers_used; - return std::find(in_progress_uses.begin(), in_progress_uses.end(), - buffer_id) != in_progress_uses.end(); + return absl::c_linear_search(in_progress_uses, buffer_id); } // Returns whether the given instruction is live at the current program @@ -535,8 +533,7 @@ MemoryUsageTracker::MemoryUsageTracker( bool unused; for (Item* user_item : GetUsers(instruction_list_, logical_buffer, points_to_analysis, &unused)) { - if (std::find(buffer->users.begin(), buffer->users.end(), - user_item) == buffer->users.end()) { + if (!absl::c_linear_search(buffer->users, user_item)) { buffer->users.push_back(user_item); buffer->unfinished_user_count++; user_item->buffers_used.push_back(buffer->id); @@ -784,8 +781,7 @@ bool MemoryUsageTracker::Check() const { for (const Buffer& buffer : buffers_) { if (buffer.defining_instruction->instruction == instruction) { - CHECK(std::find(defined_buffers.begin(), defined_buffers.end(), - buffer.id) != defined_buffers.end()) + CHECK(absl::c_linear_search(defined_buffers, buffer.id)) << "Instruction " << instruction->name() << " defined buffers is missing: " << buffer.ToString(); } @@ -808,8 +804,7 @@ bool MemoryUsageTracker::Check() const { int64 unfinished_uses = 0; for (Item* user : buffer.users) { const BufferIdList& used_buffers = user->buffers_used; - CHECK(std::find(used_buffers.begin(), used_buffers.end(), buffer.id) != - used_buffers.end()) + CHECK(absl::c_linear_search(used_buffers, buffer.id)) << "Instruction " << user->instruction->name() << " used buffers is missing " << buffer.ToString(); if (!IsFinished(user)) { @@ -836,10 +831,10 @@ int64 RematerializationCost(const HloInstruction* instruction, // If none of the users of 'instruction' have been placed in the sequence (as // tracked by memory_tracker), then rematerialization of 'instruction' is a // zero-cost move of 'instruction' in the sequence. - if (!std::any_of(instruction->users().begin(), instruction->users().end(), - [&memory_tracker](const HloInstruction* inst) { - return memory_tracker.IsPlaced(inst); - })) { + if (!absl::c_any_of(instruction->users(), + [&memory_tracker](const HloInstruction* inst) { + return memory_tracker.IsPlaced(inst); + })) { return 0; } diff --git a/tensorflow/compiler/xla/service/hlo_sharding.cc b/tensorflow/compiler/xla/service/hlo_sharding.cc index 6c9c32f1790..37cc146bd7a 100644 --- a/tensorflow/compiler/xla/service/hlo_sharding.cc +++ b/tensorflow/compiler/xla/service/hlo_sharding.cc @@ -107,13 +107,12 @@ string HloSharding::ToString() const { bool HloSharding::UsesDevice(int64 device) const { if (IsTuple()) { - return std::any_of( - tuple_elements_.begin(), tuple_elements_.end(), - [&](const HloSharding& s) { return s.UsesDevice(device); }); + return absl::c_any_of(tuple_elements_, [&](const HloSharding& s) { + return s.UsesDevice(device); + }); } const auto& devices = tile_assignment_; - return replicated_ || - std::find(devices.begin(), devices.end(), device) != devices.end(); + return replicated_ || absl::c_linear_search(devices, device); } std::map HloSharding::UsedDevices(int64* count) const { diff --git a/tensorflow/compiler/xla/service/hlo_sharding.h b/tensorflow/compiler/xla/service/hlo_sharding.h index 9775505f860..5789ae09988 100644 --- a/tensorflow/compiler/xla/service/hlo_sharding.h +++ b/tensorflow/compiler/xla/service/hlo_sharding.h @@ -101,8 +101,8 @@ class HloSharding { if (!IsTuple()) { return replicated_; } - return std::all_of(tuple_elements_.begin(), tuple_elements_.end(), - [](const HloSharding& s) { return s.IsReplicated(); }); + return absl::c_all_of( + tuple_elements_, [](const HloSharding& s) { return s.IsReplicated(); }); } // Returns true if the tile size is the same as the input size. @@ -110,8 +110,9 @@ class HloSharding { if (!IsTuple()) { return maximal_; } - return std::all_of(tuple_elements_.begin(), tuple_elements_.end(), - [](const HloSharding& s) { return s.IsTileMaximal(); }); + return absl::c_all_of(tuple_elements_, [](const HloSharding& s) { + return s.IsTileMaximal(); + }); } // Returns true if the sharding defines an operation on the given device. diff --git a/tensorflow/compiler/xla/service/hlo_tfgraph_builder.cc b/tensorflow/compiler/xla/service/hlo_tfgraph_builder.cc index 4ea39a76283..c1f69db74ea 100644 --- a/tensorflow/compiler/xla/service/hlo_tfgraph_builder.cc +++ b/tensorflow/compiler/xla/service/hlo_tfgraph_builder.cc @@ -61,8 +61,7 @@ void CleanNodeName(string* name) { name->erase(std::remove(name->begin(), name->end(), '%'), name->end()); const string chars_to_replace = "<>[]"; auto pred = [&](char c) { - return std::find(chars_to_replace.begin(), chars_to_replace.end(), c) != - chars_to_replace.end(); + return absl::c_linear_search(chars_to_replace, c); }; std::replace_if(name->begin(), name->end(), pred, '_'); } diff --git a/tensorflow/compiler/xla/service/hlo_value.cc b/tensorflow/compiler/xla/service/hlo_value.cc index d409df06be4..218b33b2ac2 100644 --- a/tensorflow/compiler/xla/service/hlo_value.cc +++ b/tensorflow/compiler/xla/service/hlo_value.cc @@ -209,7 +209,7 @@ std::ostream& operator<<(std::ostream& out, const HloValue& value) { } void HloValueSet::SortAndUniquifyValues() { - std::sort(values_.begin(), values_.end(), HloValue::IdLessThan); + absl::c_sort(values_, HloValue::IdLessThan); values_.erase(std::unique(values_.begin(), values_.end(), HloValue::IdEqual), values_.end()); } diff --git a/tensorflow/compiler/xla/service/human_readable_profile_builder.cc b/tensorflow/compiler/xla/service/human_readable_profile_builder.cc index 90904ac0011..88fc62bd1e2 100644 --- a/tensorflow/compiler/xla/service/human_readable_profile_builder.cc +++ b/tensorflow/compiler/xla/service/human_readable_profile_builder.cc @@ -128,9 +128,9 @@ string HumanReadableProfileBuilder::ToString() const { // Sort ops in decreasing order of cycles, and print them. std::vector sorted_ops(op_infos_); - std::sort( - sorted_ops.begin(), sorted_ops.end(), - [](const OpInfo& a, const OpInfo& b) { return a.cycles > b.cycles; }); + absl::c_sort(sorted_ops, [](const OpInfo& a, const OpInfo& b) { + return a.cycles > b.cycles; + }); for (const auto& op : sorted_ops) { print_op(op); } diff --git a/tensorflow/compiler/xla/service/instruction_fusion.cc b/tensorflow/compiler/xla/service/instruction_fusion.cc index f6f25c44131..b97060535d9 100644 --- a/tensorflow/compiler/xla/service/instruction_fusion.cc +++ b/tensorflow/compiler/xla/service/instruction_fusion.cc @@ -178,19 +178,18 @@ bool InstructionFusion::EffectivelyAtMostUnary(HloInstruction* hlo) { output_rank = std::max(output_rank, ShapeUtil::TrueRank(subshape)); } }); - return std::count_if(hlo->operands().begin(), hlo->operands().end(), - [output_rank](HloInstruction* operand) { - if (operand->opcode() == HloOpcode::kBroadcast || - operand->opcode() == HloOpcode::kIota) { - return false; - } - if (operand->opcode() == HloOpcode::kConstant && - ShapeUtil::IsEffectiveScalar(operand->shape())) { - return false; - } - return ShapeUtil::TrueRank(operand->shape()) >= - output_rank; - }) <= 1; + return absl::c_count_if( + hlo->operands(), [output_rank](HloInstruction* operand) { + if (operand->opcode() == HloOpcode::kBroadcast || + operand->opcode() == HloOpcode::kIota) { + return false; + } + if (operand->opcode() == HloOpcode::kConstant && + ShapeUtil::IsEffectiveScalar(operand->shape())) { + return false; + } + return ShapeUtil::TrueRank(operand->shape()) >= output_rank; + }) <= 1; } bool InstructionFusion::CanFuseOnAllPaths( @@ -409,9 +408,8 @@ class ReversePostOrderFusionQueue : public FusionQueue { } sorted_operand_numbers.push_back(i); } - std::sort( - sorted_operand_numbers.begin(), sorted_operand_numbers.end(), - [&](int64 i, int64 j) { + absl::c_sort( + sorted_operand_numbers, [&](int64 i, int64 j) { // Instructions with higher priority in the queue come first. return ( FindOrDie(post_order_index_, instruction->mutable_operand(i)) > diff --git a/tensorflow/compiler/xla/service/layout_assignment.cc b/tensorflow/compiler/xla/service/layout_assignment.cc index 406cd0a219d..10ff7bb6d46 100644 --- a/tensorflow/compiler/xla/service/layout_assignment.cc +++ b/tensorflow/compiler/xla/service/layout_assignment.cc @@ -147,12 +147,9 @@ bool LayoutConstraints::OperandBufferForwarded( PointsToSet::BufferSet* output_buffers = GetBufferSet(instruction); PointsToSet::BufferSet* operand_buffers = GetBufferSet(instruction->operand(operand_no)); - for (const LogicalBuffer* output_buffer : *output_buffers) { - if (operand_buffers->count(output_buffer) > 0) { - return true; - } - } - return false; + return absl::c_any_of(*output_buffers, [&](const LogicalBuffer* b) { + return operand_buffers->count(b) > 0; + }); } Status LayoutConstraints::SetBufferLayout(const Layout& layout, diff --git a/tensorflow/compiler/xla/service/llvm_ir/alias_analysis.cc b/tensorflow/compiler/xla/service/llvm_ir/alias_analysis.cc index 643ecd0fbaa..ce3d922ca7a 100644 --- a/tensorflow/compiler/xla/service/llvm_ir/alias_analysis.cc +++ b/tensorflow/compiler/xla/service/llvm_ir/alias_analysis.cc @@ -81,9 +81,7 @@ void AliasAnalysis::AddAliasingInformationToIrArray(const HloInstruction& hlo, if (hlo.opcode() == HloOpcode::kParameter) { const std::vector& parameter_instructions = module_.entry_computation()->parameter_instructions(); - if (std::find(parameter_instructions.begin(), - parameter_instructions.end(), - &hlo) != parameter_instructions.end()) { + if (absl::c_linear_search(parameter_instructions, &hlo)) { array->MarkInvariantOverWholeProgram(context_); } } diff --git a/tensorflow/compiler/xla/service/name_uniquer.cc b/tensorflow/compiler/xla/service/name_uniquer.cc index daa718879dd..f6feed29935 100644 --- a/tensorflow/compiler/xla/service/name_uniquer.cc +++ b/tensorflow/compiler/xla/service/name_uniquer.cc @@ -34,7 +34,7 @@ bool IsAllowed(char character) { } // namespace NameUniquer::NameUniquer(const string& separator) { - CHECK(std::all_of(separator.begin(), separator.end(), IsAllowed)) + CHECK(absl::c_all_of(separator, IsAllowed)) << "separator should comprises allowed characters only"; separator_ = separator; } diff --git a/tensorflow/compiler/xla/service/platform_util.cc b/tensorflow/compiler/xla/service/platform_util.cc index 896b73cda41..0491f641fc7 100644 --- a/tensorflow/compiler/xla/service/platform_util.cc +++ b/tensorflow/compiler/xla/service/platform_util.cc @@ -260,8 +260,8 @@ PlatformUtil::GetStreamExecutors( // Block here in thread_pool destructor until all devices are initialized. } VLOG(1) << "Device initialization complete"; - if (std::all_of(stream_executors.begin(), stream_executors.end(), - [](se::StreamExecutor* s) { return s == nullptr; })) { + if (absl::c_all_of(stream_executors, + [](se::StreamExecutor* s) { return s == nullptr; })) { return InternalError("no supported devices found for platform %s", platform->Name()); } diff --git a/tensorflow/compiler/xla/service/shape_inference.cc b/tensorflow/compiler/xla/service/shape_inference.cc index 4a2dd097425..d711c8ef0d9 100644 --- a/tensorflow/compiler/xla/service/shape_inference.cc +++ b/tensorflow/compiler/xla/service/shape_inference.cc @@ -534,9 +534,8 @@ Status ValidateDotDimensionNumbers( absl::Span contracting_dims, absl::Span batch_dims) -> bool { auto in_range = [&rank](int64 i) -> bool { return 0 <= i && i < rank; }; - return std::all_of(contracting_dims.begin(), contracting_dims.end(), - in_range) && - std::all_of(batch_dims.begin(), batch_dims.end(), in_range); + return absl::c_all_of(contracting_dims, in_range) && + absl::c_all_of(batch_dims, in_range); }; absl::Span lhs_contracting_dimensions = @@ -563,9 +562,8 @@ Status ValidateDotDimensionNumbers( auto is_unique = [&dim_set](int64 i) -> bool { return dim_set.insert(i).second; }; - return std::all_of(contracting_dims.begin(), contracting_dims.end(), - is_unique) && - std::all_of(batch_dims.begin(), batch_dims.end(), is_unique); + return absl::c_all_of(contracting_dims, is_unique) && + absl::c_all_of(batch_dims, is_unique); }; if (!dims_unique(lhs_contracting_dimensions, lhs_batch_dimensions) || @@ -1589,29 +1587,29 @@ ShapeInference::InferDegenerateDimensionBroadcastShape(HloOpcode operation, input_dnums[1] = dnums.input_feature_dimension(); std::copy(dnums.input_spatial_dimensions().begin(), dnums.input_spatial_dimensions().end(), input_dnums.begin() + 2); - std::sort(input_dnums.begin(), input_dnums.end()); + absl::c_sort(input_dnums); std::vector window_dnums(num_dims); window_dnums[0] = dnums.kernel_input_feature_dimension(); window_dnums[1] = dnums.kernel_output_feature_dimension(); std::copy(dnums.kernel_spatial_dimensions().begin(), dnums.kernel_spatial_dimensions().end(), window_dnums.begin() + 2); - std::sort(window_dnums.begin(), window_dnums.end()); + absl::c_sort(window_dnums); std::vector output_dnums(num_dims); output_dnums[0] = dnums.output_batch_dimension(); output_dnums[1] = dnums.output_feature_dimension(); std::copy(dnums.output_spatial_dimensions().begin(), dnums.output_spatial_dimensions().end(), output_dnums.begin() + 2); - std::sort(output_dnums.begin(), output_dnums.end()); + absl::c_sort(output_dnums); std::vector expected_dnums(num_dims); std::iota(expected_dnums.begin(), expected_dnums.end(), 0); const auto in_range = [num_dims](int64 i) { return 0 <= i && i < num_dims; }; - if (!std::all_of(input_dnums.begin(), input_dnums.end(), in_range) || - !std::all_of(window_dnums.begin(), window_dnums.end(), in_range) || - !std::all_of(output_dnums.begin(), output_dnums.end(), in_range)) { + if (!absl::c_all_of(input_dnums, in_range) || + !absl::c_all_of(window_dnums, in_range) || + !absl::c_all_of(output_dnums, in_range)) { return InvalidArgument( "A dimension number is out of range in convolution: %s.", dnums.DebugString()); diff --git a/tensorflow/compiler/xla/service/transpose_folding.cc b/tensorflow/compiler/xla/service/transpose_folding.cc index 15eb46bac0a..a95ca2bf2a8 100644 --- a/tensorflow/compiler/xla/service/transpose_folding.cc +++ b/tensorflow/compiler/xla/service/transpose_folding.cc @@ -130,8 +130,7 @@ bool FoldTransposeIntoConvolution(InstructionOperandsPair pair) { HloInstruction* new_lhs; const int64 kLhsIdx = 0; - if (std::find(operand_indices.begin(), operand_indices.end(), kLhsIdx) != - operand_indices.end()) { + if (absl::c_linear_search(operand_indices, kLhsIdx)) { HloInstruction& transpose = *convolution.mutable_operand(kLhsIdx); const auto& transpose_dimensions = transpose.dimensions(); HloInstruction& transpose_operand = *transpose.mutable_operand(0); @@ -154,8 +153,7 @@ bool FoldTransposeIntoConvolution(InstructionOperandsPair pair) { HloInstruction* new_rhs; const int64 kRhsIdx = 1; - if (std::find(operand_indices.begin(), operand_indices.end(), kRhsIdx) != - operand_indices.end()) { + if (absl::c_linear_search(operand_indices, kRhsIdx)) { HloInstruction& transpose = *convolution.mutable_operand(kRhsIdx); const auto& transpose_dimensions = transpose.dimensions(); HloInstruction& transpose_operand = *transpose.mutable_operand(0); diff --git a/tensorflow/compiler/xla/service/tuple_points_to_analysis.cc b/tensorflow/compiler/xla/service/tuple_points_to_analysis.cc index dec719b04a0..5e505aaf02f 100644 --- a/tensorflow/compiler/xla/service/tuple_points_to_analysis.cc +++ b/tensorflow/compiler/xla/service/tuple_points_to_analysis.cc @@ -87,9 +87,7 @@ bool PointsToSet::ContainsBuffer(const LogicalBuffer& buffer) const { bool found = false; ForEachElement([&found, &buffer](const ShapeIndex& /*index*/, const BufferList& pointed_to_buffers) { - if (!found && - std::find(pointed_to_buffers.begin(), pointed_to_buffers.end(), - &buffer) != pointed_to_buffers.end()) { + if (!found && absl::c_linear_search(pointed_to_buffers, &buffer)) { found = true; } }); @@ -99,8 +97,7 @@ bool PointsToSet::ContainsBuffer(const LogicalBuffer& buffer) const { bool PointsToSet::ContainsBufferAtIndex(const LogicalBuffer& buffer, const ShapeIndex& index) const { const auto& pointed_to_buffers = element(index); - return std::find(pointed_to_buffers.begin(), pointed_to_buffers.end(), - &buffer) != pointed_to_buffers.end(); + return absl::c_linear_search(pointed_to_buffers, &buffer); } void PointsToSet::AddPointedToBuffer(const LogicalBuffer& buffer, @@ -604,9 +601,8 @@ bool TuplePointsToAnalysis::DoesNotUseOperandBuffer( } else if (user->opcode() == HloOpcode::kFusion && user->fusion_kind() == HloInstruction::FusionKind::kLoop) { // Find fusion parameter associated with 'operand'. - auto it = std::find_if( - user->fused_parameters().begin(), user->fused_parameters().end(), - [=](HloInstruction* fused_param) { + auto it = absl::c_find_if( + user->fused_parameters(), [&](HloInstruction* fused_param) { return user->operand(fused_param->parameter_number()) == operand; }); CHECK(it != user->fused_parameters().end()); @@ -672,9 +668,8 @@ bool TuplePointsToAnalysis::HasUniqueFusedUseOfOperandAt( } // Find fusion parameter associated with 'operand'. const auto& fused_params = fusion->fused_parameters(); - auto fused_param_it = std::find_if( - fused_params.begin(), fused_params.end(), - [&](HloInstruction* fused_param) { + auto fused_param_it = + absl::c_find_if(fused_params, [&](HloInstruction* fused_param) { return fusion->operand(fused_param->parameter_number()) == operand; }); if (fused_param_it == fused_params.end()) { @@ -743,11 +738,10 @@ bool TuplePointsToAnalysis::CanShareOperandBufferWithUser( // Check if one operand of kAdd fused root is kDot or kConvolution. auto* add = user->fused_expression_root(); auto add_operand_it = - std::find_if(add->operands().begin(), add->operands().end(), - [&](HloInstruction* operand) { - return operand->opcode() == HloOpcode::kConvolution || - operand->opcode() == HloOpcode::kDot; - }); + absl::c_find_if(add->operands(), [&](HloInstruction* operand) { + return operand->opcode() == HloOpcode::kConvolution || + operand->opcode() == HloOpcode::kDot; + }); if (add_operand_it == add->operands().end()) { return false; } diff --git a/tensorflow/compiler/xla/service/tuple_points_to_analysis_test.cc b/tensorflow/compiler/xla/service/tuple_points_to_analysis_test.cc index d8875ca7471..7599e1e6adc 100644 --- a/tensorflow/compiler/xla/service/tuple_points_to_analysis_test.cc +++ b/tensorflow/compiler/xla/service/tuple_points_to_analysis_test.cc @@ -721,9 +721,8 @@ class FusionPointsToAnalysisTest : public TuplePointsToAnalysisTest { // to fusion 'operand'. HloInstruction* GetFusionParameterForOperand(HloInstruction* fusion, HloInstruction* operand) { - auto it = std::find_if( - fusion->fused_instructions().begin(), - fusion->fused_instructions().end(), [=](const HloInstruction* fused) { + auto it = absl::c_find_if( + fusion->fused_instructions(), [&](const HloInstruction* fused) { return fused->opcode() == HloOpcode::kParameter && fusion->operand(fused->parameter_number()) == operand; }); diff --git a/tensorflow/compiler/xla/service/while_loop_simplifier.cc b/tensorflow/compiler/xla/service/while_loop_simplifier.cc index de884b037d7..09d54095718 100644 --- a/tensorflow/compiler/xla/service/while_loop_simplifier.cc +++ b/tensorflow/compiler/xla/service/while_loop_simplifier.cc @@ -109,8 +109,7 @@ static StatusOr TryRemoveDeadWhileParams(HloInstruction* while_op) { // operand appears in, but it may appear more than once! if (user->user_count() == 1 && user->users().front() == while_body_root && while_body_root->operand_index(user) == user->tuple_index() && - std::count(while_body_root->operands().begin(), - while_body_root->operands().end(), user) == 1) { + absl::c_count(while_body_root->operands(), user) == 1) { continue; } @@ -158,7 +157,7 @@ static StatusOr TryRemoveDeadWhileParams(HloInstruction* while_op) { // Build up maps from the old/new to the new/old tuple indices. std::vector new_to_old_tuple_idx(used_tuple_indices.begin(), used_tuple_indices.end()); - std::sort(new_to_old_tuple_idx.begin(), new_to_old_tuple_idx.end()); + absl::c_sort(new_to_old_tuple_idx); absl::flat_hash_map old_to_new_tuple_idx; for (int64 new_idx = 0; new_idx < new_to_old_tuple_idx.size(); ++new_idx) { diff --git a/tensorflow/compiler/xla/service/while_loop_simplifier_test.cc b/tensorflow/compiler/xla/service/while_loop_simplifier_test.cc index 3713989ca2f..ecca76b1e86 100644 --- a/tensorflow/compiler/xla/service/while_loop_simplifier_test.cc +++ b/tensorflow/compiler/xla/service/while_loop_simplifier_test.cc @@ -407,13 +407,12 @@ TEST_F(WhileLoopSimplifierTest, RemoveUnusedLoopOperands) { // The original while instruction is still left in the module as a dead // instruction, find a while instruction with a different name as the new // while instruction. + const auto& instrs = m->entry_computation()->instructions(); HloInstruction* new_while_op = - *std::find_if(m->entry_computation()->instructions().begin(), - m->entry_computation()->instructions().end(), - [&](const HloInstruction* instr) { - return (instr->opcode() == HloOpcode::kWhile && - instr->name() != "while"); - }); + *absl::c_find_if(instrs, [&](const HloInstruction* instr) { + return (instr->opcode() == HloOpcode::kWhile && + instr->name() != "while"); + }); auto scalar_s32 = ShapeUtil::MakeShape(S32, {}); EXPECT_TRUE( diff --git a/tensorflow/compiler/xla/shape.cc b/tensorflow/compiler/xla/shape.cc index f05d8162683..ea4f722ef41 100644 --- a/tensorflow/compiler/xla/shape.cc +++ b/tensorflow/compiler/xla/shape.cc @@ -87,8 +87,7 @@ bool Shape::is_static() const { } } } - return !std::any_of(dynamic_dimensions_.begin(), dynamic_dimensions_.end(), - [](bool b) { return b; }); + return !absl::c_any_of(dynamic_dimensions_, [](bool b) { return b; }); } void Shape::DeleteDimension(int64 dim_to_delete) { diff --git a/tensorflow/compiler/xla/shape_util.cc b/tensorflow/compiler/xla/shape_util.cc index 7f68c0ae1fb..4726ee6a5b0 100644 --- a/tensorflow/compiler/xla/shape_util.cc +++ b/tensorflow/compiler/xla/shape_util.cc @@ -405,8 +405,7 @@ ShapeUtil::MakeShapeWithDescendingLayoutAndSamePhysicalLayout( } /* static */ bool ShapeUtil::IsNestedTuple(const Shape& shape) { - return IsTuple(shape) && std::any_of(shape.tuple_shapes().begin(), - shape.tuple_shapes().end(), IsTuple); + return IsTuple(shape) && absl::c_any_of(shape.tuple_shapes(), IsTuple); } /* static */ bool ShapeUtil::IsEmptyTuple(const Shape& shape) { diff --git a/tensorflow/compiler/xla/sparse_index_array.h b/tensorflow/compiler/xla/sparse_index_array.h index a96d483462e..0c25355467d 100644 --- a/tensorflow/compiler/xla/sparse_index_array.h +++ b/tensorflow/compiler/xla/sparse_index_array.h @@ -135,7 +135,7 @@ void SparseIndexArray::SortWithValues(absl::Span values) { auto sort_order_less = [this](int64 lhs, int64 rhs) { return IndexUtil::CompareIndices(At(lhs), At(rhs)) < 0; }; - std::sort(sort_order.begin(), sort_order.end(), sort_order_less); + absl::c_sort(sort_order, sort_order_less); // Reorder the array elements according to sort_order. Work through the array // and follow cycles so we can do the reorder in-place. diff --git a/tensorflow/compiler/xla/tests/convolution_test.cc b/tensorflow/compiler/xla/tests/convolution_test.cc index 24969389129..9db9f2563b6 100644 --- a/tensorflow/compiler/xla/tests/convolution_test.cc +++ b/tensorflow/compiler/xla/tests/convolution_test.cc @@ -467,8 +467,8 @@ XLA_TEST_F(ConvolutionTest, Convolve3D_1x4x2x3x3_2x2x2x3x3_Valid) { // servers. The error message is missing the operator ++. template void iota_int_init_value(std::vector& values, int init_value) { - std::for_each(values.begin(), values.end(), - [&](T& value) { value = static_cast(init_value++); }); + absl::c_for_each(values, + [&](T& value) { value = static_cast(init_value++); }); } template diff --git a/tensorflow/compiler/xla/util.cc b/tensorflow/compiler/xla/util.cc index 68cab7387cf..34b73b5206f 100644 --- a/tensorflow/compiler/xla/util.cc +++ b/tensorflow/compiler/xla/util.cc @@ -86,7 +86,7 @@ bool IsPermutation(absl::Span permutation, int64 rank) { CHECK_LT(index, rank); output[index] = 0; } - return std::find(output.begin(), output.end(), -1) == output.end(); + return !absl::c_linear_search(output, -1); } std::vector InversePermutation( diff --git a/tensorflow/compiler/xla/util.h b/tensorflow/compiler/xla/util.h index 6722641e9d2..f2fd17dc994 100644 --- a/tensorflow/compiler/xla/util.h +++ b/tensorflow/compiler/xla/util.h @@ -324,8 +324,7 @@ bool IsIdentityPermutation(absl::Span permutation); template int64 PositionInContainer(const Container& container, int64 value) { - return std::distance(container.begin(), - std::find(container.begin(), container.end(), value)); + return std::distance(container.begin(), absl::c_find(container, value)); } // Formats the container as a comma-separated string. StrAppend must support diff --git a/tensorflow/compiler/xla/window_util.cc b/tensorflow/compiler/xla/window_util.cc index 51c73b3d17e..e001cc35f9f 100644 --- a/tensorflow/compiler/xla/window_util.cc +++ b/tensorflow/compiler/xla/window_util.cc @@ -17,6 +17,7 @@ limitations under the License. #include +#include "absl/algorithm/container.h" #include "absl/strings/str_cat.h" #include "tensorflow/compiler/xla/types.h" #include "tensorflow/compiler/xla/xla_data.pb.h" @@ -137,25 +138,23 @@ bool HasPadding(const Window& window) { } bool HasSymmetricPadding(const Window& window) { - return std::all_of(window.dimensions().begin(), window.dimensions().end(), - [](const WindowDimension& dim) { - return dim.padding_low() == dim.padding_high(); - }); + return absl::c_all_of(window.dimensions(), [](const WindowDimension& dim) { + return dim.padding_low() == dim.padding_high(); + }); } bool HasSymmetricPadding(const PaddingConfig& padding_config) { - return std::all_of(padding_config.dimensions().begin(), - padding_config.dimensions().end(), - [](const PaddingConfig::PaddingConfigDimension& dim) { - return dim.edge_padding_low() == dim.edge_padding_high(); - }); + return absl::c_all_of(padding_config.dimensions(), + [](const PaddingConfig::PaddingConfigDimension& dim) { + return dim.edge_padding_low() == + dim.edge_padding_high(); + }); } bool HasNegativePadding(const Window& window) { - return std::any_of(window.dimensions().begin(), window.dimensions().end(), - [](const WindowDimension& dim) { - return dim.padding_low() < 0 || dim.padding_high() < 0; - }); + return absl::c_any_of(window.dimensions(), [](const WindowDimension& dim) { + return dim.padding_low() < 0 || dim.padding_high() < 0; + }); } bool HasBaseDilation(const Window& window) { @@ -190,10 +189,9 @@ bool AllOrNoneReversed(const Window& window) { return true; } bool reversed = window.dimensions()[0].window_reversal(); - return std::all_of(window.dimensions().begin(), window.dimensions().end(), - [&](const WindowDimension& dim) { - return dim.window_reversal() == reversed; - }); + return absl::c_all_of(window.dimensions(), [&](const WindowDimension& dim) { + return dim.window_reversal() == reversed; + }); } bool HasDilation(const Window& window) {